Properties

Label 2340.2.j.d.649.4
Level $2340$
Weight $2$
Character 2340.649
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(649,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12745506816.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 16x^{6} + 79x^{4} + 120x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 260)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(2.29678i\) of defining polynomial
Character \(\chi\) \(=\) 2340.649
Dual form 2340.2.j.d.649.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 + 1.41421i) q^{5} +4.37780 q^{7} -2.53326i q^{11} +(-2.64575 + 2.44949i) q^{13} +1.29217i q^{17} +5.36169i q^{19} +1.80341i q^{23} +(1.00000 - 4.89898i) q^{25} +7.58258 q^{29} +3.12359i q^{31} +(-7.58258 + 6.19115i) q^{35} -2.55040 q^{37} -7.89495i q^{41} +4.38774i q^{43} -6.20520 q^{47} +12.1652 q^{49} +6.19115i q^{53} +(3.58258 + 4.38774i) q^{55} +10.4282i q^{59} +3.58258 q^{61} +(1.11847 - 7.98430i) q^{65} -2.55040 q^{67} -0.295164i q^{71} -2.55040 q^{73} -11.0901i q^{77} +11.1652 q^{79} -0.723000 q^{83} +(-1.82740 - 2.23810i) q^{85} +11.3137i q^{89} +(-11.5826 + 10.7234i) q^{91} +(-7.58258 - 9.28672i) q^{95} -12.2197 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{25} + 24 q^{29} - 24 q^{35} + 24 q^{49} - 8 q^{55} - 8 q^{61} + 16 q^{79} - 56 q^{91} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.73205 + 1.41421i −0.774597 + 0.632456i
\(6\) 0 0
\(7\) 4.37780 1.65465 0.827327 0.561721i \(-0.189860\pi\)
0.827327 + 0.561721i \(0.189860\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.53326i 0.763808i −0.924202 0.381904i \(-0.875269\pi\)
0.924202 0.381904i \(-0.124731\pi\)
\(12\) 0 0
\(13\) −2.64575 + 2.44949i −0.733799 + 0.679366i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.29217i 0.313397i 0.987647 + 0.156698i \(0.0500850\pi\)
−0.987647 + 0.156698i \(0.949915\pi\)
\(18\) 0 0
\(19\) 5.36169i 1.23006i 0.788505 + 0.615028i \(0.210855\pi\)
−0.788505 + 0.615028i \(0.789145\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.80341i 0.376036i 0.982166 + 0.188018i \(0.0602064\pi\)
−0.982166 + 0.188018i \(0.939794\pi\)
\(24\) 0 0
\(25\) 1.00000 4.89898i 0.200000 0.979796i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.58258 1.40805 0.704024 0.710176i \(-0.251385\pi\)
0.704024 + 0.710176i \(0.251385\pi\)
\(30\) 0 0
\(31\) 3.12359i 0.561013i 0.959852 + 0.280507i \(0.0905025\pi\)
−0.959852 + 0.280507i \(0.909498\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.58258 + 6.19115i −1.28169 + 1.04649i
\(36\) 0 0
\(37\) −2.55040 −0.419283 −0.209642 0.977778i \(-0.567230\pi\)
−0.209642 + 0.977778i \(0.567230\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.89495i 1.23298i −0.787361 0.616492i \(-0.788553\pi\)
0.787361 0.616492i \(-0.211447\pi\)
\(42\) 0 0
\(43\) 4.38774i 0.669124i 0.942374 + 0.334562i \(0.108588\pi\)
−0.942374 + 0.334562i \(0.891412\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.20520 −0.905122 −0.452561 0.891733i \(-0.649490\pi\)
−0.452561 + 0.891733i \(0.649490\pi\)
\(48\) 0 0
\(49\) 12.1652 1.73788
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.19115i 0.850419i 0.905095 + 0.425210i \(0.139800\pi\)
−0.905095 + 0.425210i \(0.860200\pi\)
\(54\) 0 0
\(55\) 3.58258 + 4.38774i 0.483074 + 0.591643i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 10.4282i 1.35764i 0.734305 + 0.678819i \(0.237508\pi\)
−0.734305 + 0.678819i \(0.762492\pi\)
\(60\) 0 0
\(61\) 3.58258 0.458702 0.229351 0.973344i \(-0.426340\pi\)
0.229351 + 0.973344i \(0.426340\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.11847 7.98430i 0.138730 0.990330i
\(66\) 0 0
\(67\) −2.55040 −0.311581 −0.155791 0.987790i \(-0.549792\pi\)
−0.155791 + 0.987790i \(0.549792\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.295164i 0.0350295i −0.999847 0.0175147i \(-0.994425\pi\)
0.999847 0.0175147i \(-0.00557540\pi\)
\(72\) 0 0
\(73\) −2.55040 −0.298502 −0.149251 0.988799i \(-0.547686\pi\)
−0.149251 + 0.988799i \(0.547686\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.0901i 1.26384i
\(78\) 0 0
\(79\) 11.1652 1.25618 0.628089 0.778142i \(-0.283837\pi\)
0.628089 + 0.778142i \(0.283837\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.723000 −0.0793596 −0.0396798 0.999212i \(-0.512634\pi\)
