Properties

Label 2340.2.y.b.1457.4
Level $2340$
Weight $2$
Character 2340.1457
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.4
Character \(\chi\) \(=\) 2340.1457
Dual form 2340.2.y.b.53.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23903 + 1.86140i) q^{5} +(-0.157336 - 0.157336i) q^{7} -2.06519i q^{11} +(-0.707107 + 0.707107i) q^{13} +(-0.379176 + 0.379176i) q^{17} -5.74635i q^{19} +(1.48364 + 1.48364i) q^{23} +(-1.92963 - 4.61265i) q^{25} -1.06702 q^{29} +8.85481 q^{31} +(0.487808 - 0.0979220i) q^{35} +(-0.221577 - 0.221577i) q^{37} +1.85034i q^{41} +(3.87003 - 3.87003i) q^{43} +(-0.646634 + 0.646634i) q^{47} -6.95049i q^{49} +(5.31837 + 5.31837i) q^{53} +(3.84415 + 2.55882i) q^{55} +0.345872 q^{59} +0.645233 q^{61} +(-0.440086 - 2.19233i) q^{65} +(7.32461 + 7.32461i) q^{67} +2.07674i q^{71} +(2.76594 - 2.76594i) q^{73} +(-0.324928 + 0.324928i) q^{77} -0.527368i q^{79} +(3.39898 + 3.39898i) q^{83} +(-0.235990 - 1.17561i) q^{85} +14.3380 q^{89} +0.222506 q^{91} +(10.6963 + 7.11987i) q^{95} +(-9.21138 - 9.21138i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{5} - 8 q^{7} + 8 q^{17} + 8 q^{23} + 16 q^{25} - 32 q^{29} - 8 q^{35} + 16 q^{37} - 8 q^{43} + 40 q^{47} + 8 q^{53} + 8 q^{55} - 56 q^{59} + 8 q^{61} + 4 q^{65} - 16 q^{67} + 72 q^{77} + 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.23903 + 1.86140i −0.554109 + 0.832444i
\(6\) 0 0
\(7\) −0.157336 0.157336i −0.0594673 0.0594673i 0.676748 0.736215i \(-0.263389\pi\)
−0.736215 + 0.676748i \(0.763389\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.06519i 0.622678i −0.950299 0.311339i \(-0.899223\pi\)
0.950299 0.311339i \(-0.100777\pi\)
\(12\) 0 0
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.379176 + 0.379176i −0.0919638 + 0.0919638i −0.751592 0.659628i \(-0.770714\pi\)
0.659628 + 0.751592i \(0.270714\pi\)
\(18\) 0 0
\(19\) 5.74635i 1.31830i −0.752011 0.659151i \(-0.770916\pi\)
0.752011 0.659151i \(-0.229084\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.48364 + 1.48364i 0.309361 + 0.309361i 0.844662 0.535300i \(-0.179802\pi\)
−0.535300 + 0.844662i \(0.679802\pi\)
\(24\) 0 0
\(25\) −1.92963 4.61265i −0.385926 0.922530i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.06702 −0.198141 −0.0990705 0.995080i \(-0.531587\pi\)
−0.0990705 + 0.995080i \(0.531587\pi\)
\(30\) 0 0
\(31\) 8.85481 1.59037 0.795186 0.606366i \(-0.207373\pi\)
0.795186 + 0.606366i \(0.207373\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.487808 0.0979220i 0.0824546 0.0165518i
\(36\) 0 0
\(37\) −0.221577 0.221577i −0.0364270 0.0364270i 0.688659 0.725086i \(-0.258200\pi\)
−0.725086 + 0.688659i \(0.758200\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.85034i 0.288975i 0.989507 + 0.144487i \(0.0461533\pi\)
−0.989507 + 0.144487i \(0.953847\pi\)
\(42\) 0 0
\(43\) 3.87003 3.87003i 0.590173 0.590173i −0.347505 0.937678i \(-0.612971\pi\)
0.937678 + 0.347505i \(0.112971\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.646634 + 0.646634i −0.0943212 + 0.0943212i −0.752693 0.658372i \(-0.771246\pi\)
0.658372 + 0.752693i \(0.271246\pi\)
\(48\) 0 0
\(49\) 6.95049i 0.992927i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.31837 + 5.31837i 0.730535 + 0.730535i 0.970726 0.240191i \(-0.0772101\pi\)
−0.240191 + 0.970726i \(0.577210\pi\)
\(54\) 0 0
\(55\) 3.84415 + 2.55882i 0.518345 + 0.345031i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.345872 0.0450287 0.0225144 0.999747i \(-0.492833\pi\)
0.0225144 + 0.999747i \(0.492833\pi\)
\(60\) 0 0
\(61\) 0.645233 0.0826137 0.0413068 0.999147i \(-0.486848\pi\)
0.0413068 + 0.999147i \(0.486848\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.440086 2.19233i −0.0545860 0.271925i
\(66\) 0 0
\(67\) 7.32461 + 7.32461i 0.894844 + 0.894844i 0.994974 0.100130i \(-0.0319260\pi\)
−0.100130 + 0.994974i \(0.531926\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.07674i 0.246464i 0.992378 + 0.123232i \(0.0393259\pi\)
−0.992378 + 0.123232i \(0.960674\pi\)
\(72\) 0 0
\(73\) 2.76594 2.76594i 0.323728 0.323728i −0.526467 0.850196i \(-0.676484\pi\)
0.850196 + 0.526467i \(0.176484\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.324928 + 0.324928i −0.0370290 + 0.0370290i
\(78\) 0 0
\(79\) 0.527368i 0.0593335i −0.999560 0.0296668i \(-0.990555\pi\)
0.999560 0.0296668i \(-0.00944461\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.39898 + 3.39898i 0.373086 + 0.373086i 0.868600 0.495514i \(-0.165020\pi\)
−0.495514 + 0.868600i \(0.665020\pi\)
\(84\) 0 0
