Properties

Label 2340.2.y.a.53.1
Level $2340$
Weight $2$
Character 2340.53
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.1
Character \(\chi\) \(=\) 2340.53
Dual form 2340.2.y.a.1457.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.21583 + 0.300151i) q^{5} +(2.83763 - 2.83763i) q^{7} +0.275080i q^{11} +(0.707107 + 0.707107i) q^{13} +(-1.49149 - 1.49149i) q^{17} -0.767881i q^{19} +(2.48808 - 2.48808i) q^{23} +(4.81982 - 1.33017i) q^{25} -9.19836 q^{29} +0.0656918 q^{31} +(-5.43600 + 7.13943i) q^{35} +(2.85142 - 2.85142i) q^{37} -3.86419i q^{41} +(1.63941 + 1.63941i) q^{43} +(2.80313 + 2.80313i) q^{47} -9.10431i q^{49} +(-0.976883 + 0.976883i) q^{53} +(-0.0825655 - 0.609531i) q^{55} +7.13789 q^{59} -9.52683 q^{61} +(-1.77907 - 1.35459i) q^{65} +(0.223398 - 0.223398i) q^{67} -12.7488i q^{71} +(-9.60841 - 9.60841i) q^{73} +(0.780576 + 0.780576i) q^{77} -5.20411i q^{79} +(-5.65471 + 5.65471i) q^{83} +(3.75256 + 2.85722i) q^{85} -5.96742 q^{89} +4.01302 q^{91} +(0.230480 + 1.70149i) q^{95} +(0.0852795 - 0.0852795i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{5} - 8 q^{7} - 8 q^{17} - 8 q^{23} + 16 q^{25} + 32 q^{29} + 8 q^{35} + 16 q^{37} - 8 q^{43} - 40 q^{47} - 8 q^{53} + 8 q^{55} + 56 q^{59} + 8 q^{61} - 4 q^{65} - 16 q^{67} - 72 q^{77} - 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.21583 + 0.300151i −0.990950 + 0.134231i
\(6\) 0 0
\(7\) 2.83763 2.83763i 1.07252 1.07252i 0.0753685 0.997156i \(-0.475987\pi\)
0.997156 0.0753685i \(-0.0240133\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.275080i 0.0829397i 0.999140 + 0.0414699i \(0.0132041\pi\)
−0.999140 + 0.0414699i \(0.986796\pi\)
\(12\) 0 0
\(13\) 0.707107 + 0.707107i 0.196116 + 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.49149 1.49149i −0.361739 0.361739i 0.502714 0.864453i \(-0.332335\pi\)
−0.864453 + 0.502714i \(0.832335\pi\)
\(18\) 0 0
\(19\) 0.767881i 0.176164i −0.996113 0.0880820i \(-0.971926\pi\)
0.996113 0.0880820i \(-0.0280737\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.48808 2.48808i 0.518801 0.518801i −0.398407 0.917209i \(-0.630437\pi\)
0.917209 + 0.398407i \(0.130437\pi\)
\(24\) 0 0
\(25\) 4.81982 1.33017i 0.963964 0.266033i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.19836 −1.70809 −0.854046 0.520197i \(-0.825858\pi\)
−0.854046 + 0.520197i \(0.825858\pi\)
\(30\) 0 0
\(31\) 0.0656918 0.0117986 0.00589930 0.999983i \(-0.498122\pi\)
0.00589930 + 0.999983i \(0.498122\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.43600 + 7.13943i −0.918851 + 1.20678i
\(36\) 0 0
\(37\) 2.85142 2.85142i 0.468770 0.468770i −0.432746 0.901516i \(-0.642455\pi\)
0.901516 + 0.432746i \(0.142455\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.86419i 0.603484i −0.953390 0.301742i \(-0.902432\pi\)
0.953390 0.301742i \(-0.0975682\pi\)
\(42\) 0 0
\(43\) 1.63941 + 1.63941i 0.250008 + 0.250008i 0.820974 0.570966i \(-0.193431\pi\)
−0.570966 + 0.820974i \(0.693431\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.80313 + 2.80313i 0.408878 + 0.408878i 0.881347 0.472469i \(-0.156637\pi\)
−0.472469 + 0.881347i \(0.656637\pi\)
\(48\) 0 0
\(49\) 9.10431i 1.30062i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.976883 + 0.976883i −0.134185 + 0.134185i −0.771009 0.636824i \(-0.780248\pi\)
0.636824 + 0.771009i \(0.280248\pi\)
\(54\) 0 0
\(55\) −0.0825655 0.609531i −0.0111331 0.0821891i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.13789 0.929274 0.464637 0.885501i \(-0.346185\pi\)
0.464637 + 0.885501i \(0.346185\pi\)
\(60\) 0 0
\(61\) −9.52683 −1.21979 −0.609893 0.792484i \(-0.708788\pi\)
−0.609893 + 0.792484i \(0.708788\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.77907 1.35459i −0.220666 0.168016i
\(66\) 0 0
\(67\) 0.223398 0.223398i 0.0272924 0.0272924i −0.693329 0.720621i \(-0.743857\pi\)
0.720621 + 0.693329i \(0.243857\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.7488i 1.51301i −0.653990 0.756503i \(-0.726906\pi\)
0.653990 0.756503i \(-0.273094\pi\)
\(72\) 0 0
\(73\) −9.60841 9.60841i −1.12458 1.12458i −0.991044 0.133536i \(-0.957367\pi\)
−0.133536 0.991044i \(-0.542633\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.780576 + 0.780576i 0.0889549 + 0.0889549i
\(78\) 0 0
\(79\) 5.20411i 0.585508i −0.956188 0.292754i \(-0.905428\pi\)
0.956188 0.292754i \(-0.0945718\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.65471 + 5.65471i −0.620685 + 0.620685i −0.945707 0.325021i \(-0.894628\pi\)
0.325021 + 0.945707i \(0.394628\pi\)