−0.0396798 + 0.999212i \(0.512634\pi\)
\(84\) 0 0
\(85\) −1.82740 2.23810i −0.198209 0.242756i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.3137i 1.19925i 0.800281 + 0.599625i \(0.204684\pi\)
−0.800281 + 0.599625i \(0.795316\pi\)
\(90\) 0 0
\(91\) −11.5826 + 10.7234i −1.21418 + 1.12412i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.58258 9.28672i −0.777956 0.952797i
\(96\) 0 0
\(97\) −12.2197 −1.24072 −0.620362 0.784316i \(-0.713014\pi\)
−0.620362 + 0.784316i \(0.713014\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.16515 0.911967 0.455983 0.889988i \(-0.349288\pi\)
0.455983 + 0.889988i \(0.349288\pi\)
\(102\) 0 0
\(103\) 9.28672i 0.915048i −0.889197 0.457524i \(-0.848736\pi\)
0.889197 0.457524i \(-0.151264\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.5789i 1.02270i 0.859373 + 0.511350i \(0.170854\pi\)
−0.859373 + 0.511350i \(0.829146\pi\)
\(108\) 0 0
\(109\) 8.48528i 0.812743i 0.913708 + 0.406371i \(0.133206\pi\)
−0.913708 + 0.406371i \(0.866794\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.0901i 1.04327i 0.853168 + 0.521636i \(0.174678\pi\)
−0.853168 + 0.521636i \(0.825322\pi\)
\(114\) 0 0
\(115\) −2.55040 3.12359i −0.237826 0.291276i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.65685i 0.518563i
\(120\) 0 0
\(121\) 4.58258 0.416598
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.19615 + 9.89949i 0.464758 + 0.885438i
\(126\) 0 0
\(127\) 0.511238i 0.0453651i 0.999743 + 0.0226825i \(0.00722069\pi\)
−0.999743 + 0.0226825i \(0.992779\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.16515 0.276541 0.138270 0.990395i \(-0.455846\pi\)
0.138270 + 0.990395i \(0.455846\pi\)
\(132\) 0 0
\(133\) 23.4724i 2.03532i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.3923 −0.887875 −0.443937 0.896058i \(-0.646419\pi\)
−0.443937 + 0.896058i \(0.646419\pi\)
\(138\) 0 0
\(139\) −7.16515 −0.607740 −0.303870 0.952713i \(-0.598279\pi\)
−0.303870 + 0.952713i \(0.598279\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.20520 + 6.70239i 0.518905 + 0.560482i
\(144\) 0 0
\(145\) −13.1334 + 10.7234i −1.09067 + 0.890528i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.82843i 0.231714i 0.993266 + 0.115857i \(0.0369614\pi\)
−0.993266 + 0.115857i \(0.963039\pi\)
\(150\) 0 0
\(151\) 16.0851i 1.30898i 0.756069 + 0.654492i \(0.227118\pi\)
−0.756069 + 0.654492i \(0.772882\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.41742 5.41022i −0.354816 0.434559i
\(156\) 0 0
\(157\) 22.4499i 1.79170i 0.444356 + 0.895850i \(0.353433\pi\)
−0.444356 + 0.895850i \(0.646567\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.89495i 0.622210i
\(162\) 0 0
\(163\) 11.3060 0.885555 0.442777 0.896632i \(-0.353993\pi\)
0.442777 + 0.896632i \(0.353993\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.723000 0.0559474 0.0279737 0.999609i \(-0.491095\pi\)
0.0279737 + 0.999609i \(0.491095\pi\)
\(168\) 0 0
\(169\) 1.00000 12.9615i 0.0769231 0.997037i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.60681i 0.274221i −0.990556 0.137110i \(-0.956218\pi\)
0.990556 0.137110i \(-0.0437815\pi\)
\(174\) 0 0
\(175\) 4.37780 21.4468i 0.330931 1.62122i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −23.5826 −1.75288 −0.876440 0.481512i \(-0.840088\pi\)
−0.876440 + 0.481512i \(0.840088\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.41742 3.60681i 0.324775 0.265178i
\(186\) 0 0
\(187\) 3.27340 0.239375
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 0.190700 0.0137269 0.00686346 0.999976i \(-0.497815\pi\)
0.00686346 + 0.999976i \(0.497815\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.8027 1.62463 0.812313 0.583222i \(-0.198208\pi\)
0.812313 + 0.583222i \(0.198208\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 33.1950 2.32983
\(204\) 0 0
\(205\) 11.1652 + 13.6745i 0.779808 + 0.955066i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 13.5826 0.939526
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.20520 7.59979i −0.423191 0.518301i
\(216\) 0 0
\(217\) 13.6745i 0.928283i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.16515 3.41875i −0.212911 0.229970i
\(222\) 0 0
\(223\) −2.55040 −0.170787 −0.0853937 0.996347i \(-0.527215\pi\)