\(85\) −0.235990 1.17561i −0.0255967 0.127513i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.3380 1.51983 0.759913 0.650025i \(-0.225241\pi\)
0.759913 + 0.650025i \(0.225241\pi\)
\(90\) 0 0
\(91\) 0.222506 0.0233250
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.6963 + 7.11987i 1.09741 + 0.730483i
\(96\) 0 0
\(97\) −9.21138 9.21138i −0.935274 0.935274i 0.0627548 0.998029i \(-0.480011\pi\)
−0.998029 + 0.0627548i \(0.980011\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.60360i 0.955594i 0.878470 + 0.477797i \(0.158564\pi\)
−0.878470 + 0.477797i \(0.841436\pi\)
\(102\) 0 0
\(103\) 4.43445 4.43445i 0.436940 0.436940i −0.454041 0.890981i \(-0.650018\pi\)
0.890981 + 0.454041i \(0.150018\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.85381 6.85381i 0.662582 0.662582i −0.293406 0.955988i \(-0.594789\pi\)
0.955988 + 0.293406i \(0.0947887\pi\)
\(108\) 0 0
\(109\) 8.33883i 0.798715i −0.916795 0.399357i \(-0.869233\pi\)
0.916795 0.399357i \(-0.130767\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.81192 + 4.81192i 0.452667 + 0.452667i 0.896239 0.443572i \(-0.146289\pi\)
−0.443572 + 0.896239i \(0.646289\pi\)
\(114\) 0 0
\(115\) −4.59993 + 0.923385i −0.428946 + 0.0861061i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.119316 0.0109377
\(120\) 0 0
\(121\) 6.73499 0.612272
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.9769 + 2.12337i 0.981800 + 0.189920i
\(126\) 0 0
\(127\) 8.35047 + 8.35047i 0.740984 + 0.740984i 0.972767 0.231783i \(-0.0744560\pi\)
−0.231783 + 0.972767i \(0.574456\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.73819i 0.239237i −0.992820 0.119619i \(-0.961833\pi\)
0.992820 0.119619i \(-0.0381672\pi\)
\(132\) 0 0
\(133\) −0.904106 + 0.904106i −0.0783959 + 0.0783959i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.52385 3.52385i 0.301063 0.301063i −0.540367 0.841430i \(-0.681714\pi\)
0.841430 + 0.540367i \(0.181714\pi\)
\(138\) 0 0
\(139\) 2.93706i 0.249119i −0.992212 0.124559i \(-0.960248\pi\)
0.992212 0.124559i \(-0.0397517\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.46031 + 1.46031i 0.122117 + 0.122117i
\(144\) 0 0
\(145\) 1.32207 1.98616i 0.109792 0.164941i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.3578 −0.930468 −0.465234 0.885188i \(-0.654030\pi\)
−0.465234 + 0.885188i \(0.654030\pi\)
\(150\) 0 0
\(151\) 5.71085 0.464742 0.232371 0.972627i \(-0.425352\pi\)
0.232371 + 0.972627i \(0.425352\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.9713 + 16.4824i −0.881239 + 1.32390i
\(156\) 0 0
\(157\) 7.33964 + 7.33964i 0.585767 + 0.585767i 0.936482 0.350715i \(-0.114062\pi\)
−0.350715 + 0.936482i \(0.614062\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.466861i 0.0367938i
\(162\) 0 0
\(163\) 4.98122 4.98122i 0.390159 0.390159i −0.484585 0.874744i \(-0.661029\pi\)
0.874744 + 0.484585i \(0.161029\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.59931 6.59931i 0.510670 0.510670i −0.404062 0.914732i \(-0.632402\pi\)
0.914732 + 0.404062i \(0.132402\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.45748 + 6.45748i 0.490953 + 0.490953i 0.908606 0.417654i \(-0.137147\pi\)
−0.417654 + 0.908606i \(0.637147\pi\)
\(174\) 0 0
\(175\) −0.422134 + 1.02933i −0.0319104 + 0.0778104i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −23.8338 −1.78142 −0.890711 0.454570i \(-0.849793\pi\)
−0.890711 + 0.454570i \(0.849793\pi\)
\(180\) 0 0
\(181\) −5.15979 −0.383524 −0.191762 0.981441i \(-0.561420\pi\)
−0.191762 + 0.981441i \(0.561420\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.686982 0.137904i 0.0505079 0.0101389i
\(186\) 0 0
\(187\) 0.783071 + 0.783071i 0.0572638 + 0.0572638i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.62193i 0.117359i −0.998277 0.0586793i \(-0.981311\pi\)
0.998277 0.0586793i \(-0.0186889\pi\)
\(192\) 0 0
\(193\) 10.5742 10.5742i 0.761148 0.761148i −0.215382 0.976530i \(-0.569100\pi\)
0.976530 + 0.215382i \(0.0690996\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0692 18.0692i 1.28738 1.28738i 0.351004 0.936374i \(-0.385840\pi\)
0.936374 0.351004i \(-0.114160\pi\)
\(198\) 0 0
\(199\) 13.8118i 0.979090i −0.871978 0.489545i \(-0.837163\pi\)
0.871978 0.489545i \(-0.162837\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.167881 + 0.167881i 0.0117829 + 0.0117829i
\(204\) 0 0
\(205\) −3.44423 2.29262i −0.240555 0.160123i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −11.8673 −0.820878
\(210\) 0 0
\(211\) 11.7318 0.807650 0.403825 0.914836i \(-0.367680\pi\)