\(84\) 0 0
\(85\) 3.75256 + 2.85722i 0.407022 + 0.309909i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.96742 −0.632545 −0.316273 0.948668i \(-0.602431\pi\)
−0.316273 + 0.948668i \(0.602431\pi\)
\(90\) 0 0
\(91\) 4.01302 0.420679
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.230480 + 1.70149i 0.0236467 + 0.174570i
\(96\) 0 0
\(97\) 0.0852795 0.0852795i 0.00865882 0.00865882i −0.702764 0.711423i \(-0.748051\pi\)
0.711423 + 0.702764i \(0.248051\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.35876i 0.234706i −0.993090 0.117353i \(-0.962559\pi\)
0.993090 0.117353i \(-0.0374408\pi\)
\(102\) 0 0
\(103\) −11.3776 11.3776i −1.12107 1.12107i −0.991581 0.129485i \(-0.958668\pi\)
−0.129485 0.991581i \(-0.541332\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.175898 0.175898i −0.0170047 0.0170047i 0.698553 0.715558i \(-0.253827\pi\)
−0.715558 + 0.698553i \(0.753827\pi\)
\(108\) 0 0
\(109\) 0.611880i 0.0586075i −0.999571 0.0293037i \(-0.990671\pi\)
0.999571 0.0293037i \(-0.00932900\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.02687 4.02687i 0.378816 0.378816i −0.491859 0.870675i \(-0.663682\pi\)
0.870675 + 0.491859i \(0.163682\pi\)
\(114\) 0 0
\(115\) −4.76637 + 6.25997i −0.444467 + 0.583746i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.46460 −0.775948
\(120\) 0 0
\(121\) 10.9243 0.993121
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.2807 + 4.39410i −0.919530 + 0.393020i
\(126\) 0 0
\(127\) 9.03483 9.03483i 0.801712 0.801712i −0.181651 0.983363i \(-0.558144\pi\)
0.983363 + 0.181651i \(0.0581442\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.2243i 1.06804i −0.845472 0.534019i \(-0.820681\pi\)
0.845472 0.534019i \(-0.179319\pi\)
\(132\) 0 0
\(133\) −2.17896 2.17896i −0.188940 0.188940i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.7412 13.7412i −1.17399 1.17399i −0.981250 0.192740i \(-0.938263\pi\)
−0.192740 0.981250i \(-0.561737\pi\)
\(138\) 0 0
\(139\) 20.3062i 1.72235i −0.508311 0.861173i \(-0.669730\pi\)
0.508311 0.861173i \(-0.330270\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.194511 + 0.194511i −0.0162658 + 0.0162658i
\(144\) 0 0
\(145\) 20.3820 2.76089i 1.69263 0.229280i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.9390 1.38770 0.693850 0.720120i \(-0.255913\pi\)
0.693850 + 0.720120i \(0.255913\pi\)
\(150\) 0 0
\(151\) −17.2012 −1.39981 −0.699906 0.714235i \(-0.746775\pi\)
−0.699906 + 0.714235i \(0.746775\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.145562 + 0.0197175i −0.0116918 + 0.00158374i
\(156\) 0 0
\(157\) 8.63433 8.63433i 0.689095 0.689095i −0.272937 0.962032i \(-0.587995\pi\)
0.962032 + 0.272937i \(0.0879951\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 14.1205i 1.11285i
\(162\) 0 0
\(163\) 7.38433 + 7.38433i 0.578385 + 0.578385i 0.934458 0.356073i \(-0.115884\pi\)
−0.356073 + 0.934458i \(0.615884\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.27677 3.27677i −0.253564 0.253564i 0.568866 0.822430i \(-0.307382\pi\)
−0.822430 + 0.568866i \(0.807382\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.11049 7.11049i 0.540600 0.540600i −0.383105 0.923705i \(-0.625145\pi\)
0.923705 + 0.383105i \(0.125145\pi\)
\(174\) 0 0
\(175\) 9.90235 17.4514i 0.748547 1.31920i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.99931 0.373666 0.186833 0.982392i \(-0.440178\pi\)
0.186833 + 0.982392i \(0.440178\pi\)
\(180\) 0 0
\(181\) −2.77482 −0.206250 −0.103125 0.994668i \(-0.532884\pi\)
−0.103125 + 0.994668i \(0.532884\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.46240 + 7.17411i −0.401604 + 0.527451i
\(186\) 0 0
\(187\) 0.410279 0.410279i 0.0300026 0.0300026i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.5552i 0.980819i 0.871492 + 0.490409i \(0.163153\pi\)
−0.871492 + 0.490409i \(0.836847\pi\)
\(192\) 0 0
\(193\) 10.5223 + 10.5223i 0.757411 + 0.757411i 0.975850 0.218440i \(-0.0700967\pi\)
−0.218440 + 0.975850i \(0.570097\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.4632 14.4632i −1.03046 1.03046i −0.999521 0.0309403i \(-0.990150\pi\)
−0.0309403 0.999521i \(-0.509850\pi\)
\(198\) 0 0
\(199\) 6.50993i 0.461477i −0.973016 0.230738i \(-0.925886\pi\)
0.973016 0.230738i \(-0.0741141\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −26.1016 + 26.1016i −1.83197 + 1.83197i
\(204\) 0 0
\(205\) 1.15984 + 8.56238i 0.0810066 + 0.598023i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.211229 0.0146110
\(210\) 0 0
