Properties

Label 2340.2.fo.b.1241.4
Level $2340$
Weight $2$
Character 2340.1241
Analytic conductor $18.685$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1241,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.fo (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1241.4
Character \(\chi\) \(=\) 2340.1241
Dual form 2340.2.fo.b.1961.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{5} +(0.891313 - 3.32643i) q^{7} +(-0.508619 - 1.89819i) q^{11} +(-2.17134 + 2.87842i) q^{13} +(2.85207 + 4.93992i) q^{17} +(5.92027 + 1.58633i) q^{19} +(2.03246 - 3.52032i) q^{23} +1.00000i q^{25} +(-3.49080 - 2.01541i) q^{29} +(6.96300 - 6.96300i) q^{31} +(-2.98239 + 1.72188i) q^{35} +(6.75423 - 1.80979i) q^{37} +(-8.34356 + 2.23565i) q^{41} +(1.37368 - 0.793097i) q^{43} +(4.85319 - 4.85319i) q^{47} +(-4.20849 - 2.42977i) q^{49} -7.98860i q^{53} +(-0.982576 + 1.70187i) q^{55} +(-6.45232 - 1.72889i) q^{59} +(-4.91891 - 8.51980i) q^{61} +(3.57072 - 0.499981i) q^{65} +(-2.21585 - 8.26968i) q^{67} +(-3.02496 + 11.2893i) q^{71} +(-8.23540 - 8.23540i) q^{73} -6.76753 q^{77} -7.09045 q^{79} +(-10.5452 - 10.5452i) q^{83} +(1.47634 - 5.50977i) q^{85} +(0.499670 + 1.86479i) q^{89} +(7.63950 + 9.78837i) q^{91} +(-3.06456 - 5.30797i) q^{95} +(0.729538 + 0.195479i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 8 q^{7} + 12 q^{13} + 28 q^{19} + 36 q^{31} - 40 q^{37} - 72 q^{43} - 36 q^{49} - 32 q^{61} + 16 q^{67} + 28 q^{73} + 48 q^{79} - 20 q^{85} + 132 q^{91} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 0 0
\(7\) 0.891313 3.32643i 0.336885 1.25727i −0.564927 0.825141i \(-0.691096\pi\)
0.901811 0.432130i \(-0.142238\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.508619 1.89819i −0.153354 0.572326i −0.999241 0.0389631i \(-0.987595\pi\)
0.845886 0.533363i \(-0.179072\pi\)
\(12\) 0 0
\(13\) −2.17134 + 2.87842i −0.602221 + 0.798330i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.85207 + 4.93992i 0.691727 + 1.19811i 0.971271 + 0.237974i \(0.0764834\pi\)
−0.279544 + 0.960133i \(0.590183\pi\)
\(18\) 0 0
\(19\) 5.92027 + 1.58633i 1.35820 + 0.363930i 0.863156 0.504937i \(-0.168484\pi\)
0.495047 + 0.868866i \(0.335151\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.03246 3.52032i 0.423796 0.734037i −0.572511 0.819897i \(-0.694031\pi\)
0.996307 + 0.0858604i \(0.0273639\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.49080 2.01541i −0.648225 0.374253i 0.139551 0.990215i \(-0.455434\pi\)
−0.787776 + 0.615962i \(0.788768\pi\)
\(30\) 0 0
\(31\) 6.96300 6.96300i 1.25059 1.25059i 0.295137 0.955455i \(-0.404635\pi\)
0.955455 0.295137i \(-0.0953654\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.98239 + 1.72188i −0.504116 + 0.291052i
\(36\) 0 0
\(37\) 6.75423 1.80979i 1.11039 0.297528i 0.343401 0.939189i \(-0.388421\pi\)
0.766988 + 0.641661i \(0.221754\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.34356 + 2.23565i −1.30304 + 0.349150i −0.842601 0.538539i \(-0.818977\pi\)
−0.460444 + 0.887689i \(0.652310\pi\)
\(42\) 0 0
\(43\) 1.37368 0.793097i 0.209485 0.120946i −0.391587 0.920141i \(-0.628074\pi\)
0.601072 + 0.799195i \(0.294740\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.85319 4.85319i 0.707910 0.707910i −0.258185 0.966095i \(-0.583124\pi\)
0.966095 + 0.258185i \(0.0831244\pi\)
\(48\) 0 0
\(49\) −4.20849 2.42977i −0.601213 0.347110i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.98860i 1.09732i −0.836046 0.548659i \(-0.815139\pi\)
0.836046 0.548659i \(-0.184861\pi\)
\(54\) 0 0
\(55\) −0.982576 + 1.70187i −0.132491 + 0.229480i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.45232 1.72889i −0.840020 0.225083i −0.186940 0.982371i \(-0.559857\pi\)
−0.653080 + 0.757289i \(0.726524\pi\)
\(60\) 0 0
\(61\) −4.91891 8.51980i −0.629802 1.09085i −0.987591 0.157046i \(-0.949803\pi\)
0.357790 0.933802i \(-0.383531\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.57072 0.499981i 0.442893 0.0620151i
\(66\) 0 0