−0.0853937 + 0.996347i \(0.527215\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −26.9898 −1.79138 −0.895688 0.444682i \(-0.853317\pi\)
−0.895688 + 0.444682i \(0.853317\pi\)
\(228\) 0 0
\(229\) 10.7234i 0.708621i 0.935128 + 0.354310i \(0.115284\pi\)
−0.935128 + 0.354310i \(0.884716\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.3823i 0.811191i −0.914053 0.405596i \(-0.867064\pi\)
0.914053 0.405596i \(-0.132936\pi\)
\(234\) 0 0
\(235\) 10.7477 8.77548i 0.701104 0.572449i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30.2272i 1.95524i −0.210389 0.977618i \(-0.567473\pi\)
0.210389 0.977618i \(-0.432527\pi\)
\(240\) 0 0
\(241\) 14.7325i 0.949001i 0.880255 + 0.474501i \(0.157371\pi\)
−0.880255 + 0.474501i \(0.842629\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −21.0707 + 17.2041i −1.34616 + 1.09913i
\(246\) 0 0
\(247\) −13.1334 14.1857i −0.835659 0.902614i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.1652 0.957216 0.478608 0.878029i \(-0.341142\pi\)
0.478608 + 0.878029i \(0.341142\pi\)
\(252\) 0 0
\(253\) 4.56850 0.287219
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.21362i 0.449973i 0.974362 + 0.224987i \(0.0722339\pi\)
−0.974362 + 0.224987i \(0.927766\pi\)
\(258\) 0 0
\(259\) −11.1652 −0.693769
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.5003i 1.01745i 0.860928 + 0.508727i \(0.169884\pi\)
−0.860928 + 0.508727i \(0.830116\pi\)
\(264\) 0 0
\(265\) −8.75560 10.7234i −0.537852 0.658732i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.16515 −0.558809 −0.279405 0.960173i \(-0.590137\pi\)
−0.279405 + 0.960173i \(0.590137\pi\)
\(270\) 0 0
\(271\) 22.3323i 1.35659i −0.734791 0.678294i \(-0.762720\pi\)
0.734791 0.678294i \(-0.237280\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.4104 2.53326i −0.748376 0.152762i
\(276\) 0 0
\(277\) 28.3714i 1.70467i −0.522994 0.852336i \(-0.675185\pi\)
0.522994 0.852336i \(-0.324815\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.3712i 0.738001i −0.929429 0.369001i \(-0.879700\pi\)
0.929429 0.369001i \(-0.120300\pi\)
\(282\) 0 0
\(283\) 4.38774i 0.260824i 0.991460 + 0.130412i \(0.0416300\pi\)
−0.991460 + 0.130412i \(0.958370\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 34.5625i 2.04016i
\(288\) 0 0
\(289\) 15.3303 0.901783
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.20520 0.362512 0.181256 0.983436i \(-0.441984\pi\)
0.181256 + 0.983436i \(0.441984\pi\)
\(294\) 0 0
\(295\) −14.7477 18.0622i −0.858646 1.05162i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.41742 4.77136i −0.255466 0.275935i
\(300\) 0 0
\(301\) 19.2087i 1.10717i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −6.20520 + 5.06653i −0.355309 + 0.290108i
\(306\) 0 0
\(307\) −8.03260 −0.458445 −0.229222 0.973374i \(-0.573618\pi\)
−0.229222 + 0.973374i \(0.573618\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.33030 −0.358959 −0.179479 0.983762i \(-0.557441\pi\)
−0.179479 + 0.983762i \(0.557441\pi\)
\(312\) 0 0
\(313\) 3.87650i 0.219113i −0.993981 0.109556i \(-0.965057\pi\)
0.993981 0.109556i \(-0.0349430\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.0616 1.12677 0.563386 0.826194i \(-0.309498\pi\)
0.563386 + 0.826194i \(0.309498\pi\)
\(318\) 0 0
\(319\) 19.2087i 1.07548i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.92820 −0.385496
\(324\) 0 0
\(325\) 9.35425 + 15.4110i 0.518880 + 0.854847i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −27.1652 −1.49766
\(330\) 0 0
\(331\) 24.5704i 1.35051i −0.737585 0.675254i \(-0.764034\pi\)
0.737585 0.675254i \(-0.235966\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.41742 3.60681i 0.241350 0.197061i
\(336\) 0 0
\(337\) 23.4724i 1.27862i −0.768947 0.639312i \(-0.779219\pi\)
0.768947 0.639312i \(-0.220781\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.91288 0.428506
\(342\) 0 0
\(343\) 22.6120 1.22093
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.07310i 0.111290i −0.998451 0.0556448i \(-0.982279\pi\)
0.998451 0.0556448i \(-0.0177215\pi\)
\(348\) 0 0
\(349\) 32.1701i 1.72203i −0.508581 0.861014i \(-0.669830\pi\)
0.508581 0.861014i \(-0.330170\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.20520 0.330270 0.165135 0.986271i \(-0.447194\pi\)