0.403825 + 0.914836i \(0.367680\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.40861 + 11.9987i 0.164266 + 0.818307i
\(216\) 0 0
\(217\) −1.39318 1.39318i −0.0945751 0.0945751i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.536237i 0.0360712i
\(222\) 0 0
\(223\) −5.52112 + 5.52112i −0.369722 + 0.369722i −0.867376 0.497654i \(-0.834195\pi\)
0.497654 + 0.867376i \(0.334195\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.9394 + 15.9394i −1.05794 + 1.05794i −0.0597213 + 0.998215i \(0.519021\pi\)
−0.998215 + 0.0597213i \(0.980979\pi\)
\(228\) 0 0
\(229\) 19.7008i 1.30187i −0.759134 0.650934i \(-0.774377\pi\)
0.759134 0.650934i \(-0.225623\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.9433 11.9433i −0.782434 0.782434i 0.197807 0.980241i \(-0.436618\pi\)
−0.980241 + 0.197807i \(0.936618\pi\)
\(234\) 0 0
\(235\) −0.402449 2.00484i −0.0262529 0.130781i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.22997 −0.467668 −0.233834 0.972277i \(-0.575127\pi\)
−0.233834 + 0.972277i \(0.575127\pi\)
\(240\) 0 0
\(241\) −3.21636 −0.207184 −0.103592 0.994620i \(-0.533034\pi\)
−0.103592 + 0.994620i \(0.533034\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.9377 + 8.61184i 0.826556 + 0.550190i
\(246\) 0 0
\(247\) 4.06328 + 4.06328i 0.258540 + 0.258540i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.8442i 1.75751i −0.477274 0.878755i \(-0.658375\pi\)
0.477274 0.878755i \(-0.341625\pi\)
\(252\) 0 0
\(253\) 3.06401 3.06401i 0.192632 0.192632i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.899591 + 0.899591i −0.0561150 + 0.0561150i −0.734607 0.678492i \(-0.762634\pi\)
0.678492 + 0.734607i \(0.262634\pi\)
\(258\) 0 0
\(259\) 0.0697239i 0.00433243i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.2583 + 14.2583i 0.879206 + 0.879206i 0.993452 0.114246i \(-0.0364452\pi\)
−0.114246 + 0.993452i \(0.536445\pi\)
\(264\) 0 0
\(265\) −16.4892 + 3.31003i −1.01292 + 0.203333i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.2214 −0.745149 −0.372574 0.928002i \(-0.621525\pi\)
−0.372574 + 0.928002i \(0.621525\pi\)
\(270\) 0 0
\(271\) 13.1690 0.799959 0.399980 0.916524i \(-0.369017\pi\)
0.399980 + 0.916524i \(0.369017\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.52599 + 3.98505i −0.574439 + 0.240308i
\(276\) 0 0
\(277\) −18.5257 18.5257i −1.11310 1.11310i −0.992729 0.120371i \(-0.961592\pi\)
−0.120371 0.992729i \(-0.538408\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.0669i 1.19709i −0.801089 0.598545i \(-0.795746\pi\)
0.801089 0.598545i \(-0.204254\pi\)
\(282\) 0 0
\(283\) −15.3787 + 15.3787i −0.914169 + 0.914169i −0.996597 0.0824278i \(-0.973733\pi\)
0.0824278 + 0.996597i \(0.473733\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.291125 0.291125i 0.0171846 0.0171846i
\(288\) 0 0
\(289\) 16.7125i 0.983085i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.3866 10.3866i −0.606795 0.606795i 0.335312 0.942107i \(-0.391158\pi\)
−0.942107 + 0.335312i \(0.891158\pi\)
\(294\) 0 0
\(295\) −0.428544 + 0.643807i −0.0249508 + 0.0374839i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.09819 −0.121341
\(300\) 0 0
\(301\) −1.21779 −0.0701921
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.799461 + 1.20104i −0.0457770 + 0.0687713i
\(306\) 0 0
\(307\) 2.84488 + 2.84488i 0.162366 + 0.162366i 0.783614 0.621248i \(-0.213374\pi\)
−0.621248 + 0.783614i \(0.713374\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 13.3208i 0.755356i 0.925937 + 0.377678i \(0.123277\pi\)
−0.925937 + 0.377678i \(0.876723\pi\)
\(312\) 0 0
\(313\) −16.3970 + 16.3970i −0.926815 + 0.926815i −0.997499 0.0706836i \(-0.977482\pi\)
0.0706836 + 0.997499i \(0.477482\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.3170 18.3170i 1.02879 1.02879i 0.0292136 0.999573i \(-0.490700\pi\)
0.999573 0.0292136i \(-0.00930029\pi\)
\(318\) 0 0
\(319\) 2.20360i 0.123378i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.17888 + 2.17888i 0.121236 + 0.121236i
\(324\) 0 0
\(325\) 4.62609 + 1.89718i 0.256609 + 0.105237i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.203477 0.0112181
\(330\) 0 0
\(331\) 8.50151 0.467285 0.233643 0.972323i \(-0.424935\pi\)
0.233643 + 0.972323i \(0.424935\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.7094 + 4.55866i −1.24075 + 0.249066i
\(336\) 0 0
\(337\) 4.61371 + 4.61371i 0.251325 + 0.251325i 0.821514 0.570189i \(-0.193130\pi\)
−0.570189 + 0.821514i \(0.693130\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.2869i 0.990289i
