Properties

Label 2340.2.y.a.53.5
Level $2340$
Weight $2$
Character 2340.53
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.5
Character \(\chi\) \(=\) 2340.53
Dual form 2340.2.y.a.1457.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25978 - 1.84742i) q^{5} +(-1.73394 + 1.73394i) q^{7} -0.384834i q^{11} +(-0.707107 - 0.707107i) q^{13} +(4.01077 + 4.01077i) q^{17} +1.31687i q^{19} +(3.09168 - 3.09168i) q^{23} +(-1.82588 + 4.65469i) q^{25} +5.58151 q^{29} -4.45438 q^{31} +(5.38771 + 1.01892i) q^{35} +(7.95020 - 7.95020i) q^{37} -7.37309i q^{41} +(-6.63893 - 6.63893i) q^{43} +(-9.03757 - 9.03757i) q^{47} +0.986880i q^{49} +(-4.78645 + 4.78645i) q^{53} +(-0.710948 + 0.484808i) q^{55} +8.10867 q^{59} -15.0948 q^{61} +(-0.415517 + 2.19712i) q^{65} +(5.47501 - 5.47501i) q^{67} -1.23609i q^{71} +(-7.10730 - 7.10730i) q^{73} +(0.667281 + 0.667281i) q^{77} -11.1545i q^{79} +(5.98851 - 5.98851i) q^{83} +(2.35685 - 12.4623i) q^{85} +10.1275 q^{89} +2.45217 q^{91} +(2.43281 - 1.65897i) q^{95} +(3.76737 - 3.76737i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{5} - 8 q^{7} - 8 q^{17} - 8 q^{23} + 16 q^{25} + 32 q^{29} + 8 q^{35} + 16 q^{37} - 8 q^{43} - 40 q^{47} - 8 q^{53} + 8 q^{55} + 56 q^{59} + 8 q^{61} - 4 q^{65} - 16 q^{67} - 72 q^{77} - 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.25978 1.84742i −0.563393 0.826189i
\(6\) 0 0
\(7\) −1.73394 + 1.73394i −0.655369 + 0.655369i −0.954281 0.298912i \(-0.903376\pi\)
0.298912 + 0.954281i \(0.403376\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.384834i 0.116032i −0.998316 0.0580159i \(-0.981523\pi\)
0.998316 0.0580159i \(-0.0184774\pi\)
\(12\) 0 0
\(13\) −0.707107 0.707107i −0.196116 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.01077 + 4.01077i 0.972754 + 0.972754i 0.999639 0.0268843i \(-0.00855858\pi\)
−0.0268843 + 0.999639i \(0.508559\pi\)
\(18\) 0 0
\(19\) 1.31687i 0.302111i 0.988525 + 0.151055i \(0.0482672\pi\)
−0.988525 + 0.151055i \(0.951733\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.09168 3.09168i 0.644659 0.644659i −0.307038 0.951697i \(-0.599338\pi\)
0.951697 + 0.307038i \(0.0993379\pi\)
\(24\) 0 0
\(25\) −1.82588 + 4.65469i −0.365177 + 0.930938i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.58151 1.03646 0.518231 0.855241i \(-0.326591\pi\)
0.518231 + 0.855241i \(0.326591\pi\)
\(30\) 0 0
\(31\) −4.45438 −0.800031 −0.400015 0.916508i \(-0.630995\pi\)
−0.400015 + 0.916508i \(0.630995\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.38771 + 1.01892i 0.910689 + 0.172229i
\(36\) 0 0
\(37\) 7.95020 7.95020i 1.30700 1.30700i 0.383438 0.923567i \(-0.374740\pi\)
0.923567 0.383438i \(-0.125260\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.37309i 1.15148i −0.817632 0.575742i \(-0.804713\pi\)
0.817632 0.575742i \(-0.195287\pi\)
\(42\) 0 0
\(43\) −6.63893 6.63893i −1.01243 1.01243i −0.999922 0.0125057i \(-0.996019\pi\)
−0.0125057 0.999922i \(-0.503981\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.03757 9.03757i −1.31827 1.31827i −0.915149 0.403117i \(-0.867927\pi\)
−0.403117 0.915149i \(-0.632073\pi\)
\(48\) 0 0
\(49\) 0.986880i 0.140983i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.78645 + 4.78645i −0.657470 + 0.657470i −0.954781 0.297311i \(-0.903910\pi\)
0.297311 + 0.954781i \(0.403910\pi\)
\(54\) 0 0
\(55\) −0.710948 + 0.484808i −0.0958643 + 0.0653715i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.10867 1.05566 0.527829 0.849351i \(-0.323006\pi\)
0.527829 + 0.849351i \(0.323006\pi\)
\(60\) 0 0
\(61\) −15.0948 −1.93269 −0.966347 0.257242i \(-0.917186\pi\)
−0.966347 + 0.257242i \(0.917186\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.415517 + 2.19712i −0.0515386 + 0.272519i
\(66\) 0 0
\(67\) 5.47501 5.47501i 0.668879 0.668879i −0.288578 0.957456i \(-0.593182\pi\)
0.957456 + 0.288578i \(0.0931824\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.23609i 0.146697i −0.997306 0.0733486i \(-0.976631\pi\)
0.997306 0.0733486i \(-0.0233686\pi\)
\(72\) 0 0
\(73\) −7.10730 7.10730i −0.831846 0.831846i 0.155923 0.987769i \(-0.450165\pi\)
−0.987769 + 0.155923i \(0.950165\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.667281 + 0.667281i 0.0760437 + 0.0760437i
\(78\) 0 0
\(79\) 11.1545i 1.25498i −0.778626 0.627488i \(-0.784083\pi\)
0.778626 0.627488i \(-0.215917\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.98851 5.98851i 0.657324 0.657324i −0.297422 0.954746i \(-0.596127\pi\)
0.954746 + 0.297422i \(0.0961268\pi\)