\(67\) −2.21585 8.26968i −0.270710 1.01030i −0.958662 0.284546i \(-0.908157\pi\)
0.687953 0.725756i \(-0.258510\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.02496 + 11.2893i −0.358997 + 1.33979i 0.516383 + 0.856358i \(0.327278\pi\)
−0.875379 + 0.483436i \(0.839388\pi\)
\(72\) 0 0
\(73\) −8.23540 8.23540i −0.963880 0.963880i 0.0354896 0.999370i \(-0.488701\pi\)
−0.999370 + 0.0354896i \(0.988701\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.76753 −0.771232
\(78\) 0 0
\(79\) −7.09045 −0.797738 −0.398869 0.917008i \(-0.630597\pi\)
−0.398869 + 0.917008i \(0.630597\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.5452 10.5452i −1.15749 1.15749i −0.985014 0.172473i \(-0.944824\pi\)
−0.172473 0.985014i \(-0.555176\pi\)
\(84\) 0 0
\(85\) 1.47634 5.50977i 0.160131 0.597618i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.499670 + 1.86479i 0.0529649 + 0.197668i 0.987339 0.158627i \(-0.0507066\pi\)
−0.934374 + 0.356295i \(0.884040\pi\)
\(90\) 0 0
\(91\) 7.63950 + 9.78837i 0.800837 + 1.02610i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.06456 5.30797i −0.314417 0.544586i
\(96\) 0 0
\(97\) 0.729538 + 0.195479i 0.0740734 + 0.0198479i 0.295665 0.955292i \(-0.404459\pi\)
−0.221592 + 0.975139i \(0.571125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.425498 + 0.736984i −0.0423386 + 0.0733326i −0.886418 0.462885i \(-0.846814\pi\)
0.844080 + 0.536218i \(0.180147\pi\)
\(102\) 0 0
\(103\) 7.59154i 0.748017i 0.927425 + 0.374008i \(0.122017\pi\)
−0.927425 + 0.374008i \(0.877983\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.774703 0.447275i −0.0748933 0.0432397i 0.462086 0.886835i \(-0.347101\pi\)
−0.536979 + 0.843596i \(0.680435\pi\)
\(108\) 0 0
\(109\) 12.7047 12.7047i 1.21689 1.21689i 0.248175 0.968715i \(-0.420169\pi\)
0.968715 0.248175i \(-0.0798308\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.9437 + 8.62774i −1.40578 + 0.811629i −0.994978 0.100094i \(-0.968086\pi\)
−0.410805 + 0.911723i \(0.634752\pi\)
\(114\) 0 0
\(115\) −3.92640 + 1.05208i −0.366139 + 0.0981066i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18.9744 5.08417i 1.73938 0.466065i
\(120\) 0 0
\(121\) 6.18184 3.56909i 0.561985 0.324462i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 1.73957 + 1.00434i 0.154362 + 0.0891207i 0.575191 0.818019i \(-0.304928\pi\)
−0.420830 + 0.907140i \(0.638261\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.38899i 0.208727i −0.994539 0.104364i \(-0.966719\pi\)
0.994539 0.104364i \(-0.0332806\pi\)
\(132\) 0 0
\(133\) 10.5536 18.2794i 0.915116 1.58503i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 17.5322 + 4.69775i 1.49788 + 0.401356i 0.912389 0.409323i \(-0.134235\pi\)
0.585491 + 0.810679i \(0.300902\pi\)
\(138\) 0 0
\(139\) −4.27973 7.41271i −0.363002 0.628738i 0.625451 0.780263i \(-0.284915\pi\)
−0.988453 + 0.151525i \(0.951581\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.56817 + 2.65760i 0.549258 + 0.222239i
\(144\) 0 0
\(145\) 1.04326 + 3.89348i 0.0866377 + 0.323336i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.913623 + 3.40969i −0.0748469 + 0.279332i −0.993199 0.116433i \(-0.962854\pi\)
0.918352 + 0.395765i \(0.129521\pi\)
\(150\) 0 0
\(151\) 12.3902 + 12.3902i 1.00830 + 1.00830i 0.999965 + 0.00833776i \(0.00265402\pi\)
0.00833776 + 0.999965i \(0.497346\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.84717 −0.790944
\(156\) 0 0
\(157\) 5.67466 0.452887 0.226443 0.974024i \(-0.427290\pi\)
0.226443 + 0.974024i \(0.427290\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.89852 9.89852i −0.780112 0.780112i
\(162\) 0 0
\(163\) −0.529406 + 1.97577i −0.0414663 + 0.154754i −0.983555 0.180610i \(-0.942193\pi\)
0.942088 + 0.335364i \(0.108859\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.65709 17.3805i −0.360377 1.34494i −0.873582 0.486678i \(-0.838209\pi\)
0.513205 0.858266i \(-0.328458\pi\)
\(168\) 0 0