\(211\) −2.11694 −0.145737 −0.0728683 0.997342i \(-0.523215\pi\)
−0.0728683 + 0.997342i \(0.523215\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.12474 3.14060i −0.281305 0.214187i
\(216\) 0 0
\(217\) 0.186409 0.186409i 0.0126543 0.0126543i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.10928i 0.141886i
\(222\) 0 0
\(223\) 17.0339 + 17.0339i 1.14067 + 1.14067i 0.988327 + 0.152345i \(0.0486824\pi\)
0.152345 + 0.988327i \(0.451318\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.98651 + 7.98651i 0.530084 + 0.530084i 0.920597 0.390514i \(-0.127703\pi\)
−0.390514 + 0.920597i \(0.627703\pi\)
\(228\) 0 0
\(229\) 11.5307i 0.761970i 0.924581 + 0.380985i \(0.124415\pi\)
−0.924581 + 0.380985i \(0.875585\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.45924 5.45924i 0.357647 0.357647i −0.505298 0.862945i \(-0.668617\pi\)
0.862945 + 0.505298i \(0.168617\pi\)
\(234\) 0 0
\(235\) −7.05262 5.36990i −0.460062 0.350294i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.35874 0.605367 0.302683 0.953091i \(-0.402118\pi\)
0.302683 + 0.953091i \(0.402118\pi\)
\(240\) 0 0
\(241\) 21.6747 1.39619 0.698095 0.716005i \(-0.254031\pi\)
0.698095 + 0.716005i \(0.254031\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.73267 + 20.1736i 0.174584 + 1.28885i
\(246\) 0 0
\(247\) 0.542974 0.542974i 0.0345486 0.0345486i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.32812i 0.588786i 0.955684 + 0.294393i \(0.0951174\pi\)
−0.955684 + 0.294393i \(0.904883\pi\)
\(252\) 0 0
\(253\) 0.684422 + 0.684422i 0.0430292 + 0.0430292i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.10658 5.10658i −0.318539 0.318539i 0.529667 0.848206i \(-0.322317\pi\)
−0.848206 + 0.529667i \(0.822317\pi\)
\(258\) 0 0
\(259\) 16.1825i 1.00553i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.0644 + 18.0644i −1.11390 + 1.11390i −0.121282 + 0.992618i \(0.538701\pi\)
−0.992618 + 0.121282i \(0.961299\pi\)
\(264\) 0 0
\(265\) 1.87140 2.45782i 0.114959 0.150983i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.8098 0.963943 0.481972 0.876187i \(-0.339921\pi\)
0.481972 + 0.876187i \(0.339921\pi\)
\(270\) 0 0
\(271\) −26.8065 −1.62838 −0.814189 0.580600i \(-0.802818\pi\)
−0.814189 + 0.580600i \(0.802818\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.365902 + 1.32584i 0.0220647 + 0.0799509i
\(276\) 0 0
\(277\) −20.1306 + 20.1306i −1.20953 + 1.20953i −0.238351 + 0.971179i \(0.576607\pi\)
−0.971179 + 0.238351i \(0.923393\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.81305i 0.466087i 0.972466 + 0.233044i \(0.0748685\pi\)
−0.972466 + 0.233044i \(0.925132\pi\)
\(282\) 0 0
\(283\) −9.73125 9.73125i −0.578463 0.578463i 0.356017 0.934480i \(-0.384135\pi\)
−0.934480 + 0.356017i \(0.884135\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.9651 10.9651i −0.647252 0.647252i
\(288\) 0 0
\(289\) 12.5509i 0.738289i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.78127 4.78127i 0.279325 0.279325i −0.553515 0.832839i \(-0.686714\pi\)
0.832839 + 0.553515i \(0.186714\pi\)
\(294\) 0 0
\(295\) −15.8164 + 2.14244i −0.920864 + 0.124738i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.51868 0.203491
\(300\) 0 0
\(301\) 9.30411 0.536280
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 21.1099 2.85949i 1.20875 0.163734i
\(306\) 0 0
\(307\) −20.3856 + 20.3856i −1.16347 + 1.16347i −0.179754 + 0.983712i \(0.557530\pi\)
−0.983712 + 0.179754i \(0.942470\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.328162i 0.0186084i −0.999957 0.00930419i \(-0.997038\pi\)
0.999957 0.00930419i \(-0.00296166\pi\)
\(312\) 0 0
\(313\) 24.3629 + 24.3629i 1.37707 + 1.37707i 0.849524 + 0.527551i \(0.176890\pi\)
0.527551 + 0.849524i \(0.323110\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.45737 + 4.45737i 0.250351 + 0.250351i 0.821114 0.570764i \(-0.193353\pi\)
−0.570764 + 0.821114i \(0.693353\pi\)
\(318\) 0 0
\(319\) 2.53028i 0.141669i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.14529 + 1.14529i −0.0637254 + 0.0637254i
\(324\) 0 0
\(325\) 4.34870 + 2.46756i 0.241222 + 0.136875i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 15.9085 0.877064
\(330\) 0 0
\(331\) −20.4356 −1.12324 −0.561622 0.827394i \(-0.689822\pi\)
−0.561622 + 0.827394i \(0.689822\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.427959 + 0.562066i −0.0233819 + 0.0307089i
\(336\) 0 0
\(337\) −18.3170 + 18.3170i −0.997790 + 0.997790i −0.999998 0.00220753i \(-0.999297\pi\)
0.00220753 + 0.999998i \(0.499297\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.0180705i 0.000978573i