\(84\) 0 0
\(85\) 2.35685 12.4623i 0.255636 1.35172i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.1275 1.07351 0.536755 0.843738i \(-0.319650\pi\)
0.536755 + 0.843738i \(0.319650\pi\)
\(90\) 0 0
\(91\) 2.45217 0.257057
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.43281 1.65897i 0.249601 0.170207i
\(96\) 0 0
\(97\) 3.76737 3.76737i 0.382519 0.382519i −0.489490 0.872009i \(-0.662817\pi\)
0.872009 + 0.489490i \(0.162817\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.4622i 1.33954i 0.742570 + 0.669768i \(0.233607\pi\)
−0.742570 + 0.669768i \(0.766393\pi\)
\(102\) 0 0
\(103\) −10.0329 10.0329i −0.988570 0.988570i 0.0113656 0.999935i \(-0.496382\pi\)
−0.999935 + 0.0113656i \(0.996382\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.8795 11.8795i −1.14843 1.14843i −0.986861 0.161573i \(-0.948343\pi\)
−0.161573 0.986861i \(-0.551657\pi\)
\(108\) 0 0
\(109\) 4.78381i 0.458205i −0.973402 0.229103i \(-0.926421\pi\)
0.973402 0.229103i \(-0.0735792\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.68677 + 5.68677i −0.534966 + 0.534966i −0.922046 0.387080i \(-0.873484\pi\)
0.387080 + 0.922046i \(0.373484\pi\)
\(114\) 0 0
\(115\) −9.60646 1.81676i −0.895807 0.169414i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.9089 −1.27503
\(120\) 0 0
\(121\) 10.8519 0.986537
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.8994 2.49074i 0.974869 0.222779i
\(126\) 0 0
\(127\) −11.7920 + 11.7920i −1.04637 + 1.04637i −0.0474990 + 0.998871i \(0.515125\pi\)
−0.998871 + 0.0474990i \(0.984875\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22.0526i 1.92674i −0.268171 0.963371i \(-0.586419\pi\)
0.268171 0.963371i \(-0.413581\pi\)
\(132\) 0 0
\(133\) −2.28338 2.28338i −0.197994 0.197994i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.400904 + 0.400904i 0.0342516 + 0.0342516i 0.724025 0.689774i \(-0.242290\pi\)
−0.689774 + 0.724025i \(0.742290\pi\)
\(138\) 0 0
\(139\) 21.6285i 1.83451i 0.398303 + 0.917254i \(0.369599\pi\)
−0.398303 + 0.917254i \(0.630401\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.272119 + 0.272119i −0.0227557 + 0.0227557i
\(144\) 0 0
\(145\) −7.03151 10.3114i −0.583935 0.856313i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.9175 1.63171 0.815854 0.578258i \(-0.196267\pi\)
0.815854 + 0.578258i \(0.196267\pi\)
\(150\) 0 0
\(151\) 0.310475 0.0252661 0.0126331 0.999920i \(-0.495979\pi\)
0.0126331 + 0.999920i \(0.495979\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.61156 + 8.22909i 0.450732 + 0.660977i
\(156\) 0 0
\(157\) −5.28851 + 5.28851i −0.422069 + 0.422069i −0.885916 0.463846i \(-0.846469\pi\)
0.463846 + 0.885916i \(0.346469\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.7216i 0.844979i
\(162\) 0 0
\(163\) 6.40253 + 6.40253i 0.501485 + 0.501485i 0.911899 0.410414i \(-0.134616\pi\)
−0.410414 + 0.911899i \(0.634616\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.74597 8.74597i −0.676783 0.676783i 0.282488 0.959271i \(-0.408840\pi\)
−0.959271 + 0.282488i \(0.908840\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.20511 7.20511i 0.547795 0.547795i −0.378008 0.925802i \(-0.623391\pi\)
0.925802 + 0.378008i \(0.123391\pi\)
\(174\) 0 0
\(175\) −4.90499 11.2370i −0.370782 0.849434i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.2227 1.06305 0.531527 0.847042i \(-0.321619\pi\)
0.531527 + 0.847042i \(0.321619\pi\)
\(180\) 0 0
\(181\) 4.51283 0.335436 0.167718 0.985835i \(-0.446360\pi\)
0.167718 + 0.985835i \(0.446360\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −24.7029 4.67178i −1.81619 0.343476i
\(186\) 0 0
\(187\) 1.54348 1.54348i 0.112870 0.112870i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.0540i 1.23399i −0.786969 0.616993i \(-0.788351\pi\)
0.786969 0.616993i \(-0.211649\pi\)
\(192\) 0 0
\(193\) −3.86139 3.86139i −0.277949 0.277949i 0.554341 0.832290i \(-0.312970\pi\)
−0.832290 + 0.554341i \(0.812970\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.39560 1.39560i −0.0994323 0.0994323i 0.655641 0.755073i \(-0.272399\pi\)
−0.755073 + 0.655641i \(0.772399\pi\)
\(198\) 0 0
\(199\) 20.3702i 1.44401i −0.691890 0.722003i \(-0.743222\pi\)
0.691890 0.722003i \(-0.256778\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.67803 + 9.67803i −0.679265 + 0.679265i
\(204\) 0 0
\(205\) −13.6212 + 9.28851i −0.951343 + 0.648738i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.506777 0.0350545
\(210\) 0 0
\(211\) −1.27375 −0.0876887 −0.0438444 0.999038i \(-0.513961\pi\)