\(169\) −3.57058 12.5000i −0.274660 0.961541i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.5102 18.2042i −0.799078 1.38404i −0.920217 0.391408i \(-0.871988\pi\)
0.121140 0.992635i \(-0.461345\pi\)
\(174\) 0 0
\(175\) 3.32643 + 0.891313i 0.251454 + 0.0673769i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.49390 7.78366i 0.335890 0.581778i −0.647766 0.761840i \(-0.724296\pi\)
0.983655 + 0.180062i \(0.0576298\pi\)
\(180\) 0 0
\(181\) 7.26581i 0.540063i 0.962851 + 0.270032i \(0.0870342\pi\)
−0.962851 + 0.270032i \(0.912966\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.05568 3.49625i −0.445222 0.257049i
\(186\) 0 0
\(187\) 7.92631 7.92631i 0.579629 0.579629i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.12248 + 4.68952i −0.587722 + 0.339322i −0.764196 0.644984i \(-0.776864\pi\)
0.176474 + 0.984305i \(0.443531\pi\)
\(192\) 0 0
\(193\) 17.2472 4.62137i 1.24148 0.332654i 0.422441 0.906391i \(-0.361174\pi\)
0.819040 + 0.573737i \(0.194507\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.13761 1.91252i 0.508534 0.136261i 0.00457606 0.999990i \(-0.498543\pi\)
0.503958 + 0.863728i \(0.331877\pi\)
\(198\) 0 0
\(199\) 9.69092 5.59506i 0.686971 0.396623i −0.115505 0.993307i \(-0.536849\pi\)
0.802476 + 0.596684i \(0.203515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.81552 + 9.81552i −0.688915 + 0.688915i
\(204\) 0 0
\(205\) 7.48063 + 4.31894i 0.522470 + 0.301648i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.0446i 0.833146i
\(210\) 0 0
\(211\) −11.4167 + 19.7744i −0.785960 + 1.36132i 0.142464 + 0.989800i \(0.454498\pi\)
−0.928424 + 0.371523i \(0.878836\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.53215 0.410537i −0.104491 0.0279984i
\(216\) 0 0
\(217\) −16.9557 29.3681i −1.15103 1.99364i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −20.4120 2.51680i −1.37306 0.169298i
\(222\) 0 0
\(223\) 1.37050 + 5.11477i 0.0917754 + 0.342511i 0.996511 0.0834634i \(-0.0265982\pi\)
−0.904735 + 0.425974i \(0.859932\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.57212 5.86722i 0.104345 0.389421i −0.893925 0.448217i \(-0.852059\pi\)
0.998270 + 0.0587955i \(0.0187260\pi\)
\(228\) 0 0
\(229\) 18.3920 + 18.3920i 1.21538 + 1.21538i 0.969232 + 0.246149i \(0.0791652\pi\)
0.246149 + 0.969232i \(0.420835\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.1923 1.25733 0.628665 0.777676i \(-0.283602\pi\)
0.628665 + 0.777676i \(0.283602\pi\)
\(234\) 0 0
\(235\) −6.86345 −0.447722
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.9770 + 18.9770i 1.22752 + 1.22752i 0.964899 + 0.262621i \(0.0845870\pi\)
0.262621 + 0.964899i \(0.415413\pi\)
\(240\) 0 0
\(241\) −2.99434 + 11.1750i −0.192882 + 0.719847i 0.799922 + 0.600103i \(0.204874\pi\)
−0.992805 + 0.119744i \(0.961793\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.25774 + 4.69396i 0.0803543 + 0.299886i
\(246\) 0 0
\(247\) −17.4210 + 13.5966i −1.10847 + 0.865128i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.581224 + 1.00671i 0.0366865 + 0.0635429i 0.883786 0.467892i \(-0.154986\pi\)
−0.847099 + 0.531435i \(0.821653\pi\)
\(252\) 0 0
\(253\) −7.71598 2.06749i −0.485100 0.129982i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.14605 5.44912i 0.196245 0.339907i −0.751063 0.660231i \(-0.770458\pi\)
0.947308 + 0.320324i \(0.103792\pi\)
\(258\) 0 0
\(259\) 24.0805i 1.49629i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.5988 + 11.8927i 1.27017 + 0.733336i 0.975021 0.222114i \(-0.0712958\pi\)
0.295154 + 0.955450i \(0.404629\pi\)
\(264\) 0 0
\(265\) −5.64879 + 5.64879i −0.347002 + 0.347002i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −25.8032 + 14.8975i −1.57325 + 0.908316i −0.577482 + 0.816403i \(0.695965\pi\)
−0.995767 + 0.0919125i \(0.970702\pi\)
\(270\) 0 0
\(271\) −19.0477 + 5.10382i −1.15707 + 0.310035i −0.785794 0.618489i \(-0.787745\pi\)
−0.371273 + 0.928524i \(0.621079\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.89819 0.508619i 0.114465 0.0306709i