\(342\) 0 0
\(343\) −5.97127 5.97127i −0.322418 0.322418i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.6429 12.6429i −0.678706 0.678706i 0.281001 0.959707i \(-0.409333\pi\)
−0.959707 + 0.281001i \(0.909333\pi\)
\(348\) 0 0
\(349\) 5.26764i 0.281971i −0.990012 0.140985i \(-0.954973\pi\)
0.990012 0.140985i \(-0.0450270\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.35043 + 6.35043i −0.337999 + 0.337999i −0.855614 0.517614i \(-0.826820\pi\)
0.517614 + 0.855614i \(0.326820\pi\)
\(354\) 0 0
\(355\) 3.82656 + 28.2492i 0.203093 + 1.49931i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.9800 0.579505 0.289752 0.957102i \(-0.406427\pi\)
0.289752 + 0.957102i \(0.406427\pi\)
\(360\) 0 0
\(361\) 18.4104 0.968966
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 24.1746 + 18.4067i 1.26536 + 0.963448i
\(366\) 0 0
\(367\) −15.1472 + 15.1472i −0.790680 + 0.790680i −0.981605 0.190925i \(-0.938851\pi\)
0.190925 + 0.981605i \(0.438851\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.54407i 0.287834i
\(372\) 0 0
\(373\) −5.50028 5.50028i −0.284794 0.284794i 0.550224 0.835017i \(-0.314542\pi\)
−0.835017 + 0.550224i \(0.814542\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.50422 6.50422i −0.334984 0.334984i
\(378\) 0 0
\(379\) 6.80175i 0.349382i 0.984623 + 0.174691i \(0.0558927\pi\)
−0.984623 + 0.174691i \(0.944107\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.16450 + 7.16450i −0.366089 + 0.366089i −0.866049 0.499960i \(-0.833348\pi\)
0.499960 + 0.866049i \(0.333348\pi\)
\(384\) 0 0
\(385\) −1.96392 1.49533i −0.100090 0.0762093i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.1836 1.27686 0.638431 0.769679i \(-0.279584\pi\)
0.638431 + 0.769679i \(0.279584\pi\)
\(390\) 0 0
\(391\) −7.42190 −0.375342
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.56202 + 11.5314i 0.0785937 + 0.580210i
\(396\) 0 0
\(397\) −12.3821 + 12.3821i −0.621439 + 0.621439i −0.945899 0.324461i \(-0.894817\pi\)
0.324461 + 0.945899i \(0.394817\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.7625i 0.687264i 0.939104 + 0.343632i \(0.111657\pi\)
−0.939104 + 0.343632i \(0.888343\pi\)
\(402\) 0 0
\(403\) 0.0464511 + 0.0464511i 0.00231390 + 0.00231390i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.784367 + 0.784367i 0.0388797 + 0.0388797i
\(408\) 0 0
\(409\) 13.6291i 0.673918i 0.941519 + 0.336959i \(0.109398\pi\)
−0.941519 + 0.336959i \(0.890602\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20.2547 20.2547i 0.996669 0.996669i
\(414\) 0 0
\(415\) 10.8326 14.2272i 0.531753 0.698384i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.2829 0.990886 0.495443 0.868641i \(-0.335006\pi\)
0.495443 + 0.868641i \(0.335006\pi\)
\(420\) 0 0
\(421\) 15.9040 0.775116 0.387558 0.921845i \(-0.373319\pi\)
0.387558 + 0.921845i \(0.373319\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.17264 5.20478i −0.444938 0.252469i
\(426\) 0 0
\(427\) −27.0337 + 27.0337i −1.30825 + 1.30825i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.2888i 1.60346i −0.597684 0.801732i \(-0.703912\pi\)
0.597684 0.801732i \(-0.296088\pi\)
\(432\) 0 0
\(433\) −1.75897 1.75897i −0.0845309 0.0845309i 0.663577 0.748108i \(-0.269037\pi\)
−0.748108 + 0.663577i \(0.769037\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.91055 1.91055i −0.0913941 0.0913941i
\(438\) 0 0
\(439\) 27.3842i 1.30698i −0.756936 0.653489i \(-0.773304\pi\)
0.756936 0.653489i \(-0.226696\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.6664 + 14.6664i −0.696822 + 0.696822i −0.963724 0.266902i \(-0.914000\pi\)
0.266902 + 0.963724i \(0.414000\pi\)
\(444\) 0 0
\(445\) 13.2228 1.79113i 0.626821 0.0849075i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 39.6444 1.87094 0.935468 0.353411i \(-0.114978\pi\)
0.935468 + 0.353411i \(0.114978\pi\)
\(450\) 0 0
\(451\) 1.06296 0.0500528
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.89217 + 1.20451i −0.416871 + 0.0564683i
\(456\) 0 0
\(457\) 13.1725 13.1725i 0.616186 0.616186i −0.328365 0.944551i \(-0.606498\pi\)
0.944551 + 0.328365i \(0.106498\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.9614i 0.696821i −0.937342 0.348410i \(-0.886722\pi\)
0.937342 0.348410i \(-0.113278\pi\)
\(462\) 0 0
\(463\) 1.03042 + 1.03042i 0.0478877 + 0.0478877i 0.730645 0.682757i \(-0.239219\pi\)
−0.682757 + 0.730645i \(0.739219\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.55703 + 2.55703i 0.118325 + 0.118325i 0.763790 0.645465i \(-0.223336\pi\)