−0.0438444 + 0.999038i \(0.513961\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.90124 + 20.6285i −0.266062 + 1.40685i
\(216\) 0 0
\(217\) 7.72365 7.72365i 0.524315 0.524315i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.67208i 0.381546i
\(222\) 0 0
\(223\) 7.76181 + 7.76181i 0.519769 + 0.519769i 0.917502 0.397732i \(-0.130203\pi\)
−0.397732 + 0.917502i \(0.630203\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.73039 + 9.73039i 0.645829 + 0.645829i 0.951982 0.306154i \(-0.0990421\pi\)
−0.306154 + 0.951982i \(0.599042\pi\)
\(228\) 0 0
\(229\) 4.69055i 0.309960i −0.987918 0.154980i \(-0.950469\pi\)
0.987918 0.154980i \(-0.0495314\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.55451 7.55451i 0.494912 0.494912i −0.414938 0.909850i \(-0.636197\pi\)
0.909850 + 0.414938i \(0.136197\pi\)
\(234\) 0 0
\(235\) −5.31075 + 28.0815i −0.346435 + 1.83184i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.67798 0.367278 0.183639 0.982994i \(-0.441212\pi\)
0.183639 + 0.982994i \(0.441212\pi\)
\(240\) 0 0
\(241\) −5.00783 −0.322582 −0.161291 0.986907i \(-0.551566\pi\)
−0.161291 + 0.986907i \(0.551566\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.82318 1.24326i 0.116478 0.0794287i
\(246\) 0 0
\(247\) 0.931168 0.931168i 0.0592488 0.0592488i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.9735i 0.818881i 0.912337 + 0.409440i \(0.134276\pi\)
−0.912337 + 0.409440i \(0.865724\pi\)
\(252\) 0 0
\(253\) −1.18978 1.18978i −0.0748010 0.0748010i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.08065 3.08065i −0.192165 0.192165i 0.604466 0.796631i \(-0.293387\pi\)
−0.796631 + 0.604466i \(0.793387\pi\)
\(258\) 0 0
\(259\) 27.5704i 1.71314i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.87145 6.87145i 0.423712 0.423712i −0.462768 0.886479i \(-0.653144\pi\)
0.886479 + 0.462768i \(0.153144\pi\)
\(264\) 0 0
\(265\) 14.8725 + 2.81266i 0.913608 + 0.172781i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.6283 0.769960 0.384980 0.922925i \(-0.374208\pi\)
0.384980 + 0.922925i \(0.374208\pi\)
\(270\) 0 0
\(271\) −0.726979 −0.0441608 −0.0220804 0.999756i \(-0.507029\pi\)
−0.0220804 + 0.999756i \(0.507029\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.79128 + 0.702663i 0.108018 + 0.0423722i
\(276\) 0 0
\(277\) 17.4237 17.4237i 1.04689 1.04689i 0.0480410 0.998845i \(-0.484702\pi\)
0.998845 0.0480410i \(-0.0152978\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 26.2012i 1.56303i −0.623886 0.781515i \(-0.714447\pi\)
0.623886 0.781515i \(-0.285553\pi\)
\(282\) 0 0
\(283\) 4.23917 + 4.23917i 0.251992 + 0.251992i 0.821787 0.569795i \(-0.192977\pi\)
−0.569795 + 0.821787i \(0.692977\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.7845 + 12.7845i 0.754647 + 0.754647i
\(288\) 0 0
\(289\) 15.1725i 0.892502i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.57405 2.57405i 0.150377 0.150377i −0.627909 0.778287i \(-0.716089\pi\)
0.778287 + 0.627909i \(0.216089\pi\)
\(294\) 0 0
\(295\) −10.2152 14.9801i −0.594750 0.872174i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.37229 −0.252856
\(300\) 0 0
\(301\) 23.0231 1.32703
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 19.0162 + 27.8864i 1.08887 + 1.59677i
\(306\) 0 0
\(307\) −1.90730 + 1.90730i −0.108855 + 0.108855i −0.759437 0.650581i \(-0.774525\pi\)
0.650581 + 0.759437i \(0.274525\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.43080i 0.251248i −0.992078 0.125624i \(-0.959907\pi\)
0.992078 0.125624i \(-0.0400932\pi\)
\(312\) 0 0
\(313\) 1.12790 + 1.12790i 0.0637524 + 0.0637524i 0.738264 0.674512i \(-0.235646\pi\)
−0.674512 + 0.738264i \(0.735646\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.3499 14.3499i −0.805968 0.805968i 0.178053 0.984021i \(-0.443020\pi\)
−0.984021 + 0.178053i \(0.943020\pi\)
\(318\) 0 0
\(319\) 2.14796i 0.120263i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.28166 + 5.28166i −0.293879 + 0.293879i
\(324\) 0 0
\(325\) 4.58246 2.00027i 0.254189 0.110955i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 31.3413 1.72790
\(330\) 0 0
\(331\) −14.0552 −0.772546 −0.386273 0.922385i \(-0.626238\pi\)
−0.386273 + 0.922385i \(0.626238\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.0119 3.21728i −0.929462 0.175779i
\(336\) 0 0
\(337\) −5.63536 + 5.63536i −0.306977 + 0.306977i −0.843736 0.536758i \(-0.819649\pi\)
0.536758 + 0.843736i \(0.319649\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.71420i 0.0928291i