\(276\) 0 0
\(277\) 12.9355 7.46830i 0.777217 0.448727i −0.0582260 0.998303i \(-0.518544\pi\)
0.835443 + 0.549577i \(0.185211\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.0170 + 10.0170i −0.597565 + 0.597565i −0.939664 0.342099i \(-0.888862\pi\)
0.342099 + 0.939664i \(0.388862\pi\)
\(282\) 0 0
\(283\) −5.88093 3.39535i −0.349585 0.201833i 0.314918 0.949119i \(-0.398023\pi\)
−0.664502 + 0.747286i \(0.731356\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.7469i 1.75590i
\(288\) 0 0
\(289\) −7.76855 + 13.4555i −0.456974 + 0.791502i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.7119 + 7.42539i 1.61895 + 0.433796i 0.950693 0.310135i \(-0.100374\pi\)
0.668256 + 0.743931i \(0.267041\pi\)
\(294\) 0 0
\(295\) 3.33997 + 5.78499i 0.194460 + 0.336815i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.71980 + 13.4941i 0.330784 + 0.780381i
\(300\) 0 0
\(301\) −1.41380 5.27636i −0.0814898 0.304124i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.54621 + 9.50260i −0.145796 + 0.544117i
\(306\) 0 0
\(307\) −4.69587 4.69587i −0.268007 0.268007i 0.560290 0.828297i \(-0.310690\pi\)
−0.828297 + 0.560290i \(0.810690\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.58130 0.543306 0.271653 0.962395i \(-0.412430\pi\)
0.271653 + 0.962395i \(0.412430\pi\)
\(312\) 0 0
\(313\) 1.53943 0.0870135 0.0435068 0.999053i \(-0.486147\pi\)
0.0435068 + 0.999053i \(0.486147\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.75192 6.75192i −0.379225 0.379225i 0.491597 0.870823i \(-0.336413\pi\)
−0.870823 + 0.491597i \(0.836413\pi\)
\(318\) 0 0
\(319\) −2.05016 + 7.65129i −0.114787 + 0.428390i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.04864 + 33.7700i 0.503480 + 1.87901i
\(324\) 0 0
\(325\) −2.87842 2.17134i −0.159666 0.120444i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −11.8181 20.4695i −0.651551 1.12852i
\(330\) 0 0
\(331\) −12.8935 3.45481i −0.708692 0.189893i −0.113571 0.993530i \(-0.536229\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.28070 + 7.41439i −0.233880 + 0.405091i
\(336\) 0 0
\(337\) 22.8636i 1.24546i −0.782436 0.622731i \(-0.786023\pi\)
0.782436 0.622731i \(-0.213977\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.7586 9.67560i −0.907531 0.523963i
\(342\) 0 0
\(343\) 5.21225 5.21225i 0.281435 0.281435i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.8104 11.4375i 1.06348 0.613998i 0.137084 0.990559i \(-0.456227\pi\)
0.926392 + 0.376562i \(0.122894\pi\)
\(348\) 0 0
\(349\) −28.2139 + 7.55988i −1.51025 + 0.404671i −0.916519 0.399991i \(-0.869013\pi\)
−0.593734 + 0.804662i \(0.702347\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.66047 0.444923i 0.0883781 0.0236808i −0.214359 0.976755i \(-0.568766\pi\)
0.302737 + 0.953074i \(0.402100\pi\)
\(354\) 0 0
\(355\) 10.1217 5.84378i 0.537205 0.310155i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.7340 24.7340i 1.30541 1.30541i 0.380719 0.924691i \(-0.375677\pi\)
0.924691 0.380719i \(-0.124323\pi\)
\(360\) 0 0
\(361\) 16.0787 + 9.28303i 0.846246 + 0.488581i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 11.6466i 0.609612i
\(366\) 0 0
\(367\) −14.0841 + 24.3943i −0.735182 + 1.27337i 0.219462 + 0.975621i \(0.429570\pi\)
−0.954643 + 0.297751i \(0.903763\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −26.5735 7.12034i −1.37963 0.369670i
\(372\) 0 0
\(373\) −9.71397 16.8251i −0.502970 0.871170i −0.999994 0.00343336i \(-0.998907\pi\)
0.497024 0.867737i \(-0.334426\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.3809 5.67184i 0.689152 0.292115i
\(378\) 0 0
\(379\) 4.26288 + 15.9093i 0.218969 + 0.817205i 0.984731 + 0.174081i \(0.0556955\pi\)
−0.765762 + 0.643124i \(0.777638\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.65734 24.8455i 0.340174 1.26955i −0.557975 0.829857i \(-0.688422\pi\)
0.898150 0.439690i \(-0.144912\pi\)
\(384\) 0 0
\(385\) 4.78537 + 4.78537i 0.243885 + 0.243885i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.3836 −0.729275 −0.364638 0.931149i \(-0.618807\pi\)