0.165135 + 0.986271i \(0.447194\pi\)
\(354\) 0 0
\(355\) 0.417424 + 0.511238i 0.0221546 + 0.0271337i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.7419i 1.14749i −0.819032 0.573747i \(-0.805489\pi\)
0.819032 0.573747i \(-0.194511\pi\)
\(360\) 0 0
\(361\) −9.74773 −0.513038
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.41742 3.60681i 0.231219 0.188789i
\(366\) 0 0
\(367\) 9.28672i 0.484763i −0.970181 0.242381i \(-0.922071\pi\)
0.970181 0.242381i \(-0.0779285\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 27.1036i 1.40715i
\(372\) 0 0
\(373\) 14.6969i 0.760979i 0.924785 + 0.380489i \(0.124244\pi\)
−0.924785 + 0.380489i \(0.875756\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −20.0616 + 18.5734i −1.03323 + 0.956581i
\(378\) 0 0
\(379\) 1.35261i 0.0694789i 0.999396 + 0.0347394i \(0.0110601\pi\)
−0.999396 + 0.0347394i \(0.988940\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 18.6156 0.951213 0.475607 0.879658i \(-0.342229\pi\)
0.475607 + 0.879658i \(0.342229\pi\)
\(384\) 0 0
\(385\) 15.6838 + 19.2087i 0.799321 + 0.978964i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) −2.33030 −0.117848
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −19.3386 + 15.7899i −0.973031 + 0.794477i
\(396\) 0 0
\(397\) 25.1624 1.26287 0.631433 0.775431i \(-0.282467\pi\)
0.631433 + 0.775431i \(0.282467\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.6274i 1.12996i −0.825105 0.564980i \(-0.808884\pi\)
0.825105 0.564980i \(-0.191116\pi\)
\(402\) 0 0
\(403\) −7.65120 8.26424i −0.381134 0.411671i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.46084i 0.320252i
\(408\) 0 0
\(409\) 6.71430i 0.332001i 0.986126 + 0.166000i \(0.0530853\pi\)
−0.986126 + 0.166000i \(0.946915\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 45.6527i 2.24642i
\(414\) 0 0
\(415\) 1.25227 1.02248i 0.0614717 0.0501914i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −33.4955 −1.63636 −0.818180 0.574962i \(-0.805017\pi\)
−0.818180 + 0.574962i \(0.805017\pi\)
\(420\) 0 0
\(421\) 17.4377i 0.849861i 0.905226 + 0.424930i \(0.139701\pi\)
−0.905226 + 0.424930i \(0.860299\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.33030 + 1.29217i 0.307065 + 0.0626793i
\(426\) 0 0
\(427\) 15.6838 0.758993
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 30.2272i 1.45599i −0.685581 0.727997i \(-0.740452\pi\)
0.685581 0.727997i \(-0.259548\pi\)
\(432\) 0 0
\(433\) 9.79796i 0.470860i −0.971891 0.235430i \(-0.924350\pi\)
0.971891 0.235430i \(-0.0756498\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.66930 −0.462546
\(438\) 0 0
\(439\) −37.4955 −1.78956 −0.894780 0.446507i \(-0.852668\pi\)
−0.894780 + 0.446507i \(0.852668\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.2758i 1.20089i 0.799666 + 0.600445i \(0.205010\pi\)
−0.799666 + 0.600445i \(0.794990\pi\)
\(444\) 0 0
\(445\) −16.0000 19.5959i −0.758473 0.928936i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.9986i 1.65168i 0.563901 + 0.825842i \(0.309300\pi\)
−0.563901 + 0.825842i \(0.690700\pi\)
\(450\) 0 0
\(451\) −20.0000 −0.941763
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.89646 34.9537i 0.229550 1.63865i
\(456\) 0 0
\(457\) 1.63670 0.0765616 0.0382808 0.999267i \(-0.487812\pi\)
0.0382808 + 0.999267i \(0.487812\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.590327i 0.0274943i 0.999906 + 0.0137471i \(0.00437599\pi\)
−0.999906 + 0.0137471i \(0.995624\pi\)
\(462\) 0 0
\(463\) 39.0188 1.81336 0.906679 0.421821i \(-0.138609\pi\)
0.906679 + 0.421821i \(0.138609\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.4670i 1.45612i −0.685515 0.728059i \(-0.740423\pi\)
0.685515 0.728059i \(-0.259577\pi\)
\(468\) 0 0
\(469\) −11.1652 −0.515559
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.1153 0.511082
\(474\) 0 0
\(475\) 26.2668 + 5.36169i 1.20520 + 0.246011i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0.295164i 0.0134864i −0.999977 0.00674318i \(-0.997854\pi\)
0.999977 0.00674318i \(-0.00214644\pi\)
\(480\) 0 0
\(481\) 6.74773 6.24718i 0.307670 0.284847i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 21.1652 17.2813i 0.961060 0.784702i
\(486\) 0 0
\(487\) −9.47860 −0.429517 −0.214758 0.976667i \(-0.568896\pi\)