\(342\) 0 0
\(343\) −13.8488 13.8488i −0.747765 0.747765i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.39937 3.39937i −0.182488 0.182488i 0.609951 0.792439i \(-0.291189\pi\)
−0.792439 + 0.609951i \(0.791189\pi\)
\(348\) 0 0
\(349\) 24.0905i 1.28953i −0.764380 0.644766i \(-0.776955\pi\)
0.764380 0.644766i \(-0.223045\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.3257 + 18.3257i −0.975380 + 0.975380i −0.999704 0.0243238i \(-0.992257\pi\)
0.0243238 + 0.999704i \(0.492257\pi\)
\(354\) 0 0
\(355\) −2.28358 + 1.55721i −0.121200 + 0.0826482i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.254736 0.0134445 0.00672224 0.999977i \(-0.497860\pi\)
0.00672224 + 0.999977i \(0.497860\pi\)
\(360\) 0 0
\(361\) 17.2659 0.908729
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.17646 + 22.0838i −0.218606 + 1.15592i
\(366\) 0 0
\(367\) −8.93710 + 8.93710i −0.466513 + 0.466513i −0.900783 0.434270i \(-0.857006\pi\)
0.434270 + 0.900783i \(0.357006\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.5989i 0.861771i
\(372\) 0 0
\(373\) 15.1876 + 15.1876i 0.786385 + 0.786385i 0.980900 0.194514i \(-0.0623131\pi\)
−0.194514 + 0.980900i \(0.562313\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.94673 3.94673i −0.203267 0.203267i
\(378\) 0 0
\(379\) 29.8373i 1.53264i 0.642461 + 0.766318i \(0.277913\pi\)
−0.642461 + 0.766318i \(0.722087\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.3978 + 12.3978i −0.633495 + 0.633495i −0.948943 0.315448i \(-0.897845\pi\)
0.315448 + 0.948943i \(0.397845\pi\)
\(384\) 0 0
\(385\) 0.392114 2.07337i 0.0199840 0.105669i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.10223 −0.207991 −0.103996 0.994578i \(-0.533163\pi\)
−0.103996 + 0.994578i \(0.533163\pi\)
\(390\) 0 0
\(391\) 24.8000 1.25419
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −20.6069 + 14.0522i −1.03685 + 0.707045i
\(396\) 0 0
\(397\) 18.2078 18.2078i 0.913823 0.913823i −0.0827474 0.996571i \(-0.526369\pi\)
0.996571 + 0.0827474i \(0.0263695\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.08373i 0.353745i −0.984234 0.176872i \(-0.943402\pi\)
0.984234 0.176872i \(-0.0565980\pi\)
\(402\) 0 0
\(403\) 3.14972 + 3.14972i 0.156899 + 0.156899i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.05951 3.05951i −0.151654 0.151654i
\(408\) 0 0
\(409\) 34.4019i 1.70106i 0.525924 + 0.850531i \(0.323719\pi\)
−0.525924 + 0.850531i \(0.676281\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.0600 + 14.0600i −0.691846 + 0.691846i
\(414\) 0 0
\(415\) −18.6075 3.51903i −0.913406 0.172742i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −39.0049 −1.90552 −0.952758 0.303730i \(-0.901768\pi\)
−0.952758 + 0.303730i \(0.901768\pi\)
\(420\) 0 0
\(421\) 21.6018 1.05281 0.526405 0.850234i \(-0.323540\pi\)
0.526405 + 0.850234i \(0.323540\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −25.9921 + 11.3457i −1.26080 + 0.550347i
\(426\) 0 0
\(427\) 26.1736 26.1736i 1.26663 1.26663i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.91513i 0.477595i −0.971069 0.238798i \(-0.923247\pi\)
0.971069 0.238798i \(-0.0767532\pi\)
\(432\) 0 0
\(433\) −16.0952 16.0952i −0.773488 0.773488i 0.205226 0.978715i \(-0.434207\pi\)
−0.978715 + 0.205226i \(0.934207\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.07134 + 4.07134i 0.194758 + 0.194758i
\(438\) 0 0
\(439\) 34.4090i 1.64225i 0.570746 + 0.821127i \(0.306654\pi\)
−0.570746 + 0.821127i \(0.693346\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.3175 + 11.3175i −0.537711 + 0.537711i −0.922856 0.385145i \(-0.874151\pi\)
0.385145 + 0.922856i \(0.374151\pi\)
\(444\) 0 0
\(445\) −12.7584 18.7097i −0.604808 0.886923i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.48334 −0.305968 −0.152984 0.988229i \(-0.548888\pi\)
−0.152984 + 0.988229i \(0.548888\pi\)
\(450\) 0 0
\(451\) −2.83742 −0.133609
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.08920 4.53017i −0.144824 0.212378i
\(456\) 0 0
\(457\) −4.20816 + 4.20816i −0.196850 + 0.196850i −0.798648 0.601798i \(-0.794451\pi\)
0.601798 + 0.798648i \(0.294451\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.12753i 0.425112i −0.977149 0.212556i \(-0.931821\pi\)
0.977149 0.212556i \(-0.0681787\pi\)
\(462\) 0 0
\(463\) −6.99801 6.99801i −0.325225 0.325225i 0.525542 0.850768i \(-0.323862\pi\)
−0.850768 + 0.525542i \(0.823862\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.81099 + 5.81099i 0.268901 + 0.268901i 0.828657 0.559756i \(-0.189105\pi\)