−0.364638 + 0.931149i \(0.618807\pi\)
\(390\) 0 0
\(391\) 23.1868 1.17261
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5.01371 + 5.01371i 0.252267 + 0.252267i
\(396\) 0 0
\(397\) 4.49229 16.7655i 0.225462 0.841434i −0.756758 0.653696i \(-0.773218\pi\)
0.982219 0.187738i \(-0.0601157\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.978911 3.65335i −0.0488845 0.182439i 0.937167 0.348882i \(-0.113439\pi\)
−0.986051 + 0.166443i \(0.946772\pi\)
\(402\) 0 0
\(403\) 4.92340 + 35.1615i 0.245252 + 1.75152i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.87066 11.9003i −0.340566 0.589878i
\(408\) 0 0
\(409\) 7.18094 + 1.92413i 0.355075 + 0.0951420i 0.431947 0.901899i \(-0.357827\pi\)
−0.0768724 + 0.997041i \(0.524493\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11.5021 + 19.9222i −0.565980 + 0.980306i
\(414\) 0 0
\(415\) 14.9132i 0.732059i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 23.7311 + 13.7012i 1.15934 + 0.669346i 0.951146 0.308742i \(-0.0999079\pi\)
0.208195 + 0.978087i \(0.433241\pi\)
\(420\) 0 0
\(421\) −12.9016 + 12.9016i −0.628787 + 0.628787i −0.947763 0.318976i \(-0.896661\pi\)
0.318976 + 0.947763i \(0.396661\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.93992 + 2.85207i −0.239621 + 0.138345i
\(426\) 0 0
\(427\) −32.7248 + 8.76857i −1.58366 + 0.424341i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −31.2983 + 8.38637i −1.50759 + 0.403957i −0.915634 0.402014i \(-0.868310\pi\)
−0.591955 + 0.805971i \(0.701644\pi\)
\(432\) 0 0
\(433\) −23.3516 + 13.4820i −1.12221 + 0.647906i −0.941963 0.335717i \(-0.891022\pi\)
−0.180242 + 0.983622i \(0.557688\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.6171 17.6171i 0.842739 0.842739i
\(438\) 0 0
\(439\) −22.8690 13.2034i −1.09148 0.630164i −0.157508 0.987518i \(-0.550346\pi\)
−0.933969 + 0.357353i \(0.883679\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.10315i 0.432504i 0.976338 + 0.216252i \(0.0693833\pi\)
−0.976338 + 0.216252i \(0.930617\pi\)
\(444\) 0 0
\(445\) 0.965289 1.67193i 0.0457591 0.0792570i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.70398 + 0.724529i 0.127609 + 0.0341926i 0.322058 0.946720i \(-0.395625\pi\)
−0.194449 + 0.980913i \(0.562292\pi\)
\(450\) 0 0
\(451\) 8.48738 + 14.7006i 0.399655 + 0.692223i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.51948 12.3234i 0.0712341 0.577728i
\(456\) 0 0
\(457\) 0.549464 + 2.05063i 0.0257028 + 0.0959242i 0.977586 0.210538i \(-0.0675215\pi\)
−0.951883 + 0.306462i \(0.900855\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.71401 28.7891i 0.359277 1.34084i −0.515738 0.856746i \(-0.672482\pi\)
0.875016 0.484095i \(-0.160851\pi\)
\(462\) 0 0
\(463\) 25.3632 + 25.3632i 1.17873 + 1.17873i 0.980068 + 0.198662i \(0.0636596\pi\)
0.198662 + 0.980068i \(0.436340\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.9718 1.15556 0.577778 0.816194i \(-0.303920\pi\)
0.577778 + 0.816194i \(0.303920\pi\)
\(468\) 0 0
\(469\) −29.4835 −1.36142
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.20413 2.20413i −0.101346 0.101346i
\(474\) 0 0
\(475\) −1.58633 + 5.92027i −0.0727859 + 0.271641i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.59444 + 9.68258i 0.118543 + 0.442409i 0.999528 0.0307366i \(-0.00978530\pi\)
−0.880985 + 0.473145i \(0.843119\pi\)
\(480\) 0 0
\(481\) −9.45639 + 23.3712i −0.431174 + 1.06563i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.377637 0.654086i −0.0171476 0.0297005i
\(486\) 0 0
\(487\) 25.9869 + 6.96317i 1.17758 + 0.315531i 0.793966 0.607962i \(-0.208013\pi\)
0.383614 + 0.923494i \(0.374679\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.94371 6.83070i 0.177977 0.308265i −0.763210 0.646150i \(-0.776378\pi\)
0.941188 + 0.337885i \(0.109711\pi\)
\(492\) 0 0
\(493\) 22.9924i 1.03552i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 34.8569 + 20.1246i 1.56354 + 0.902712i