\(342\) 0 0
\(343\) −2.19491 + 2.19491i −0.118514 + 0.118514i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.24911 + 8.24911i −0.442835 + 0.442835i −0.892964 0.450129i \(-0.851378\pi\)
0.450129 + 0.892964i \(0.351378\pi\)
\(348\) 0 0
\(349\) 9.48532i 0.507737i −0.967239 0.253869i \(-0.918297\pi\)
0.967239 0.253869i \(-0.0817031\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.77661 + 3.77661i 0.201009 + 0.201009i 0.800432 0.599423i \(-0.204603\pi\)
−0.599423 + 0.800432i \(0.704603\pi\)
\(354\) 0 0
\(355\) −3.86565 2.57314i −0.205168 0.136568i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.7235 1.09374 0.546871 0.837217i \(-0.315819\pi\)
0.546871 + 0.837217i \(0.315819\pi\)
\(360\) 0 0
\(361\) −14.0205 −0.737921
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.72145 + 8.57558i 0.0901050 + 0.448867i
\(366\) 0 0
\(367\) 10.2386 + 10.2386i 0.534451 + 0.534451i 0.921894 0.387443i \(-0.126642\pi\)
−0.387443 + 0.921894i \(0.626642\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.67354i 0.0868859i
\(372\) 0 0
\(373\) −6.20505 + 6.20505i −0.321285 + 0.321285i −0.849260 0.527975i \(-0.822952\pi\)
0.527975 + 0.849260i \(0.322952\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.754499 0.754499i 0.0388587 0.0388587i
\(378\) 0 0
\(379\) 30.9627i 1.59045i 0.606317 + 0.795223i \(0.292646\pi\)
−0.606317 + 0.795223i \(0.707354\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.6230 + 21.6230i 1.10488 + 1.10488i 0.993813 + 0.111071i \(0.0354280\pi\)
0.111071 + 0.993813i \(0.464572\pi\)
\(384\) 0 0
\(385\) −0.202227 1.00742i −0.0103065 0.0513427i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.6047 −0.841890 −0.420945 0.907086i \(-0.638302\pi\)
−0.420945 + 0.907086i \(0.638302\pi\)
\(390\) 0 0
\(391\) −1.12513 −0.0569001
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.981643 + 0.653422i 0.0493918 + 0.0328772i
\(396\) 0 0
\(397\) 9.77161 + 9.77161i 0.490423 + 0.490423i 0.908439 0.418017i \(-0.137275\pi\)
−0.418017 + 0.908439i \(0.637275\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.16171i 0.157888i −0.996879 0.0789441i \(-0.974845\pi\)
0.996879 0.0789441i \(-0.0251549\pi\)
\(402\) 0 0
\(403\) −6.26130 + 6.26130i −0.311897 + 0.311897i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.457598 + 0.457598i −0.0226823 + 0.0226823i
\(408\) 0 0
\(409\) 25.5853i 1.26511i −0.774515 0.632556i \(-0.782006\pi\)
0.774515 0.632556i \(-0.217994\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.0544181 0.0544181i −0.00267774 0.00267774i
\(414\) 0 0
\(415\) −10.5383 + 2.11544i −0.517304 + 0.103843i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −29.6062 −1.44636 −0.723179 0.690661i \(-0.757320\pi\)
−0.723179 + 0.690661i \(0.757320\pi\)
\(420\) 0 0
\(421\) −14.5564 −0.709435 −0.354717 0.934974i \(-0.615423\pi\)
−0.354717 + 0.934974i \(0.615423\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.48068 + 1.01734i 0.120331 + 0.0493481i
\(426\) 0 0
\(427\) −0.101518 0.101518i −0.00491281 0.00491281i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.6092i 0.848205i −0.905614 0.424102i \(-0.860590\pi\)
0.905614 0.424102i \(-0.139410\pi\)
\(432\) 0 0
\(433\) −7.95487 + 7.95487i −0.382287 + 0.382287i −0.871925 0.489639i \(-0.837129\pi\)
0.489639 + 0.871925i \(0.337129\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.52554 8.52554i 0.407832 0.407832i
\(438\) 0 0
\(439\) 12.8337i 0.612519i 0.951948 + 0.306260i \(0.0990776\pi\)
−0.951948 + 0.306260i \(0.900922\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.8511 22.8511i −1.08569 1.08569i −0.995967 0.0897210i \(-0.971402\pi\)
−0.0897210 0.995967i \(-0.528598\pi\)
\(444\) 0 0
\(445\) −17.7652 + 26.6888i −0.842150 + 1.26517i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.71880 0.317080 0.158540 0.987353i \(-0.449321\pi\)
0.158540 + 0.987353i \(0.449321\pi\)
\(450\) 0 0
\(451\) 3.82130 0.179938
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.275691 + 0.414174i −0.0129246 + 0.0194168i
\(456\) 0 0
\(457\) 21.1723 + 21.1723i 0.990400 + 0.990400i 0.999954 0.00955482i \(-0.00304144\pi\)
−0.00955482 + 0.999954i \(0.503041\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.9687i 0.557438i −0.960373 0.278719i \(-0.910090\pi\)
0.960373 0.278719i \(-0.0899099\pi\)
\(462\) 0 0
\(463\) −13.8992 + 13.8992i −0.645952 + 0.645952i −0.952012 0.306060i \(-0.900989\pi\)
0.306060 + 0.952012i \(0.400989\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.4011 12.4011i 0.573854 0.573854i −0.359349 0.933203i \(-0.617001\pi\)