−0.559756 + 0.828657i \(0.689105\pi\)
\(468\) 0 0
\(469\) 18.9867i 0.876725i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.55489 + 2.55489i −0.117474 + 0.117474i
\(474\) 0 0
\(475\) −6.12962 2.40445i −0.281246 0.110324i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.1406 0.874558 0.437279 0.899326i \(-0.355942\pi\)
0.437279 + 0.899326i \(0.355942\pi\)
\(480\) 0 0
\(481\) −11.2433 −0.512649
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.7060 2.21382i −0.531541 0.100524i
\(486\) 0 0
\(487\) −12.3303 + 12.3303i −0.558738 + 0.558738i −0.928948 0.370210i \(-0.879286\pi\)
0.370210 + 0.928948i \(0.379286\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.78011i 0.0803350i −0.999193 0.0401675i \(-0.987211\pi\)
0.999193 0.0401675i \(-0.0127892\pi\)
\(492\) 0 0
\(493\) 22.3862 + 22.3862i 1.00822 + 1.00822i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.14331 + 2.14331i 0.0961408 + 0.0961408i
\(498\) 0 0
\(499\) 4.33708i 0.194154i 0.995277 + 0.0970771i \(0.0309493\pi\)
−0.995277 + 0.0970771i \(0.969051\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.82220 1.82220i 0.0812477 0.0812477i −0.665315 0.746563i \(-0.731703\pi\)
0.746563 + 0.665315i \(0.231703\pi\)
\(504\) 0 0
\(505\) 24.8702 16.9594i 1.10671 0.754685i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.75196 −0.343600 −0.171800 0.985132i \(-0.554958\pi\)
−0.171800 + 0.985132i \(0.554958\pi\)
\(510\) 0 0
\(511\) 24.6473 1.09033
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.89563 + 31.1742i −0.259792 + 1.37370i
\(516\) 0 0
\(517\) −3.47797 + 3.47797i −0.152961 + 0.152961i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 5.91813i 0.259278i 0.991561 + 0.129639i \(0.0413818\pi\)
−0.991561 + 0.129639i \(0.958618\pi\)
\(522\) 0 0
\(523\) 24.4439 + 24.4439i 1.06886 + 1.06886i 0.997447 + 0.0714116i \(0.0227504\pi\)
0.0714116 + 0.997447i \(0.477250\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.8655 17.8655i −0.778233 0.778233i
\(528\) 0 0
\(529\) 3.88307i 0.168829i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.21356 + 5.21356i −0.225825 + 0.225825i
\(534\) 0 0
\(535\) −6.98075 + 36.9119i −0.301804 + 1.59584i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.379785 0.0163585
\(540\) 0 0
\(541\) 20.6242 0.886701 0.443351 0.896348i \(-0.353790\pi\)
0.443351 + 0.896348i \(0.353790\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.83767 + 6.02656i −0.378564 + 0.258150i
\(546\) 0 0
\(547\) −19.0133 + 19.0133i −0.812950 + 0.812950i −0.985075 0.172125i \(-0.944937\pi\)
0.172125 + 0.985075i \(0.444937\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.35013i 0.313126i
\(552\) 0 0
\(553\) 19.3412 + 19.3412i 0.822473 + 0.822473i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.8754 + 13.8754i 0.587920 + 0.587920i 0.937068 0.349148i \(-0.113529\pi\)
−0.349148 + 0.937068i \(0.613529\pi\)
\(558\) 0 0
\(559\) 9.38887i 0.397107i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.64918 1.64918i 0.0695049 0.0695049i −0.671500 0.741005i \(-0.734350\pi\)
0.741005 + 0.671500i \(0.234350\pi\)
\(564\) 0 0
\(565\) 17.6699 + 3.34172i 0.743380 + 0.140587i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.77209 −0.158134 −0.0790672 0.996869i \(-0.525194\pi\)
−0.0790672 + 0.996869i \(0.525194\pi\)
\(570\) 0 0
\(571\) −1.09477 −0.0458148 −0.0229074 0.999738i \(-0.507292\pi\)
−0.0229074 + 0.999738i \(0.507292\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.74575 + 20.0358i 0.364723 + 0.835552i
\(576\) 0 0
\(577\) −7.39782 + 7.39782i −0.307975 + 0.307975i −0.844124 0.536149i \(-0.819879\pi\)
0.536149 + 0.844124i \(0.319879\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 20.7675i 0.861580i
\(582\) 0 0
\(583\) 1.84199 + 1.84199i 0.0762874 + 0.0762874i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.9668 25.9668i −1.07177 1.07177i −0.997217 0.0745491i \(-0.976248\pi\)
−0.0745491 0.997217i \(-0.523752\pi\)
\(588\) 0 0
\(589\) 5.86584i 0.241698i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.3048 24.3048i 0.998078 0.998078i −0.00192013 0.999998i \(-0.500611\pi\)
0.999998 + 0.00192013i \(0.000611197\pi\)
\(594\) 0 0
\(595\) 17.5222 + 25.6955i 0.718341 + 1.05341i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.3406 −0.667659 −0.333829 0.942633i \(-0.608341\pi\)
−0.333829 + 0.942633i \(0.608341\pi\)
\(600\) 0 0
\(601\) 46.2265 1.88562 0.942808 0.333336i \(-0.108174\pi\)
0.942808 + 0.333336i \(0.108174\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.6711 20.0480i −0.555808 0.815066i