−0.645465 + 0.763790i \(0.723336\pi\)
\(468\) 0 0
\(469\) 1.26784i 0.0585436i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.450970 + 0.450970i −0.0207356 + 0.0207356i
\(474\) 0 0
\(475\) −1.02141 3.70105i −0.0468655 0.169816i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.9727 0.821192 0.410596 0.911817i \(-0.365321\pi\)
0.410596 + 0.911817i \(0.365321\pi\)
\(480\) 0 0
\(481\) 4.03251 0.183867
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.163368 + 0.214562i −0.00741817 + 0.00974275i
\(486\) 0 0
\(487\) 3.48554 3.48554i 0.157945 0.157945i −0.623711 0.781655i \(-0.714376\pi\)
0.781655 + 0.623711i \(0.214376\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.5787i 0.883575i −0.897120 0.441787i \(-0.854345\pi\)
0.897120 0.441787i \(-0.145655\pi\)
\(492\) 0 0
\(493\) 13.7193 + 13.7193i 0.617884 + 0.617884i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −36.1764 36.1764i −1.62274 1.62274i
\(498\) 0 0
\(499\) 18.4910i 0.827770i 0.910329 + 0.413885i \(0.135828\pi\)
−0.910329 + 0.413885i \(0.864172\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.4136 12.4136i 0.553494 0.553494i −0.373954 0.927447i \(-0.621998\pi\)
0.927447 + 0.373954i \(0.121998\pi\)
\(504\) 0 0
\(505\) 0.707984 + 5.22662i 0.0315049 + 0.232581i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −23.4530 −1.03954 −0.519768 0.854307i \(-0.673982\pi\)
−0.519768 + 0.854307i \(0.673982\pi\)
\(510\) 0 0
\(511\) −54.5303 −2.41228
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 28.6258 + 21.7958i 1.26140 + 0.960438i
\(516\) 0 0
\(517\) −0.771085 + 0.771085i −0.0339123 + 0.0339123i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.3172i 1.45965i −0.683632 0.729827i \(-0.739600\pi\)
0.683632 0.729827i \(-0.260400\pi\)
\(522\) 0 0
\(523\) 26.4046 + 26.4046i 1.15459 + 1.15459i 0.985621 + 0.168972i \(0.0540449\pi\)
0.168972 + 0.985621i \(0.445955\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.0979787 0.0979787i −0.00426802 0.00426802i
\(528\) 0 0
\(529\) 10.6189i 0.461690i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.73239 2.73239i 0.118353 0.118353i
\(534\) 0 0
\(535\) 0.442556 + 0.336964i 0.0191334 + 0.0145682i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.50441 0.107873
\(540\) 0 0
\(541\) −16.9850 −0.730241 −0.365121 0.930960i \(-0.618972\pi\)
−0.365121 + 0.930960i \(0.618972\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.183656 + 1.35582i 0.00786697 + 0.0580771i
\(546\) 0 0
\(547\) 10.3513 10.3513i 0.442588 0.442588i −0.450293 0.892881i \(-0.648680\pi\)
0.892881 + 0.450293i \(0.148680\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.06324i 0.300904i
\(552\) 0 0
\(553\) −14.7674 14.7674i −0.627972 0.627972i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.5148 + 14.5148i 0.615011 + 0.615011i 0.944248 0.329236i \(-0.106791\pi\)
−0.329236 + 0.944248i \(0.606791\pi\)
\(558\) 0 0
\(559\) 2.31848i 0.0980614i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.2804 + 24.2804i −1.02330 + 1.02330i −0.0235762 + 0.999722i \(0.507505\pi\)
−0.999722 + 0.0235762i \(0.992495\pi\)
\(564\) 0 0
\(565\) −7.71420 + 10.1315i −0.324539 + 0.426237i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 45.5646 1.91017 0.955083 0.296338i \(-0.0957656\pi\)
0.955083 + 0.296338i \(0.0957656\pi\)
\(570\) 0 0
\(571\) 7.60606 0.318304 0.159152 0.987254i \(-0.449124\pi\)
0.159152 + 0.987254i \(0.449124\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.68255 15.3017i 0.362087 0.638124i
\(576\) 0 0
\(577\) −25.4575 + 25.4575i −1.05981 + 1.05981i −0.0617180 + 0.998094i \(0.519658\pi\)
−0.998094 + 0.0617180i \(0.980342\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 32.0920i 1.33140i
\(582\) 0 0
\(583\) −0.268721 0.268721i −0.0111293 0.0111293i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 29.4487 + 29.4487i 1.21548 + 1.21548i 0.969198 + 0.246281i \(0.0792086\pi\)
0.246281 + 0.969198i \(0.420791\pi\)
\(588\) 0 0
\(589\) 0.0504435i 0.00207849i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16.0624 16.0624i 0.659605 0.659605i −0.295682 0.955287i \(-0.595547\pi\)
0.955287 + 0.295682i \(0.0955468\pi\)
\(594\) 0 0
\(595\) 18.7561 2.54065i 0.768926 0.104157i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.1660 −0.864818 −0.432409 0.901678i \(-0.642336\pi\)
−0.432409 + 0.901678i \(0.642336\pi\)
\(600\) 0 0
\(601\) 23.8702 0.973684 0.486842 0.873490i \(-0.338149\pi\)