0.933203 + 0.359349i \(0.117001\pi\)
\(468\) 0 0
\(469\) 2.30485i 0.106428i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.99233 7.99233i −0.367488 0.367488i
\(474\) 0 0
\(475\) −26.5059 + 11.0883i −1.21617 + 0.508768i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.82779 −0.266278 −0.133139 0.991097i \(-0.542506\pi\)
−0.133139 + 0.991097i \(0.542506\pi\)
\(480\) 0 0
\(481\) 0.313357 0.0142878
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.5592 5.73294i 1.29681 0.260320i
\(486\) 0 0
\(487\) −10.9595 10.9595i −0.496622 0.496622i 0.413763 0.910385i \(-0.364214\pi\)
−0.910385 + 0.413763i \(0.864214\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.6730i 0.526796i −0.964687 0.263398i \(-0.915157\pi\)
0.964687 0.263398i \(-0.0848432\pi\)
\(492\) 0 0
\(493\) 0.404590 0.404590i 0.0182218 0.0182218i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.326746 0.326746i 0.0146566 0.0146566i
\(498\) 0 0
\(499\) 13.7099i 0.613738i 0.951752 + 0.306869i \(0.0992814\pi\)
−0.951752 + 0.306869i \(0.900719\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.310963 0.310963i −0.0138652 0.0138652i 0.700140 0.714005i \(-0.253121\pi\)
−0.714005 + 0.700140i \(0.753121\pi\)
\(504\) 0 0
\(505\) −17.8762 11.8991i −0.795478 0.529503i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −41.1167 −1.82247 −0.911233 0.411891i \(-0.864868\pi\)
−0.911233 + 0.411891i \(0.864868\pi\)
\(510\) 0 0
\(511\) −0.870361 −0.0385025
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.75990 + 13.7487i 0.121616 + 0.605840i
\(516\) 0 0
\(517\) 1.33542 + 1.33542i 0.0587318 + 0.0587318i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.48076i 0.415360i −0.978197 0.207680i \(-0.933409\pi\)
0.978197 0.207680i \(-0.0665912\pi\)
\(522\) 0 0
\(523\) −16.0861 + 16.0861i −0.703395 + 0.703395i −0.965138 0.261743i \(-0.915703\pi\)
0.261743 + 0.965138i \(0.415703\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.35754 + 3.35754i −0.146257 + 0.146257i
\(528\) 0 0
\(529\) 18.5976i 0.808591i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.30839 1.30839i −0.0566726 0.0566726i
\(534\) 0 0
\(535\) 4.26564 + 21.2497i 0.184420 + 0.918706i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14.3541 −0.618274
\(540\) 0 0
\(541\) 4.47451 0.192374 0.0961871 0.995363i \(-0.469335\pi\)
0.0961871 + 0.995363i \(0.469335\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.5219 + 10.3320i 0.664885 + 0.442575i
\(546\) 0 0
\(547\) 15.1803 + 15.1803i 0.649061 + 0.649061i 0.952766 0.303705i \(-0.0982237\pi\)
−0.303705 + 0.952766i \(0.598224\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.13148i 0.261210i
\(552\) 0 0
\(553\) −0.0829738 + 0.0829738i −0.00352841 + 0.00352841i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.9963 30.9963i 1.31335 1.31335i 0.394426 0.918928i \(-0.370943\pi\)
0.918928 0.394426i \(-0.129057\pi\)
\(558\) 0 0
\(559\) 5.47304i 0.231485i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.15424 + 8.15424i 0.343660 + 0.343660i 0.857742 0.514081i \(-0.171867\pi\)
−0.514081 + 0.857742i \(0.671867\pi\)
\(564\) 0 0
\(565\) −14.9190 + 2.99482i −0.627647 + 0.125993i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.8475 −1.54473 −0.772365 0.635179i \(-0.780926\pi\)
−0.772365 + 0.635179i \(0.780926\pi\)
\(570\) 0 0
\(571\) −19.8439 −0.830442 −0.415221 0.909721i \(-0.636296\pi\)
−0.415221 + 0.909721i \(0.636296\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.98064 9.70642i 0.166004 0.404786i
\(576\) 0 0
\(577\) 3.83030 + 3.83030i 0.159457 + 0.159457i 0.782326 0.622869i \(-0.214033\pi\)
−0.622869 + 0.782326i \(0.714033\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.06956i 0.0443729i
\(582\) 0 0
\(583\) 10.9834 10.9834i 0.454888 0.454888i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.4282 + 15.4282i −0.636789 + 0.636789i −0.949762 0.312973i \(-0.898675\pi\)
0.312973 + 0.949762i \(0.398675\pi\)
\(588\) 0 0
\(589\) 50.8828i 2.09659i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.3275 + 11.3275i 0.465166 + 0.465166i 0.900344 0.435178i \(-0.143315\pi\)
−0.435178 + 0.900344i \(0.643315\pi\)
\(594\) 0 0
\(595\) −0.147836 + 0.222095i −0.00606067 + 0.00910501i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13.2523 −0.541476 −0.270738 0.962653i \(-0.587268\pi\)
−0.270738 + 0.962653i \(0.587268\pi\)
\(600\) 0 0
\(601\) 12.6411 0.515642 0.257821 0.966193i \(-0.416996\pi\)