\(498\) 0 0
\(499\) −2.97945 + 2.97945i −0.133379 + 0.133379i −0.770644 0.637266i \(-0.780065\pi\)
0.637266 + 0.770644i \(0.280065\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.32824 0.766857i 0.0592231 0.0341925i −0.470096 0.882615i \(-0.655781\pi\)
0.529319 + 0.848423i \(0.322447\pi\)
\(504\) 0 0
\(505\) 0.821999 0.220254i 0.0365785 0.00980117i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.21825 2.47002i 0.408592 0.109482i −0.0486681 0.998815i \(-0.515498\pi\)
0.457260 + 0.889333i \(0.348831\pi\)
\(510\) 0 0
\(511\) −34.7348 + 20.0541i −1.53658 + 0.887142i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.36803 5.36803i 0.236544 0.236544i
\(516\) 0 0
\(517\) −11.6807 6.74386i −0.513717 0.296595i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 31.1280i 1.36374i 0.731472 + 0.681872i \(0.238834\pi\)
−0.731472 + 0.681872i \(0.761166\pi\)
\(522\) 0 0
\(523\) 5.69837 9.86987i 0.249172 0.431579i −0.714124 0.700019i \(-0.753175\pi\)
0.963296 + 0.268440i \(0.0865081\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 54.2556 + 14.5378i 2.36341 + 0.633274i
\(528\) 0 0
\(529\) 3.23825 + 5.60881i 0.140793 + 0.243861i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.6815 28.8706i 0.505984 1.25052i
\(534\) 0 0
\(535\) 0.231527 + 0.864069i 0.0100098 + 0.0373569i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.47166 + 9.22435i −0.106462 + 0.397321i
\(540\) 0 0
\(541\) 4.63639 + 4.63639i 0.199334 + 0.199334i 0.799714 0.600381i \(-0.204984\pi\)
−0.600381 + 0.799714i \(0.704984\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −17.9672 −0.769629
\(546\) 0 0
\(547\) 27.7823 1.18788 0.593942 0.804508i \(-0.297571\pi\)
0.593942 + 0.804508i \(0.297571\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −17.4694 17.4694i −0.744220 0.744220i
\(552\) 0 0
\(553\) −6.31981 + 23.5859i −0.268746 + 1.00297i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.0561 + 37.5300i 0.426092 + 1.59020i 0.761527 + 0.648133i \(0.224450\pi\)
−0.335435 + 0.942063i \(0.608883\pi\)
\(558\) 0 0
\(559\) −0.699868 + 5.67612i −0.0296013 + 0.240074i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.75877 + 9.97448i 0.242703 + 0.420374i 0.961483 0.274863i \(-0.0886326\pi\)
−0.718780 + 0.695237i \(0.755299\pi\)
\(564\) 0 0
\(565\) 16.6675 + 4.46605i 0.701207 + 0.187888i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.02988 13.9082i 0.336630 0.583061i −0.647166 0.762349i \(-0.724046\pi\)
0.983797 + 0.179288i \(0.0573794\pi\)
\(570\) 0 0
\(571\) 15.5249i 0.649696i 0.945766 + 0.324848i \(0.105313\pi\)
−0.945766 + 0.324848i \(0.894687\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.52032 + 2.03246i 0.146807 + 0.0847593i
\(576\) 0 0
\(577\) −9.79856 + 9.79856i −0.407919 + 0.407919i −0.881012 0.473093i \(-0.843137\pi\)
0.473093 + 0.881012i \(0.343137\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −44.4769 + 25.6788i −1.84521 + 1.06533i
\(582\) 0 0
\(583\) −15.1639 + 4.06315i −0.628024 + 0.168279i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.866418 + 0.232156i −0.0357609 + 0.00958211i −0.276655 0.960969i \(-0.589226\pi\)
0.240894 + 0.970551i \(0.422559\pi\)
\(588\) 0 0
\(589\) 52.2685 30.1772i 2.15369 1.24343i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.4118 + 31.4118i −1.28993 + 1.28993i −0.355101 + 0.934828i \(0.615553\pi\)
−0.934828 + 0.355101i \(0.884447\pi\)
\(594\) 0 0
\(595\) −17.0120 9.82185i −0.697422 0.402657i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 45.3601i 1.85336i −0.375849 0.926681i \(-0.622649\pi\)
0.375849 0.926681i \(-0.377351\pi\)
\(600\) 0 0
\(601\) 3.29047 5.69926i 0.134221 0.232478i −0.791079 0.611715i \(-0.790480\pi\)
0.925300 + 0.379237i \(0.123813\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.89495 1.84750i −0.280319 0.0751114i
\(606\) 0 0
\(607\) −0.263386 0.456198i −0.0106905 0.0185165i 0.860631 0.509230i \(-0.170070\pi\)