−0.214758 + 0.976667i \(0.568896\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −30.3303 −1.36879 −0.684394 0.729113i \(-0.739933\pi\)
−0.684394 + 0.729113i \(0.739933\pi\)
\(492\) 0 0
\(493\) 9.79796i 0.441278i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.29217i 0.0579616i
\(498\) 0 0
\(499\) 0.885491i 0.0396400i 0.999804 + 0.0198200i \(0.00630932\pi\)
−0.999804 + 0.0198200i \(0.993691\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.94960i 0.265280i −0.991164 0.132640i \(-0.957655\pi\)
0.991164 0.132640i \(-0.0423453\pi\)
\(504\) 0 0
\(505\) −15.8745 + 12.9615i −0.706406 + 0.576778i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.9040i 0.527637i −0.964572 0.263819i \(-0.915018\pi\)
0.964572 0.263819i \(-0.0849820\pi\)
\(510\) 0 0
\(511\) −11.1652 −0.493917
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.1334 + 16.0851i 0.578727 + 0.708793i
\(516\) 0 0
\(517\) 15.7194i 0.691339i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.5826 −1.38366 −0.691829 0.722061i \(-0.743195\pi\)
−0.691829 + 0.722061i \(0.743195\pi\)
\(522\) 0 0
\(523\) 1.53371i 0.0670647i 0.999438 + 0.0335323i \(0.0106757\pi\)
−0.999438 + 0.0335323i \(0.989324\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.03620 −0.175820
\(528\) 0 0
\(529\) 19.7477 0.858597
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.3386 + 20.8881i 0.837648 + 0.904763i
\(534\) 0 0
\(535\) −14.9608 18.3232i −0.646812 0.792180i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 30.8175i 1.32741i
\(540\) 0 0
\(541\) 19.6758i 0.845928i −0.906147 0.422964i \(-0.860990\pi\)
0.906147 0.422964i \(-0.139010\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 14.6969i −0.514024 0.629548i
\(546\) 0 0
\(547\) 15.2082i 0.650255i −0.945670 0.325127i \(-0.894593\pi\)
0.945670 0.325127i \(-0.105407\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 40.6554i 1.73198i
\(552\) 0 0
\(553\) 48.8788 2.07854
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.65120 −0.324192 −0.162096 0.986775i \(-0.551825\pi\)
−0.162096 + 0.986775i \(0.551825\pi\)
\(558\) 0 0
\(559\) −10.7477 11.6089i −0.454580 0.491003i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.5230i 1.03352i −0.856129 0.516761i \(-0.827137\pi\)
0.856129 0.516761i \(-0.172863\pi\)
\(564\) 0 0
\(565\) −15.6838 19.2087i −0.659823 0.808115i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.5826 0.820944 0.410472 0.911873i \(-0.365364\pi\)
0.410472 + 0.911873i \(0.365364\pi\)
\(570\) 0 0
\(571\) 17.4955 0.732162 0.366081 0.930583i \(-0.380699\pi\)
0.366081 + 0.930583i \(0.380699\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.83485 + 1.80341i 0.368439 + 0.0752072i
\(576\) 0 0
\(577\) 22.2704 0.927129 0.463565 0.886063i \(-0.346570\pi\)
0.463565 + 0.886063i \(0.346570\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.16515 −0.131313
\(582\) 0 0
\(583\) 15.6838 0.649557
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 26.9898 1.11399 0.556994 0.830516i \(-0.311954\pi\)
0.556994 + 0.830516i \(0.311954\pi\)
\(588\) 0 0
\(589\) −16.7477 −0.690078
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.8745 0.651888 0.325944 0.945389i \(-0.394318\pi\)
0.325944 + 0.945389i \(0.394318\pi\)
\(594\) 0 0
\(595\) −8.00000 9.79796i −0.327968 0.401677i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.66970 0.231658 0.115829 0.993269i \(-0.463048\pi\)
0.115829 + 0.993269i \(0.463048\pi\)
\(600\) 0 0
\(601\) 7.66970 0.312853 0.156427 0.987690i \(-0.450002\pi\)
0.156427 + 0.987690i \(0.450002\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.93725 + 6.48074i −0.322695 + 0.263480i
\(606\) 0 0
\(607\) 21.9387i 0.890465i −0.895415 0.445232i \(-0.853121\pi\)
0.895415 0.445232i \(-0.146879\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.4174 15.1996i 0.664178 0.614909i
\(612\) 0 0
\(613\) −17.7019 −0.714973 −0.357487 0.933918i \(-0.616366\pi\)
−0.357487 + 0.933918i \(0.616366\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −35.2131 −1.41763 −0.708813 0.705396i \(-0.750769\pi\)
−0.708813 + 0.705396i \(0.750769\pi\)
\(618\) 0 0
\(619\) 39.3028i 1.57971i 0.613291 + 0.789857i \(0.289845\pi\)
−0.613291 + 0.789857i \(0.710155\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 49.5292i 1.98434i