0.486842 + 0.873490i \(0.338149\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −24.2065 + 3.27895i −0.984133 + 0.133308i
\(606\) 0 0
\(607\) −14.8159 + 14.8159i −0.601359 + 0.601359i −0.940673 0.339314i \(-0.889805\pi\)
0.339314 + 0.940673i \(0.389805\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.96422i 0.160375i
\(612\) 0 0
\(613\) 12.0901 + 12.0901i 0.488313 + 0.488313i 0.907774 0.419461i \(-0.137781\pi\)
−0.419461 + 0.907774i \(0.637781\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.0166 + 11.0166i 0.443511 + 0.443511i 0.893190 0.449679i \(-0.148462\pi\)
−0.449679 + 0.893190i \(0.648462\pi\)
\(618\) 0 0
\(619\) 7.34736i 0.295315i 0.989039 + 0.147658i \(0.0471734\pi\)
−0.989039 + 0.147658i \(0.952827\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.9333 + 16.9333i −0.678420 + 0.678420i
\(624\) 0 0
\(625\) 21.4613 12.8223i 0.858453 0.512893i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8.50571 −0.339145
\(630\) 0 0
\(631\) −5.12594 −0.204061 −0.102030 0.994781i \(-0.532534\pi\)
−0.102030 + 0.994781i \(0.532534\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17.3079 + 22.7315i −0.686841 + 0.902071i
\(636\) 0 0
\(637\) 6.43772 6.43772i 0.255072 0.255072i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 38.2714i 1.51163i 0.654785 + 0.755815i \(0.272759\pi\)
−0.654785 + 0.755815i \(0.727241\pi\)
\(642\) 0 0
\(643\) 10.9026 + 10.9026i 0.429957 + 0.429957i 0.888614 0.458657i \(-0.151669\pi\)
−0.458657 + 0.888614i \(0.651669\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −22.0086 22.0086i −0.865246 0.865246i 0.126696 0.991942i \(-0.459563\pi\)
−0.991942 + 0.126696i \(0.959563\pi\)
\(648\) 0 0
\(649\) 1.96349i 0.0770737i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.42211 6.42211i 0.251317 0.251317i −0.570194 0.821510i \(-0.693132\pi\)
0.821510 + 0.570194i \(0.193132\pi\)
\(654\) 0 0
\(655\) 3.66912 + 27.0869i 0.143364 + 1.05837i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.9219 0.853958 0.426979 0.904262i \(-0.359578\pi\)
0.426979 + 0.904262i \(0.359578\pi\)
\(660\) 0 0
\(661\) −28.0841 −1.09235 −0.546173 0.837672i \(-0.683916\pi\)
−0.546173 + 0.837672i \(0.683916\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.48223 + 4.17420i 0.212592 + 0.161868i
\(666\) 0 0
\(667\) −22.8863 + 22.8863i −0.886161 + 0.886161i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.62064i 0.101169i
\(672\) 0 0
\(673\) 13.7754 + 13.7754i 0.531001 + 0.531001i 0.920870 0.389869i \(-0.127480\pi\)
−0.389869 + 0.920870i \(0.627480\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.28103 8.28103i −0.318266 0.318266i 0.529835 0.848101i \(-0.322254\pi\)
−0.848101 + 0.529835i \(0.822254\pi\)
\(678\) 0 0
\(679\) 0.483984i 0.0185736i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.3992 12.3992i 0.474442 0.474442i −0.428907 0.903349i \(-0.641101\pi\)
0.903349 + 0.428907i \(0.141101\pi\)
\(684\) 0 0
\(685\) 34.5726 + 26.3238i 1.32095 + 1.00578i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.38152 −0.0526317
\(690\) 0 0
\(691\) −28.6201 −1.08876 −0.544379 0.838839i \(-0.683235\pi\)
−0.544379 + 0.838839i \(0.683235\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.09491 + 44.9951i 0.231193 + 1.70676i
\(696\) 0 0
\(697\) −5.76339 + 5.76339i −0.218304 + 0.218304i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.6612i 0.893671i −0.894616 0.446835i \(-0.852551\pi\)
0.894616 0.446835i \(-0.147449\pi\)
\(702\) 0 0
\(703\) −2.18955 2.18955i −0.0825803 0.0825803i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.69330 6.69330i −0.251727 0.251727i
\(708\) 0 0
\(709\) 17.4168i 0.654100i −0.945007 0.327050i \(-0.893945\pi\)
0.945007 0.327050i \(-0.106055\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.163447 0.163447i 0.00612113 0.00612113i
\(714\) 0 0
\(715\) 0.372621 0.489386i 0.0139352 0.0183020i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.0895 1.86802 0.934012 0.357240i \(-0.116282\pi\)
0.934012 + 0.357240i \(0.116282\pi\)
\(720\) 0 0
\(721\) −64.5708 −2.40474
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −44.3344 + 12.2354i −1.64654 + 0.454410i
\(726\) 0 0
\(727\) 21.3726 21.3726i 0.792665 0.792665i −0.189262 0.981927i \(-0.560610\pi\)
0.981927 + 0.189262i \(0.0606096\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.89034i 0.180876i
\(732\) 0 0
\(733\) −12.6518 12.6518i −0.467305 0.467305i 0.433735 0.901040i \(-0.357195\pi\)
−0.901040 + 0.433735i \(0.857195\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.0614523 + 0.0614523i 0.00226363 + 0.00226363i