−0.871321 + 0.490713i \(0.836736\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.43160 + 24.5074i 0.138827 + 0.991464i
\(612\) 0 0
\(613\) −2.31081 8.62406i −0.0933327 0.348323i 0.903429 0.428738i \(-0.141042\pi\)
−0.996761 + 0.0804159i \(0.974375\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.36090 12.5430i 0.135305 0.504964i −0.864692 0.502303i \(-0.832486\pi\)
0.999996 0.00266121i \(-0.000847089\pi\)
\(618\) 0 0
\(619\) −16.0926 16.0926i −0.646815 0.646815i 0.305407 0.952222i \(-0.401208\pi\)
−0.952222 + 0.305407i \(0.901208\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.64846 0.266365
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 28.2037 + 28.2037i 1.12456 + 1.12456i
\(630\) 0 0
\(631\) −5.71929 + 21.3447i −0.227681 + 0.849718i 0.753631 + 0.657297i \(0.228300\pi\)
−0.981313 + 0.192420i \(0.938366\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.519885 1.94024i −0.0206310 0.0769959i
\(636\) 0 0
\(637\) 16.1320 6.83794i 0.639171 0.270929i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.855851 1.48238i −0.0338041 0.0585504i 0.848628 0.528989i \(-0.177429\pi\)
−0.882432 + 0.470439i \(0.844096\pi\)
\(642\) 0 0
\(643\) −6.10902 1.63691i −0.240916 0.0645533i 0.136340 0.990662i \(-0.456466\pi\)
−0.377257 + 0.926109i \(0.623133\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.72991 + 13.3886i −0.303894 + 0.526360i −0.977014 0.213173i \(-0.931620\pi\)
0.673120 + 0.739533i \(0.264954\pi\)
\(648\) 0 0
\(649\) 13.1271i 0.515283i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.4822 + 12.4027i 0.840663 + 0.485357i 0.857490 0.514501i \(-0.172023\pi\)
−0.0168265 + 0.999858i \(0.505356\pi\)
\(654\) 0 0
\(655\) −1.68927 + 1.68927i −0.0660054 + 0.0660054i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 37.0981 21.4186i 1.44514 0.834349i 0.446949 0.894559i \(-0.352510\pi\)
0.998186 + 0.0602102i \(0.0191771\pi\)
\(660\) 0 0
\(661\) −38.7038 + 10.3707i −1.50541 + 0.403372i −0.914906 0.403666i \(-0.867736\pi\)
−0.590499 + 0.807038i \(0.701069\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.3880 + 5.46296i −0.790615 + 0.211845i
\(666\) 0 0
\(667\) −14.1898 + 8.19248i −0.549431 + 0.317214i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −13.6704 + 13.6704i −0.527739 + 0.527739i
\(672\) 0 0
\(673\) −11.5984 6.69635i −0.447086 0.258125i 0.259513 0.965740i \(-0.416438\pi\)
−0.706599 + 0.707615i \(0.749771\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34.8532i 1.33952i −0.742579 0.669759i \(-0.766398\pi\)
0.742579 0.669759i \(-0.233602\pi\)
\(678\) 0 0
\(679\) 1.30049 2.25252i 0.0499084 0.0864439i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22.0409 5.90583i −0.843371 0.225980i −0.188832 0.982009i \(-0.560470\pi\)
−0.654538 + 0.756029i \(0.727137\pi\)
\(684\) 0 0
\(685\) −9.07536 15.7190i −0.346752 0.600591i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 22.9945 + 17.3459i 0.876022 + 0.660828i
\(690\) 0 0
\(691\) 5.98058 + 22.3198i 0.227512 + 0.849086i 0.981383 + 0.192063i \(0.0615178\pi\)
−0.753871 + 0.657023i \(0.771815\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.21535 + 8.26780i −0.0840331 + 0.313616i
\(696\) 0 0
\(697\) −34.8403 34.8403i −1.31967 1.31967i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −29.6723 −1.12071 −0.560354 0.828253i \(-0.689335\pi\)
−0.560354 + 0.828253i \(0.689335\pi\)
\(702\) 0 0
\(703\) 42.8578 1.61641
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.07227 + 2.07227i 0.0779358 + 0.0779358i
\(708\) 0 0
\(709\) −7.40747 + 27.6450i −0.278193 + 1.03823i 0.675478 + 0.737380i \(0.263937\pi\)
−0.953671 + 0.300851i \(0.902729\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −10.3600 38.6640i −0.387984 1.44798i
\(714\) 0 0
\(715\) −2.76520 6.52361i −0.103412 0.243969i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.7191 + 35.8866i 0.772693 + 1.33834i 0.936082 + 0.351782i \(0.114424\pi\)
−0.163389 + 0.986562i \(0.552243\pi\)
\(720\) 0 0