0.257821 + 0.966193i \(0.416996\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.34483 + 12.5365i −0.339266 + 0.509682i
\(606\) 0 0
\(607\) 7.21777 + 7.21777i 0.292960 + 0.292960i 0.838249 0.545288i \(-0.183580\pi\)
−0.545288 + 0.838249i \(0.683580\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.914478i 0.0369958i
\(612\) 0 0
\(613\) −27.3349 + 27.3349i −1.10405 + 1.10405i −0.110128 + 0.993917i \(0.535126\pi\)
−0.993917 + 0.110128i \(0.964874\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.5430 27.5430i 1.10884 1.10884i 0.115537 0.993303i \(-0.463141\pi\)
0.993303 0.115537i \(-0.0368590\pi\)
\(618\) 0 0
\(619\) 2.29212i 0.0921279i −0.998938 0.0460640i \(-0.985332\pi\)
0.998938 0.0460640i \(-0.0146678\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.25588 2.25588i −0.0903800 0.0903800i
\(624\) 0 0
\(625\) −17.5530 + 17.8014i −0.702122 + 0.712057i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.168033 0.00669993
\(630\) 0 0
\(631\) 27.0130 1.07537 0.537686 0.843145i \(-0.319299\pi\)
0.537686 + 0.843145i \(0.319299\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −25.8900 + 5.19713i −1.02741 + 0.206242i
\(636\) 0 0
\(637\) 4.91474 + 4.91474i 0.194729 + 0.194729i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.0803i 0.477144i 0.971125 + 0.238572i \(0.0766793\pi\)
−0.971125 + 0.238572i \(0.923321\pi\)
\(642\) 0 0
\(643\) −8.73222 + 8.73222i −0.344365 + 0.344365i −0.858006 0.513640i \(-0.828297\pi\)
0.513640 + 0.858006i \(0.328297\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.04837 + 5.04837i −0.198472 + 0.198472i −0.799345 0.600873i \(-0.794820\pi\)
0.600873 + 0.799345i \(0.294820\pi\)
\(648\) 0 0
\(649\) 0.714292i 0.0280384i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.5504 24.5504i −0.960732 0.960732i 0.0385260 0.999258i \(-0.487734\pi\)
−0.999258 + 0.0385260i \(0.987734\pi\)
\(654\) 0 0
\(655\) 5.09688 + 3.39269i 0.199152 + 0.132563i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −33.8861 −1.32001 −0.660007 0.751259i \(-0.729447\pi\)
−0.660007 + 0.751259i \(0.729447\pi\)
\(660\) 0 0
\(661\) −35.7528 −1.39062 −0.695311 0.718709i \(-0.744734\pi\)
−0.695311 + 0.718709i \(0.744734\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.562694 2.80311i −0.0218203 0.108700i
\(666\) 0 0
\(667\) −1.58308 1.58308i −0.0612972 0.0612972i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.33253i 0.0514417i
\(672\) 0 0
\(673\) −15.7229 + 15.7229i −0.606072 + 0.606072i −0.941917 0.335845i \(-0.890978\pi\)
0.335845 + 0.941917i \(0.390978\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −29.4755 + 29.4755i −1.13283 + 1.13283i −0.143130 + 0.989704i \(0.545717\pi\)
−0.989704 + 0.143130i \(0.954283\pi\)
\(678\) 0 0
\(679\) 2.89856i 0.111237i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.66210 8.66210i −0.331446 0.331446i 0.521689 0.853135i \(-0.325302\pi\)
−0.853135 + 0.521689i \(0.825302\pi\)
\(684\) 0 0
\(685\) 2.19316 + 10.9254i 0.0837964 + 0.417440i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.52131 −0.286539
\(690\) 0 0
\(691\) 4.79852 0.182544 0.0912721 0.995826i \(-0.470907\pi\)
0.0912721 + 0.995826i \(0.470907\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.46706 + 3.63910i 0.207377 + 0.138039i
\(696\) 0 0
\(697\) −0.701606 0.701606i −0.0265752 0.0265752i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.9019i 1.09161i −0.837913 0.545804i \(-0.816224\pi\)
0.837913 0.545804i \(-0.183776\pi\)
\(702\) 0 0
\(703\) −1.27326 + 1.27326i −0.0480218 + 0.0480218i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.51099 1.51099i 0.0568266 0.0568266i
\(708\) 0 0
\(709\) 3.45422i 0.129726i 0.997894 + 0.0648629i \(0.0206610\pi\)
−0.997894 + 0.0648629i \(0.979339\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.1374 + 13.1374i 0.491999 + 0.491999i
\(714\) 0 0
\(715\) −4.52758 + 0.908861i −0.169322 + 0.0339895i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.8764 0.778560 0.389280 0.921119i \(-0.372724\pi\)
0.389280 + 0.921119i \(0.372724\pi\)
\(720\) 0 0
\(721\) −1.39540 −0.0519673
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.05896 + 4.92180i 0.0764678 + 0.182791i
\(726\) 0 0
\(727\) 16.2764 + 16.2764i 0.603657 + 0.603657i 0.941281 0.337624i \(-0.109623\pi\)
−0.337624 + 0.941281i \(0.609623\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.93484i 0.108549i
\(732\) 0 0
\(733\) 17.3721 17.3721i 0.641651 0.641651i −0.309310 0.950961i \(-0.600098\pi\)
0.950961 + 0.309310i \(0.100098\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.1267 15.1267i 0.557200 0.557200i