\(624\) 0 0
\(625\) −23.0000 9.79796i −0.920000 0.391918i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.29555i 0.131402i
\(630\) 0 0
\(631\) 30.8175i 1.22683i −0.789762 0.613413i \(-0.789796\pi\)
0.789762 0.613413i \(-0.210204\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.723000 0.885491i −0.0286914 0.0351396i
\(636\) 0 0
\(637\) −32.1860 + 29.7984i −1.27525 + 1.18066i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.3303 −0.487018 −0.243509 0.969899i \(-0.578298\pi\)
−0.243509 + 0.969899i \(0.578298\pi\)
\(642\) 0 0
\(643\) −35.7454 −1.40966 −0.704831 0.709375i \(-0.748977\pi\)
−0.704831 + 0.709375i \(0.748977\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.4895i 1.27729i −0.769501 0.638646i \(-0.779495\pi\)
0.769501 0.638646i \(-0.220505\pi\)
\(648\) 0 0
\(649\) 26.4174 1.03697
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 44.6302i 1.74651i −0.487259 0.873257i \(-0.662003\pi\)
0.487259 0.873257i \(-0.337997\pi\)
\(654\) 0 0
\(655\) −5.48220 + 4.47620i −0.214207 + 0.174900i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 33.4955 1.30480 0.652399 0.757876i \(-0.273763\pi\)
0.652399 + 0.757876i \(0.273763\pi\)
\(660\) 0 0
\(661\) 8.48528i 0.330039i −0.986290 0.165020i \(-0.947231\pi\)
0.986290 0.165020i \(-0.0527687\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −33.1950 40.6554i −1.28725 1.57655i
\(666\) 0 0
\(667\) 13.6745i 0.529477i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.07561i 0.350360i
\(672\) 0 0
\(673\) 23.4724i 0.904795i −0.891816 0.452398i \(-0.850569\pi\)
0.891816 0.452398i \(-0.149431\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.7421i 0.912483i 0.889856 + 0.456242i \(0.150805\pi\)
−0.889856 + 0.456242i \(0.849195\pi\)
\(678\) 0 0
\(679\) −53.4955 −2.05297
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.9898 1.03274 0.516368 0.856367i \(-0.327284\pi\)
0.516368 + 0.856367i \(0.327284\pi\)
\(684\) 0 0
\(685\) 18.0000 14.6969i 0.687745 0.561541i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.1652 16.3802i −0.577746 0.624037i
\(690\) 0 0
\(691\) 20.0942i 0.764418i −0.924076 0.382209i \(-0.875164\pi\)
0.924076 0.382209i \(-0.124836\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.4104 10.1331i 0.470754 0.384369i
\(696\) 0 0
\(697\) 10.2016 0.386413
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.8348 0.560304 0.280152 0.959956i \(-0.409615\pi\)
0.280152 + 0.959956i \(0.409615\pi\)
\(702\) 0 0
\(703\) 13.6745i 0.515742i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 40.1232 1.50899
\(708\) 0 0
\(709\) 15.1996i 0.570832i −0.958404 0.285416i \(-0.907868\pi\)
0.958404 0.285416i \(-0.0921318\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −5.63310 −0.210961
\(714\) 0 0
\(715\) −20.2263 2.83339i −0.756422 0.105963i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.4955 1.24917 0.624585 0.780957i \(-0.285268\pi\)
0.624585 + 0.780957i \(0.285268\pi\)
\(720\) 0 0
\(721\) 40.6554i 1.51409i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.58258 37.1469i 0.281610 1.37960i
\(726\) 0 0
\(727\) 15.2082i 0.564040i 0.959409 + 0.282020i \(0.0910045\pi\)
−0.959409 + 0.282020i \(0.908996\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.66970 −0.209701
\(732\) 0 0
\(733\) −33.0043 −1.21904 −0.609521 0.792770i \(-0.708638\pi\)
−0.609521 + 0.792770i \(0.708638\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.46084i 0.237988i
\(738\) 0 0
\(739\) 33.5228i 1.23315i −0.787294 0.616577i \(-0.788519\pi\)
0.787294 0.616577i \(-0.211481\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.6156 0.682940 0.341470 0.939893i \(-0.389075\pi\)
0.341470 + 0.939893i \(0.389075\pi\)
\(744\) 0 0
\(745\) −4.00000 4.89898i −0.146549 0.179485i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 46.3123i 1.69221i
\(750\) 0 0
\(751\) 4.83485 0.176426 0.0882131 0.996102i \(-0.471884\pi\)
0.0882131 + 0.996102i \(0.471884\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −22.7477 27.8602i −0.827875 1.01394i
\(756\) 0 0
\(757\) 26.3264i 0.956851i −0.878128 0.478426i \(-0.841208\pi\)
0.878128 0.478426i \(-0.158792\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.3137i 0.410122i 0.978749 + 0.205061i \(0.0657392\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 0 0