\(606\) 0 0
\(607\) −3.69609 + 3.69609i −0.150020 + 0.150020i −0.778127 0.628107i \(-0.783830\pi\)
0.628107 + 0.778127i \(0.283830\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.7811i 0.517066i
\(612\) 0 0
\(613\) −26.2759 26.2759i −1.06127 1.06127i −0.997996 0.0632783i \(-0.979844\pi\)
−0.0632783 0.997996i \(-0.520156\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.86473 + 7.86473i 0.316622 + 0.316622i 0.847468 0.530846i \(-0.178126\pi\)
−0.530846 + 0.847468i \(0.678126\pi\)
\(618\) 0 0
\(619\) 27.8932i 1.12112i −0.828113 0.560561i \(-0.810586\pi\)
0.828113 0.560561i \(-0.189414\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −17.5605 + 17.5605i −0.703546 + 0.703546i
\(624\) 0 0
\(625\) −18.3323 16.9979i −0.733292 0.679914i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 63.7728 2.54279
\(630\) 0 0
\(631\) 2.88186 0.114725 0.0573626 0.998353i \(-0.481731\pi\)
0.0573626 + 0.998353i \(0.481731\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 36.6401 + 6.92933i 1.45402 + 0.274982i
\(636\) 0 0
\(637\) 0.697829 0.697829i 0.0276490 0.0276490i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.99809i 0.394901i 0.980313 + 0.197450i \(0.0632662\pi\)
−0.980313 + 0.197450i \(0.936734\pi\)
\(642\) 0 0
\(643\) −17.1161 17.1161i −0.674995 0.674995i 0.283868 0.958863i \(-0.408382\pi\)
−0.958863 + 0.283868i \(0.908382\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.5831 20.5831i −0.809205 0.809205i 0.175308 0.984514i \(-0.443908\pi\)
−0.984514 + 0.175308i \(0.943908\pi\)
\(648\) 0 0
\(649\) 3.12049i 0.122490i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.2022 + 15.2022i −0.594909 + 0.594909i −0.938953 0.344044i \(-0.888203\pi\)
0.344044 + 0.938953i \(0.388203\pi\)
\(654\) 0 0
\(655\) −40.7403 + 27.7815i −1.59185 + 1.08551i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.34993 0.208403 0.104202 0.994556i \(-0.466771\pi\)
0.104202 + 0.994556i \(0.466771\pi\)
\(660\) 0 0
\(661\) −36.2838 −1.41127 −0.705637 0.708573i \(-0.749339\pi\)
−0.705637 + 0.708573i \(0.749339\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.34178 + 7.09491i −0.0520321 + 0.275129i
\(666\) 0 0
\(667\) 17.2562 17.2562i 0.668164 0.668164i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.80900i 0.224254i
\(672\) 0 0
\(673\) 16.8311 + 16.8311i 0.648792 + 0.648792i 0.952701 0.303909i \(-0.0982919\pi\)
−0.303909 + 0.952701i \(0.598292\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −31.6084 31.6084i −1.21481 1.21481i −0.969426 0.245384i \(-0.921086\pi\)
−0.245384 0.969426i \(-0.578914\pi\)
\(678\) 0 0
\(679\) 13.0648i 0.501382i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.08577 + 1.08577i −0.0415459 + 0.0415459i −0.727575 0.686029i \(-0.759352\pi\)
0.686029 + 0.727575i \(0.259352\pi\)
\(684\) 0 0
\(685\) 0.235584 1.24569i 0.00900118 0.0475954i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.76906 0.257881
\(690\) 0 0
\(691\) 6.62996 0.252216 0.126108 0.992017i \(-0.459751\pi\)
0.126108 + 0.992017i \(0.459751\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 39.9569 27.2473i 1.51565 1.03355i
\(696\) 0 0
\(697\) 29.5718 29.5718i 1.12011 1.12011i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20.7488i 0.783671i 0.920035 + 0.391836i \(0.128160\pi\)
−0.920035 + 0.391836i \(0.871840\pi\)
\(702\) 0 0
\(703\) 10.4694 + 10.4694i 0.394860 + 0.394860i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −23.3426 23.3426i −0.877891 0.877891i
\(708\) 0 0
\(709\) 44.5642i 1.67364i 0.547475 + 0.836822i \(0.315589\pi\)
−0.547475 + 0.836822i \(0.684411\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −13.7715 + 13.7715i −0.515747 + 0.515747i
\(714\) 0 0
\(715\) 0.845528 + 0.159905i 0.0316209 + 0.00598012i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 43.5519 1.62421 0.812106 0.583511i \(-0.198321\pi\)
0.812106 + 0.583511i \(0.198321\pi\)
\(720\) 0 0
\(721\) 34.7929 1.29576
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.1912 + 25.9802i −0.378492 + 0.964881i
\(726\) 0 0
\(727\) 17.3632 17.3632i 0.643967 0.643967i −0.307562 0.951528i \(-0.599513\pi\)
0.951528 + 0.307562i \(0.0995130\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 53.2544i 1.96969i
\(732\) 0 0
\(733\) 6.72801 + 6.72801i 0.248505 + 0.248505i 0.820357 0.571852i \(-0.193775\pi\)
−0.571852 + 0.820357i \(0.693775\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.10697 2.10697i −0.0776112 0.0776112i
\(738\) 0 0