\(738\) 0 0
\(739\) 50.4600i 1.85620i −0.372328 0.928101i \(-0.621440\pi\)
0.372328 0.928101i \(-0.378560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.77471 5.77471i −0.211854 0.211854i 0.593201 0.805054i \(-0.297864\pi\)
−0.805054 + 0.593201i \(0.797864\pi\)
\(744\) 0 0
\(745\) 14.0726 21.1415i 0.515581 0.774563i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.15670 −0.0788040
\(750\) 0 0
\(751\) 23.1099 0.843292 0.421646 0.906760i \(-0.361452\pi\)
0.421646 + 0.906760i \(0.361452\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.07588 + 10.6302i −0.257518 + 0.386872i
\(756\) 0 0
\(757\) −22.3929 22.3929i −0.813883 0.813883i 0.171331 0.985214i \(-0.445193\pi\)
−0.985214 + 0.171331i \(0.945193\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.6165i 0.711097i −0.934658 0.355548i \(-0.884294\pi\)
0.934658 0.355548i \(-0.115706\pi\)
\(762\) 0 0
\(763\) −1.31200 + 1.31200i −0.0474974 + 0.0474974i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.244569 + 0.244569i −0.00883086 + 0.00883086i
\(768\) 0 0
\(769\) 2.31455i 0.0834647i 0.999129 + 0.0417324i \(0.0132877\pi\)
−0.999129 + 0.0417324i \(0.986712\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.2277 10.2277i −0.367864 0.367864i 0.498834 0.866698i \(-0.333762\pi\)
−0.866698 + 0.498834i \(0.833762\pi\)
\(774\) 0 0
\(775\) −17.0865 40.8441i −0.613766 1.46716i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.6327 0.380956
\(780\) 0 0
\(781\) 4.28887 0.153468
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.7560 + 4.56801i −0.812197 + 0.163039i
\(786\) 0 0
\(787\) −8.90292 8.90292i −0.317355 0.317355i 0.530396 0.847750i \(-0.322043\pi\)
−0.847750 + 0.530396i \(0.822043\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.51417i 0.0538378i
\(792\) 0 0
\(793\) −0.456249 + 0.456249i −0.0162019 + 0.0162019i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.3510 12.3510i 0.437495 0.437495i −0.453673 0.891168i \(-0.649887\pi\)
0.891168 + 0.453673i \(0.149887\pi\)
\(798\) 0 0
\(799\) 0.490377i 0.0173483i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.71218 5.71218i −0.201579 0.201579i
\(804\) 0 0
\(805\) 0.869015 + 0.578452i 0.0306288 + 0.0203878i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.98770 0.175358 0.0876790 0.996149i \(-0.472055\pi\)
0.0876790 + 0.996149i \(0.472055\pi\)
\(810\) 0 0
\(811\) 38.7073 1.35920 0.679599 0.733584i \(-0.262154\pi\)
0.679599 + 0.733584i \(0.262154\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.10019 + 15.4439i 0.108595 + 0.540977i
\(816\) 0 0
\(817\) −22.2385 22.2385i −0.778027 0.778027i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.81673i 0.272806i 0.990653 + 0.136403i \(0.0435542\pi\)
−0.990653 + 0.136403i \(0.956446\pi\)
\(822\) 0 0
\(823\) 28.8818 28.8818i 1.00676 1.00676i 0.00677868 0.999977i \(-0.497842\pi\)
0.999977 0.00677868i \(-0.00215774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.9633 29.9633i 1.04193 1.04193i 0.0428449 0.999082i \(-0.486358\pi\)
0.999082 0.0428449i \(-0.0136421\pi\)
\(828\) 0 0
\(829\) 43.9719i 1.52721i 0.645685 + 0.763604i \(0.276572\pi\)
−0.645685 + 0.763604i \(0.723428\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.63546 + 2.63546i 0.0913134 + 0.0913134i
\(834\) 0 0
\(835\) 4.10725 + 20.4607i 0.142137 + 0.708071i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.34527 0.115491 0.0577457 0.998331i \(-0.481609\pi\)
0.0577457 + 0.998331i \(0.481609\pi\)
\(840\) 0 0
\(841\) −27.8615 −0.960740
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.86140 + 1.23903i 0.0640342 + 0.0426238i
\(846\) 0 0
\(847\) −1.05966 1.05966i −0.0364102 0.0364102i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.657482i 0.0225382i
\(852\) 0 0
\(853\) 32.7803 32.7803i 1.12238 1.12238i 0.130994 0.991383i \(-0.458183\pi\)
0.991383 0.130994i \(-0.0418169\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17.7227 + 17.7227i −0.605397 + 0.605397i −0.941740 0.336343i \(-0.890810\pi\)
0.336343 + 0.941740i \(0.390810\pi\)
\(858\) 0 0
\(859\) 33.6637i 1.14859i 0.818648 + 0.574295i \(0.194724\pi\)
−0.818648 + 0.574295i \(0.805276\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.2827 + 21.2827i 0.724473 + 0.724473i 0.969513 0.245040i \(-0.0788012\pi\)
−0.245040 + 0.969513i \(0.578801\pi\)
\(864\) 0 0
\(865\) −20.0209 + 4.01898i −0.680732 + 0.136649i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.08911 −0.0369457
\(870\) 0 0
\(871\) −10.3586 −0.350987