\(763\) 37.1469i 1.34481i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −25.5438 27.5905i −0.922334 0.996234i
\(768\) 0 0
\(769\) 42.8935i 1.54678i 0.633930 + 0.773390i \(0.281441\pi\)
−0.633930 + 0.773390i \(0.718559\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.20520 0.223186 0.111593 0.993754i \(-0.464405\pi\)
0.111593 + 0.993754i \(0.464405\pi\)
\(774\) 0 0
\(775\) 15.3024 + 3.12359i 0.549679 + 0.112203i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 42.3303 1.51664
\(780\) 0 0
\(781\) −0.747727 −0.0267558
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −31.7490 38.8844i −1.13317 1.38785i
\(786\) 0 0
\(787\) −8.03260 −0.286331 −0.143166 0.989699i \(-0.545728\pi\)
−0.143166 + 0.989699i \(0.545728\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 48.5504i 1.72625i
\(792\) 0 0
\(793\) −9.47860 + 8.77548i −0.336595 + 0.311627i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.8322i 1.23382i −0.787033 0.616911i \(-0.788384\pi\)
0.787033 0.616911i \(-0.211616\pi\)
\(798\) 0 0
\(799\) 8.01816i 0.283662i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.46084i 0.227998i
\(804\) 0 0
\(805\) −11.1652 13.6745i −0.393520 0.481961i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.7477 0.799767 0.399884 0.916566i \(-0.369050\pi\)
0.399884 + 0.916566i \(0.369050\pi\)
\(810\) 0 0
\(811\) 12.0760i 0.424045i −0.977265 0.212023i \(-0.931995\pi\)
0.977265 0.212023i \(-0.0680051\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19.5826 + 15.9891i −0.685948 + 0.560074i
\(816\) 0 0
\(817\) −23.5257 −0.823060
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 19.7990i 0.690990i 0.938421 + 0.345495i \(0.112289\pi\)
−0.938421 + 0.345495i \(0.887711\pi\)
\(822\) 0 0
\(823\) 39.7031i 1.38396i 0.721916 + 0.691981i \(0.243262\pi\)
−0.721916 + 0.691981i \(0.756738\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.4720 −1.12916 −0.564581 0.825377i \(-0.690962\pi\)
−0.564581 + 0.825377i \(0.690962\pi\)
\(828\) 0 0
\(829\) 40.2432 1.39770 0.698852 0.715267i \(-0.253695\pi\)
0.698852 + 0.715267i \(0.253695\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 15.7194i 0.544645i
\(834\) 0 0
\(835\) −1.25227 + 1.02248i −0.0433367 + 0.0353843i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.762282i 0.0263169i −0.999913 0.0131585i \(-0.995811\pi\)
0.999913 0.0131585i \(-0.00418859\pi\)
\(840\) 0 0
\(841\) 28.4955 0.982602
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 16.5983 + 23.8642i 0.570997 + 0.820952i
\(846\) 0 0
\(847\) 20.0616 0.689325
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.59941i 0.157666i
\(852\) 0 0
\(853\) 39.0188 1.33598 0.667989 0.744171i \(-0.267155\pi\)
0.667989 + 0.744171i \(0.267155\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44.3605i 1.51533i 0.652646 + 0.757663i \(0.273659\pi\)
−0.652646 + 0.757663i \(0.726341\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.20520 0.211228 0.105614 0.994407i \(-0.466319\pi\)
0.105614 + 0.994407i \(0.466319\pi\)
\(864\) 0 0
\(865\) 5.10080 + 6.24718i 0.173432 + 0.212411i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 28.2843i 0.959478i
\(870\) 0 0
\(871\) 6.74773 6.24718i 0.228638 0.211678i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 22.7477 + 43.3380i 0.769014 + 1.46509i
\(876\) 0 0
\(877\) −20.5939 −0.695407 −0.347703 0.937605i \(-0.613038\pi\)
−0.347703 + 0.937605i \(0.613038\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.41742 −0.148827 −0.0744134 0.997227i \(-0.523708\pi\)
−0.0744134 + 0.997227i \(0.523708\pi\)
\(882\) 0 0
\(883\) 31.7367i 1.06802i 0.845477 + 0.534012i \(0.179316\pi\)
−0.845477 + 0.534012i \(0.820684\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40.2425i 1.35121i −0.737264 0.675605i \(-0.763883\pi\)
0.737264 0.675605i \(-0.236117\pi\)
\(888\) 0 0
\(889\) 2.23810i 0.0750635i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33.2704i 1.11335i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 23.6849i 0.789934i
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 40.8462 33.3508i 1.35777 1.10862i
\(906\) 0 0
\(907\) 39.7031i 1.31832i −0.752003 0.659159i \(-0.770912\pi\)