\(739\) 14.5894i 0.536678i 0.963325 + 0.268339i \(0.0864748\pi\)
−0.963325 + 0.268339i \(0.913525\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.1474 + 15.1474i −0.555703 + 0.555703i −0.928081 0.372378i \(-0.878543\pi\)
0.372378 + 0.928081i \(0.378543\pi\)
\(744\) 0 0
\(745\) −25.0918 36.7959i −0.919293 1.34810i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 41.1967 1.50530
\(750\) 0 0
\(751\) −45.2657 −1.65177 −0.825884 0.563840i \(-0.809323\pi\)
−0.825884 + 0.563840i \(0.809323\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.391132 0.573577i −0.0142347 0.0208746i
\(756\) 0 0
\(757\) 4.49276 4.49276i 0.163292 0.163292i −0.620731 0.784023i \(-0.713164\pi\)
0.784023 + 0.620731i \(0.213164\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 41.1807i 1.49280i 0.665499 + 0.746399i \(0.268219\pi\)
−0.665499 + 0.746399i \(0.731781\pi\)
\(762\) 0 0
\(763\) 8.29485 + 8.29485i 0.300294 + 0.300294i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.73369 5.73369i −0.207032 0.207032i
\(768\) 0 0
\(769\) 37.0674i 1.33668i 0.743854 + 0.668342i \(0.232996\pi\)
−0.743854 + 0.668342i \(0.767004\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.0552 + 10.0552i −0.361662 + 0.361662i −0.864424 0.502763i \(-0.832317\pi\)
0.502763 + 0.864424i \(0.332317\pi\)
\(774\) 0 0
\(775\) 8.13319 20.7338i 0.292153 0.744779i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.70940 0.347876
\(780\) 0 0
\(781\) −0.475691 −0.0170216
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.4325 + 3.10769i 0.586500 + 0.110918i
\(786\) 0 0
\(787\) −27.3799 + 27.3799i −0.975988 + 0.975988i −0.999718 0.0237300i \(-0.992446\pi\)
0.0237300 + 0.999718i \(0.492446\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.7211i 0.701201i
\(792\) 0 0
\(793\) 10.6737 + 10.6737i 0.379033 + 0.379033i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.535126 0.535126i −0.0189551 0.0189551i 0.697566 0.716521i \(-0.254267\pi\)
−0.716521 + 0.697566i \(0.754267\pi\)
\(798\) 0 0
\(799\) 72.4952i 2.56470i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.73513 + 2.73513i −0.0965207 + 0.0965207i
\(804\) 0 0
\(805\) 19.8072 13.5069i 0.698113 0.476055i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29.9749 1.05386 0.526930 0.849909i \(-0.323343\pi\)
0.526930 + 0.849909i \(0.323343\pi\)
\(810\) 0 0
\(811\) 40.9976 1.43962 0.719811 0.694170i \(-0.244228\pi\)
0.719811 + 0.694170i \(0.244228\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.76232 19.8940i 0.131788 0.696855i
\(816\) 0 0
\(817\) 8.74261 8.74261i 0.305865 0.305865i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.53271i 0.332694i −0.986067 0.166347i \(-0.946803\pi\)
0.986067 0.166347i \(-0.0531971\pi\)
\(822\) 0 0
\(823\) −21.6615 21.6615i −0.755072 0.755072i 0.220349 0.975421i \(-0.429280\pi\)
−0.975421 + 0.220349i \(0.929280\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.4969 + 29.4969i 1.02571 + 1.02571i 0.999661 + 0.0260467i \(0.00829187\pi\)
0.0260467 + 0.999661i \(0.491708\pi\)
\(828\) 0 0
\(829\) 43.8951i 1.52454i 0.647258 + 0.762271i \(0.275915\pi\)
−0.647258 + 0.762271i \(0.724085\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.95815 + 3.95815i −0.137142 + 0.137142i
\(834\) 0 0
\(835\) −5.13940 + 27.1755i −0.177856 + 0.940446i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 14.9864 0.517389 0.258694 0.965959i \(-0.416708\pi\)
0.258694 + 0.965959i \(0.416708\pi\)
\(840\) 0 0
\(841\) 2.15331 0.0742520
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.84742 1.25978i 0.0635530 0.0433379i
\(846\) 0 0
\(847\) −18.8166 + 18.8166i −0.646546 + 0.646546i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 49.1589i 1.68515i
\(852\) 0 0
\(853\) −20.1898 20.1898i −0.691287 0.691287i 0.271228 0.962515i \(-0.412570\pi\)
−0.962515 + 0.271228i \(0.912570\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.2518 13.2518i −0.452674 0.452674i 0.443567 0.896241i \(-0.353713\pi\)
−0.896241 + 0.443567i \(0.853713\pi\)
\(858\) 0 0
\(859\) 37.0940i 1.26563i 0.774302 + 0.632816i \(0.218101\pi\)
−0.774302 + 0.632816i \(0.781899\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13.7665 + 13.7665i −0.468617 + 0.468617i −0.901466 0.432850i \(-0.857508\pi\)
0.432850 + 0.901466i \(0.357508\pi\)
\(864\) 0 0
\(865\) −22.3877 4.23394i −0.761206 0.143958i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.29262 −0.145617
\(870\) 0 0
\(871\) −7.74283 −0.262356