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.39297 2.06113i −0.0470910 0.0696790i
\(876\) 0 0
\(877\) 9.89063 + 9.89063i 0.333983 + 0.333983i 0.854097 0.520114i \(-0.174111\pi\)
−0.520114 + 0.854097i \(0.674111\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.0955i 0.340127i 0.985433 + 0.170064i \(0.0543974\pi\)
−0.985433 + 0.170064i \(0.945603\pi\)
\(882\) 0 0
\(883\) −35.5629 + 35.5629i −1.19679 + 1.19679i −0.221664 + 0.975123i \(0.571149\pi\)
−0.975123 + 0.221664i \(0.928851\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.5912 + 33.5912i −1.12788 + 1.12788i −0.137362 + 0.990521i \(0.543862\pi\)
−0.990521 + 0.137362i \(0.956138\pi\)
\(888\) 0 0
\(889\) 2.62765i 0.0881287i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.71578 + 3.71578i 0.124344 + 0.124344i
\(894\) 0 0
\(895\) 29.5307 44.3643i 0.987102 1.48293i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.44828 −0.315118
\(900\) 0 0
\(901\) −4.03320 −0.134365
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.39312 9.60445i 0.212514 0.319263i
\(906\) 0 0
\(907\) 34.5195 + 34.5195i 1.14620 + 1.14620i 0.987293 + 0.158910i \(0.0507978\pi\)
0.158910 + 0.987293i \(0.449202\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.4643i 0.976197i −0.872788 0.488099i \(-0.837691\pi\)
0.872788 0.488099i \(-0.162309\pi\)
\(912\) 0 0
\(913\) 7.01953 7.01953i 0.232313 0.232313i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.430816 + 0.430816i −0.0142268 + 0.0142268i
\(918\) 0 0
\(919\) 2.35784i 0.0777780i 0.999244 + 0.0388890i \(0.0123819\pi\)
−0.999244 + 0.0388890i \(0.987618\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.46848 1.46848i −0.0483356 0.0483356i
\(924\) 0 0
\(925\) −0.594494 + 1.44962i −0.0195468 + 0.0476631i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.92173 0.227095 0.113547 0.993533i \(-0.463779\pi\)
0.113547 + 0.993533i \(0.463779\pi\)
\(930\) 0 0
\(931\) −39.9399 −1.30898
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.42785 + 0.487365i −0.0793993 + 0.0159385i
\(936\) 0 0
\(937\) 5.33755 + 5.33755i 0.174370 + 0.174370i 0.788896 0.614526i \(-0.210653\pi\)
−0.614526 + 0.788896i \(0.710653\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.9395i 1.17160i 0.810457 + 0.585798i \(0.199219\pi\)
−0.810457 + 0.585798i \(0.800781\pi\)
\(942\) 0 0
\(943\) −2.74525 + 2.74525i −0.0893976 + 0.0893976i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.5481 33.5481i 1.09017 1.09017i 0.0946575 0.995510i \(-0.469824\pi\)
0.995510 0.0946575i \(-0.0301756\pi\)
\(948\) 0 0
\(949\) 3.91163i 0.126977i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.2332 + 30.2332i 0.979348 + 0.979348i 0.999791 0.0204427i \(-0.00650757\pi\)
−0.0204427 + 0.999791i \(0.506508\pi\)
\(954\) 0 0
\(955\) 3.01906 + 2.00961i 0.0976945 + 0.0650295i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.10886 −0.0358068
\(960\) 0 0
\(961\) 47.4077 1.52928
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.58113 + 32.7846i 0.211854 + 1.05537i
\(966\) 0 0
\(967\) −8.39257 8.39257i −0.269887 0.269887i 0.559168 0.829055i \(-0.311121\pi\)
−0.829055 + 0.559168i \(0.811121\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 41.8984i 1.34458i −0.740286 0.672292i \(-0.765310\pi\)
0.740286 0.672292i \(-0.234690\pi\)
\(972\) 0 0
\(973\) −0.462105 + 0.462105i −0.0148144 + 0.0148144i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19.2785 + 19.2785i −0.616775 + 0.616775i −0.944703 0.327928i \(-0.893650\pi\)
0.327928 + 0.944703i \(0.393650\pi\)
\(978\) 0 0
\(979\) 29.6107i 0.946362i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.6437 + 24.6437i 0.786013 + 0.786013i 0.980838 0.194825i \(-0.0624139\pi\)
−0.194825 + 0.980838i \(0.562414\pi\)
\(984\) 0 0
\(985\) 11.2458 + 56.0223i 0.358322 + 1.78502i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.4835 0.365154
\(990\) 0 0
\(991\) 33.8263 1.07453 0.537263 0.843415i \(-0.319458\pi\)
0.537263 + 0.843415i \(0.319458\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 25.7092 + 17.1131i 0.815038 + 0.542523i
\(996\) 0 0
\(997\) 9.98800 + 9.98800i 0.316323 + 0.316323i 0.847353 0.531030i \(-0.178195\pi\)
−0.531030 + 0.847353i \(0.678195\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.b.1457.4 yes 24
3.2 odd 2 2340.2.y.a.1457.9 yes 24
5.3 odd 4 2340.2.y.a.53.9 24
15.8 even 4 inner 2340.2.y.b.53.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.9 24 5.3 odd 4
2340.2.y.a.1457.9 yes 24 3.2 odd 2
2340.2.y.b.53.4 yes 24 15.8 even 4 inner
2340.2.y.b.1457.4 yes 24 1.1 even 1 trivial