0.752003 0.659159i \(-0.229088\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −17.6697 −0.585423 −0.292712 0.956201i \(-0.594558\pi\)
−0.292712 + 0.956201i \(0.594558\pi\)
\(912\) 0 0
\(913\) 1.83155i 0.0606155i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.8564 0.457579
\(918\) 0 0
\(919\) 13.6697 0.450922 0.225461 0.974252i \(-0.427611\pi\)
0.225461 + 0.974252i \(0.427611\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.723000 + 0.780929i 0.0237978 + 0.0257046i
\(924\) 0 0
\(925\) −2.55040 + 12.4944i −0.0838567 + 0.410812i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 43.9510i 1.44198i 0.692943 + 0.720992i \(0.256314\pi\)
−0.692943 + 0.720992i \(0.743686\pi\)
\(930\) 0 0
\(931\) 65.2258i 2.13769i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.66970 + 4.62929i −0.185419 + 0.151394i
\(936\) 0 0
\(937\) 7.75301i 0.253280i −0.991949 0.126640i \(-0.959581\pi\)
0.991949 0.126640i \(-0.0404192\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.8564i 0.679900i −0.940443 0.339950i \(-0.889590\pi\)
0.940443 0.339950i \(-0.110410\pi\)
\(942\) 0 0
\(943\) 14.2378 0.463647
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −35.3640 −1.14918 −0.574588 0.818443i \(-0.694838\pi\)
−0.574588 + 0.818443i \(0.694838\pi\)
\(948\) 0 0
\(949\) 6.74773 6.24718i 0.219040 0.202792i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.1135i 1.68812i 0.536247 + 0.844061i \(0.319842\pi\)
−0.536247 + 0.844061i \(0.680158\pi\)
\(954\) 0 0
\(955\) −20.7846 + 16.9706i −0.672574 + 0.549155i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −45.4955 −1.46912
\(960\) 0 0
\(961\) 21.2432 0.685264
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.330303 + 0.269691i −0.0106328 + 0.00868166i
\(966\) 0 0
\(967\) 44.5010 1.43106 0.715528 0.698584i \(-0.246186\pi\)
0.715528 + 0.698584i \(0.246186\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −48.6606 −1.56159 −0.780797 0.624785i \(-0.785186\pi\)
−0.780797 + 0.624785i \(0.785186\pi\)
\(972\) 0 0
\(973\) −31.3676 −1.00560
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 58.7388 1.87922 0.939611 0.342245i \(-0.111187\pi\)
0.939611 + 0.342245i \(0.111187\pi\)
\(978\) 0 0
\(979\) 28.6606 0.915997
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 58.7388 1.87348 0.936739 0.350029i \(-0.113828\pi\)
0.936739 + 0.350029i \(0.113828\pi\)
\(984\) 0 0
\(985\) −39.4955 + 32.2479i −1.25843 + 1.02750i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.91288 −0.251615
\(990\) 0 0
\(991\) −25.4955 −0.809890 −0.404945 0.914341i \(-0.632709\pi\)
−0.404945 + 0.914341i \(0.632709\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.92820 5.65685i 0.219639 0.179334i
\(996\) 0 0
\(997\) 30.4164i 0.963296i −0.876365 0.481648i \(-0.840038\pi\)
0.876365 0.481648i \(-0.159962\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.j.d.649.4 8
3.2 odd 2 260.2.d.a.129.2 yes 8
5.4 even 2 inner 2340.2.j.d.649.7 8
12.11 even 2 1040.2.f.e.129.8 8
13.12 even 2 inner 2340.2.j.d.649.5 8
15.2 even 4 1300.2.f.f.701.2 8
15.8 even 4 1300.2.f.f.701.7 8
15.14 odd 2 260.2.d.a.129.7 yes 8
39.5 even 4 3380.2.c.d.2029.1 8
39.8 even 4 3380.2.c.d.2029.2 8
39.38 odd 2 260.2.d.a.129.1 8
60.59 even 2 1040.2.f.e.129.1 8
65.64 even 2 inner 2340.2.j.d.649.2 8
156.155 even 2 1040.2.f.e.129.7 8
195.38 even 4 1300.2.f.f.701.8 8
195.44 even 4 3380.2.c.d.2029.7 8
195.77 even 4 1300.2.f.f.701.1 8
195.164 even 4 3380.2.c.d.2029.8 8
195.194 odd 2 260.2.d.a.129.8 yes 8
780.779 even 2 1040.2.f.e.129.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.2.d.a.129.1 8 39.38 odd 2
260.2.d.a.129.2 yes 8 3.2 odd 2
260.2.d.a.129.7 yes 8 15.14 odd 2
260.2.d.a.129.8 yes 8 195.194 odd 2
1040.2.f.e.129.1 8 60.59 even 2
1040.2.f.e.129.2 8 780.779 even 2
1040.2.f.e.129.7 8 156.155 even 2
1040.2.f.e.129.8 8 12.11 even 2
1300.2.f.f.701.1 8 195.77 even 4
1300.2.f.f.701.2 8 15.2 even 4
1300.2.f.f.701.7 8 15.8 even 4
1300.2.f.f.701.8 8 195.38 even 4
2340.2.j.d.649.2 8 65.64 even 2 inner
2340.2.j.d.649.4 8 1.1 even 1 trivial
2340.2.j.d.649.5 8 13.12 even 2 inner
2340.2.j.d.649.7 8 5.4 even 2 inner
3380.2.c.d.2029.1 8 39.5 even 4
3380.2.c.d.2029.2 8 39.8 even 4
3380.2.c.d.2029.7 8 195.44 even 4
3380.2.c.d.2029.8 8 195.164 even 4