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −14.5801 + 23.2177i −0.492897 + 0.784901i
\(876\) 0 0
\(877\) 31.3254 31.3254i 1.05778 1.05778i 0.0595574 0.998225i \(-0.481031\pi\)
0.998225 0.0595574i \(-0.0189689\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 9.43955i 0.318027i 0.987276 + 0.159013i \(0.0508313\pi\)
−0.987276 + 0.159013i \(0.949169\pi\)
\(882\) 0 0
\(883\) −5.12917 5.12917i −0.172610 0.172610i 0.615515 0.788125i \(-0.288948\pi\)
−0.788125 + 0.615515i \(0.788948\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.4582 + 24.4582i 0.821225 + 0.821225i 0.986284 0.165059i \(-0.0527813\pi\)
−0.165059 + 0.986284i \(0.552781\pi\)
\(888\) 0 0
\(889\) 40.8933i 1.37152i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.9013 11.9013i 0.398262 0.398262i
\(894\) 0 0
\(895\) −17.9175 26.2752i −0.598917 0.878283i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −24.8622 −0.829201
\(900\) 0 0
\(901\) −38.3947 −1.27911
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.68519 8.33707i −0.188982 0.277133i
\(906\) 0 0
\(907\) 24.9524 24.9524i 0.828530 0.828530i −0.158784 0.987313i \(-0.550757\pi\)
0.987313 + 0.158784i \(0.0507572\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 40.0573i 1.32716i −0.748106 0.663579i \(-0.769037\pi\)
0.748106 0.663579i \(-0.230963\pi\)
\(912\) 0 0
\(913\) −2.30458 2.30458i −0.0762705 0.0762705i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 38.2379 + 38.2379i 1.26273 + 1.26273i
\(918\) 0 0
\(919\) 18.9481i 0.625041i −0.949911 0.312520i \(-0.898827\pi\)
0.949911 0.312520i \(-0.101173\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.874050 + 0.874050i −0.0287697 + 0.0287697i
\(924\) 0 0
\(925\) 22.4896 + 51.5219i 0.739453 + 1.69403i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −59.7002 −1.95870 −0.979350 0.202173i \(-0.935200\pi\)
−0.979350 + 0.202173i \(0.935200\pi\)
\(930\) 0 0
\(931\) −1.29959 −0.0425924
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.79590 0.906996i −0.156843 0.0296619i
\(936\) 0 0
\(937\) −4.04485 + 4.04485i −0.132139 + 0.132139i −0.770083 0.637944i \(-0.779785\pi\)
0.637944 + 0.770083i \(0.279785\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16.2029i 0.528201i −0.964495 0.264101i \(-0.914925\pi\)
0.964495 0.264101i \(-0.0850751\pi\)
\(942\) 0 0
\(943\) −22.7952 22.7952i −0.742315 0.742315i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −11.7238 11.7238i −0.380972 0.380972i 0.490480 0.871452i \(-0.336821\pi\)
−0.871452 + 0.490480i \(0.836821\pi\)
\(948\) 0 0
\(949\) 10.0512i 0.326277i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 40.9382 40.9382i 1.32612 1.32612i 0.417392 0.908726i \(-0.362944\pi\)
0.908726 0.417392i \(-0.137056\pi\)
\(954\) 0 0
\(955\) −31.5059 + 21.4844i −1.01951 + 0.695219i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.39029 −0.0448948
\(960\) 0 0
\(961\) −11.1585 −0.359951
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.26907 + 11.9981i −0.0730440 + 0.386233i
\(966\) 0 0
\(967\) 7.60162 7.60162i 0.244452 0.244452i −0.574237 0.818689i \(-0.694701\pi\)
0.818689 + 0.574237i \(0.194701\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 50.0100i 1.60490i 0.596721 + 0.802449i \(0.296470\pi\)
−0.596721 + 0.802449i \(0.703530\pi\)
\(972\) 0 0
\(973\) −37.5026 37.5026i −1.20228 1.20228i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.3481 28.3481i −0.906935 0.906935i 0.0890885 0.996024i \(-0.471605\pi\)
−0.996024 + 0.0890885i \(0.971605\pi\)
\(978\) 0 0
\(979\) 3.89740i 0.124561i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.1533 + 16.1533i −0.515210 + 0.515210i −0.916118 0.400908i \(-0.868695\pi\)
0.400908 + 0.916118i \(0.368695\pi\)
\(984\) 0 0
\(985\) −0.820096 + 4.33640i −0.0261304 + 0.138169i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −41.0509 −1.30534
\(990\) 0 0
\(991\) −41.3274 −1.31281 −0.656404 0.754409i \(-0.727923\pi\)
−0.656404 + 0.754409i \(0.727923\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −37.6322 + 25.6621i −1.19302 + 0.813543i
\(996\) 0 0
\(997\) 9.69815 9.69815i 0.307144 0.307144i −0.536657 0.843801i \(-0.680313\pi\)
0.843801 + 0.536657i \(0.180313\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.a.53.5 24
3.2 odd 2 2340.2.y.b.53.8 yes 24
5.2 odd 4 2340.2.y.b.1457.8 yes 24
15.2 even 4 inner 2340.2.y.a.1457.5 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.5 24 1.1 even 1 trivial
2340.2.y.a.1457.5 yes 24 15.2 even 4 inner
2340.2.y.b.53.8 yes 24 3.2 odd 2
2340.2.y.b.1457.8 yes 24 5.2 odd 4