\(738\) 0 0
\(739\) 48.4462i 1.78212i 0.453882 + 0.891062i \(0.350039\pi\)
−0.453882 + 0.891062i \(0.649961\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.9920 + 12.9920i −0.476632 + 0.476632i −0.904053 0.427421i \(-0.859422\pi\)
0.427421 + 0.904053i \(0.359422\pi\)
\(744\) 0 0
\(745\) −37.5340 + 5.08426i −1.37514 + 0.186273i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.998267 −0.0364759
\(750\) 0 0
\(751\) 31.5235 1.15031 0.575154 0.818045i \(-0.304942\pi\)
0.575154 + 0.818045i \(0.304942\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.1149 5.16295i 1.38714 0.187899i
\(756\) 0 0
\(757\) 26.3914 26.3914i 0.959213 0.959213i −0.0399876 0.999200i \(-0.512732\pi\)
0.999200 + 0.0399876i \(0.0127319\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 50.8244i 1.84238i 0.389109 + 0.921192i \(0.372783\pi\)
−0.389109 + 0.921192i \(0.627217\pi\)
\(762\) 0 0
\(763\) −1.73629 1.73629i −0.0628579 0.0628579i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.04725 + 5.04725i 0.182246 + 0.182246i
\(768\) 0 0
\(769\) 35.6908i 1.28704i −0.765427 0.643522i \(-0.777472\pi\)
0.765427 0.643522i \(-0.222528\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −12.6436 + 12.6436i −0.454758 + 0.454758i −0.896930 0.442172i \(-0.854208\pi\)
0.442172 + 0.896930i \(0.354208\pi\)
\(774\) 0 0
\(775\) 0.316623 0.0873811i 0.0113734 0.00313882i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.96723 −0.106312
\(780\) 0 0
\(781\) 3.50694 0.125488
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16.5406 + 21.7238i −0.590360 + 0.775357i
\(786\) 0 0
\(787\) −26.2854 + 26.2854i −0.936974 + 0.936974i −0.998128 0.0611546i \(-0.980522\pi\)
0.0611546 + 0.998128i \(0.480522\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22.8536i 0.812579i
\(792\) 0 0
\(793\) −6.73649 6.73649i −0.239220 0.239220i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 35.5031 + 35.5031i 1.25759 + 1.25759i 0.952243 + 0.305343i \(0.0987710\pi\)
0.305343 + 0.952243i \(0.401229\pi\)
\(798\) 0 0
\(799\) 8.36167i 0.295815i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.64308 2.64308i 0.0932723 0.0932723i
\(804\) 0 0
\(805\) 4.23829 + 31.2887i 0.149380 + 1.10278i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.9886 0.456654 0.228327 0.973585i \(-0.426675\pi\)
0.228327 + 0.973585i \(0.426675\pi\)
\(810\) 0 0
\(811\) −23.8342 −0.836933 −0.418466 0.908232i \(-0.637432\pi\)
−0.418466 + 0.908232i \(0.637432\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.5788 14.1460i −0.650789 0.495513i
\(816\) 0 0
\(817\) 1.25888 1.25888i 0.0440425 0.0440425i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.9834i 1.84913i −0.381019 0.924567i \(-0.624427\pi\)
0.381019 0.924567i \(-0.375573\pi\)
\(822\) 0 0
\(823\) −39.2836 39.2836i −1.36934 1.36934i −0.861381 0.507959i \(-0.830400\pi\)
−0.507959 0.861381i \(-0.669600\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 20.9550 + 20.9550i 0.728678 + 0.728678i 0.970356 0.241679i \(-0.0776980\pi\)
−0.241679 + 0.970356i \(0.577698\pi\)
\(828\) 0 0
\(829\) 2.38701i 0.0829044i −0.999140 0.0414522i \(-0.986802\pi\)
0.999140 0.0414522i \(-0.0131984\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.5790 + 13.5790i −0.470484 + 0.470484i
\(834\) 0 0
\(835\) 8.24430 + 6.27725i 0.285306 + 0.217233i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −26.3417 −0.909415 −0.454708 0.890641i \(-0.650256\pi\)
−0.454708 + 0.890641i \(0.650256\pi\)
\(840\) 0 0
\(841\) 55.6098 1.91758
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.300151 2.21583i −0.0103255 0.0762269i
\(846\) 0 0
\(847\) 30.9992 30.9992i 1.06515 1.06515i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.1891i 0.486397i
\(852\) 0 0
\(853\) 33.9988 + 33.9988i 1.16410 + 1.16410i 0.983570 + 0.180526i \(0.0577800\pi\)
0.180526 + 0.983570i \(0.442220\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −23.9353 23.9353i −0.817615 0.817615i 0.168147 0.985762i \(-0.446222\pi\)
−0.985762 + 0.168147i \(0.946222\pi\)
\(858\) 0 0
\(859\) 14.3395i 0.489258i 0.969617 + 0.244629i \(0.0786662\pi\)
−0.969617 + 0.244629i \(0.921334\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.0874 14.0874i 0.479539 0.479539i −0.425445 0.904984i \(-0.639882\pi\)
0.904984 + 0.425445i \(0.139882\pi\)
\(864\) 0 0
\(865\) −13.6214 + 17.8899i −0.463142 + 0.608273i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.43155 0.0485619
\(870\) 0 0
\(871\) 0.315933 0.0107050
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.7039 + 41.6416i −0.564695 + 1.40774i
\(876\) 0 0
\(877\) −17.9913 + 17.9913i −0.607522 + 0.607522i −0.942298 0.334776i \(-0.891339\pi\)
0.334776 + 0.942298i \(0.391339\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.5229i 0.590361i −0.955442 0.295180i \(-0.904620\pi\)
0.955442 0.295180i \(-0.0953797\pi\)
\(882\) 0 0
\(883\) 19.2582 + 19.2582i 0.648090 + 0.648090i 0.952531 0.304441i \(-0.0984697\pi\)
−0.304441 + 0.952531i \(0.598470\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.29530 + 3.29530i 0.110645 + 0.110645i 0.760262 0.649617i \(-0.225071\pi\)
−0.649617 + 0.760262i \(0.725071\pi\)
\(888\) 0 0
\(889\) 51.2751i 1.71971i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.15247 2.15247i 0.0720296 0.0720296i
\(894\) 0 0
\(895\) −11.0776 + 1.50055i −0.370284 + 0.0501577i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.604257 −0.0201531
\(900\) 0 0
\(901\) 2.91402 0.0970801
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.14852 0.832863i 0.204384 0.0276853i
\(906\) 0 0
\(907\) 28.5872 28.5872i 0.949221 0.949221i −0.0495507 0.998772i \(-0.515779\pi\)
0.998772 + 0.0495507i \(0.0157789\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 55.0085i 1.82251i −0.411838 0.911257i \(-0.635113\pi\)
0.411838 0.911257i \(-0.364887\pi\)
\(912\) 0 0
\(913\) −1.55550 1.55550i −0.0514795 0.0514795i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −34.6880 34.6880i −1.14550 1.14550i
\(918\) 0 0
\(919\) 15.9879i 0.527394i −0.964606 0.263697i \(-0.915058\pi\)
0.964606 0.263697i \(-0.0849418\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.01477 9.01477i 0.296725 0.296725i
\(924\) 0 0
\(925\) 9.95045 17.5362i 0.327169 0.576586i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −38.3266 −1.25745 −0.628727 0.777626i \(-0.716424\pi\)
−0.628727 + 0.777626i \(0.716424\pi\)
\(930\) 0 0
\(931\) −6.99103 −0.229122
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.785963 + 1.03225i −0.0257038 + 0.0337583i
\(936\) 0 0
\(937\) −0.329170 + 0.329170i −0.0107535 + 0.0107535i −0.712463 0.701710i \(-0.752420\pi\)
0.701710 + 0.712463i \(0.252420\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.9998i 0.423782i −0.977293 0.211891i \(-0.932038\pi\)
0.977293 0.211891i \(-0.0679622\pi\)
\(942\) 0 0
\(943\) −9.61442 9.61442i −0.313088 0.313088i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.3185 + 41.3185i 1.34267 + 1.34267i 0.893392 + 0.449277i \(0.148318\pi\)
0.449277 + 0.893392i \(0.351682\pi\)
\(948\) 0 0
\(949\) 13.5883i 0.441096i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.79980 + 5.79980i −0.187874 + 0.187874i −0.794776 0.606902i \(-0.792412\pi\)
0.606902 + 0.794776i \(0.292412\pi\)
\(954\) 0 0
\(955\) −4.06860 30.0360i −0.131657 0.971942i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −77.9849 −2.51826
\(960\) 0 0
\(961\) −30.9957 −0.999861
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −26.4739 20.1573i −0.852225 0.648888i
\(966\) 0 0
\(967\) 34.7490 34.7490i 1.11745 1.11745i 0.125337 0.992114i \(-0.459999\pi\)
0.992114 0.125337i \(-0.0400013\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 59.5082i 1.90971i −0.297076 0.954854i \(-0.596011\pi\)
0.297076 0.954854i \(-0.403989\pi\)
\(972\) 0 0
\(973\) −57.6214 57.6214i −1.84726 1.84726i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −29.6157 29.6157i −0.947492 0.947492i 0.0511970 0.998689i \(-0.483696\pi\)
−0.998689 + 0.0511970i \(0.983696\pi\)
\(978\) 0 0
\(979\) 1.64152i 0.0524632i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.41764 2.41764i 0.0771106 0.0771106i −0.667500 0.744610i \(-0.732635\pi\)
0.744610 + 0.667500i \(0.232635\pi\)
\(984\) 0 0
\(985\) 36.3892 + 27.7069i 1.15946 + 0.882816i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.15800 0.259409
\(990\) 0 0
\(991\) 57.0997 1.81383 0.906916 0.421311i \(-0.138430\pi\)
0.906916 + 0.421311i \(0.138430\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.95396 + 14.4249i 0.0619447 + 0.457300i
\(996\) 0 0
\(997\) 13.2191 13.2191i 0.418652 0.418652i −0.466087 0.884739i \(-0.654336\pi\)
0.884739 + 0.466087i \(0.154336\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.a.53.1 24
3.2 odd 2 2340.2.y.b.53.12 yes 24
5.2 odd 4 2340.2.y.b.1457.12 yes 24
15.2 even 4 inner 2340.2.y.a.1457.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.1 24 1.1 even 1 trivial
2340.2.y.a.1457.1 yes 24 15.2 even 4 inner
2340.2.y.b.53.12 yes 24 3.2 odd 2
2340.2.y.b.1457.12 yes 24 5.2 odd 4