\(721\) 25.2527 + 6.76644i 0.940460 + 0.251995i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.01541 3.49080i 0.0748506 0.129645i
\(726\) 0 0
\(727\) 7.55994i 0.280383i −0.990124 0.140191i \(-0.955228\pi\)
0.990124 0.140191i \(-0.0447718\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.83568 + 4.52393i 0.289813 + 0.167324i
\(732\) 0 0
\(733\) −26.5047 + 26.5047i −0.978973 + 0.978973i −0.999783 0.0208106i \(-0.993375\pi\)
0.0208106 + 0.999783i \(0.493375\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.5704 + 8.41223i −0.536708 + 0.309868i
\(738\) 0 0
\(739\) −46.3532 + 12.4203i −1.70513 + 0.456888i −0.974222 0.225590i \(-0.927569\pi\)
−0.730906 + 0.682478i \(0.760902\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.36364 1.43718i 0.196773 0.0527251i −0.159086 0.987265i \(-0.550855\pi\)
0.355859 + 0.934540i \(0.384188\pi\)
\(744\) 0 0
\(745\) 3.05704 1.76498i 0.112001 0.0646640i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.17833 + 2.17833i −0.0795944 + 0.0795944i
\(750\) 0 0
\(751\) 20.6110 + 11.8998i 0.752106 + 0.434229i 0.826454 0.563004i \(-0.190354\pi\)
−0.0743482 + 0.997232i \(0.523688\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17.5224i 0.637707i
\(756\) 0 0
\(757\) −4.35532 + 7.54364i −0.158297 + 0.274178i −0.934255 0.356607i \(-0.883934\pi\)
0.775958 + 0.630785i \(0.217267\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 47.7018 + 12.7817i 1.72919 + 0.463335i 0.979996 0.199016i \(-0.0637744\pi\)
0.749194 + 0.662351i \(0.230441\pi\)
\(762\) 0 0
\(763\) −30.9374 53.5851i −1.12001 1.93991i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.9866 14.8185i 0.685568 0.535063i
\(768\) 0 0
\(769\) −9.13661 34.0983i −0.329475 1.22962i −0.909736 0.415186i \(-0.863716\pi\)
0.580262 0.814430i \(-0.302950\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.45540 9.16368i 0.0883146 0.329594i −0.907607 0.419822i \(-0.862093\pi\)
0.995921 + 0.0902271i \(0.0287593\pi\)
\(774\) 0 0
\(775\) 6.96300 + 6.96300i 0.250118 + 0.250118i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −52.9426 −1.89687
\(780\) 0 0
\(781\) 22.9678 0.821853
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.01259 4.01259i −0.143215 0.143215i
\(786\) 0 0
\(787\) −6.34138 + 23.6664i −0.226046 + 0.843615i 0.755937 + 0.654644i \(0.227182\pi\)
−0.981983 + 0.188970i \(0.939485\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.3800 + 57.3991i 0.546851 + 2.04088i
\(792\) 0 0
\(793\) 35.2042 + 4.34069i 1.25014 + 0.154142i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.2034 + 17.6728i 0.361424 + 0.626004i 0.988195 0.153199i \(-0.0489575\pi\)
−0.626772 + 0.779203i \(0.715624\pi\)
\(798\) 0 0
\(799\) 37.8160 + 10.1328i 1.33783 + 0.358471i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.4437 + 19.8210i −0.403839 + 0.699470i
\(804\) 0 0
\(805\) 13.9986i 0.493386i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7.77258 4.48750i −0.273269 0.157772i 0.357103 0.934065i \(-0.383764\pi\)
−0.630372 + 0.776293i \(0.717098\pi\)
\(810\) 0 0
\(811\) 22.7278 22.7278i 0.798082 0.798082i −0.184711 0.982793i \(-0.559135\pi\)
0.982793 + 0.184711i \(0.0591350\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.77143 1.02273i 0.0620504 0.0358248i
\(816\) 0 0
\(817\) 9.39070 2.51623i 0.328539 0.0880318i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.96055 + 2.40097i −0.312725 + 0.0837945i −0.411768 0.911289i \(-0.635089\pi\)
0.0990428 + 0.995083i \(0.468422\pi\)
\(822\) 0 0
\(823\) −12.4137 + 7.16707i −0.432715 + 0.249828i −0.700503 0.713650i \(-0.747041\pi\)
0.267787 + 0.963478i \(0.413707\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.98500 + 1.98500i −0.0690252 + 0.0690252i −0.740777 0.671751i \(-0.765542\pi\)
0.671751 + 0.740777i \(0.265542\pi\)
\(828\) 0 0
\(829\) −11.7890 6.80640i −0.409450 0.236396i 0.281103 0.959678i \(-0.409300\pi\)
−0.690553 + 0.723281i \(0.742633\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 27.7195i 0.960423i
\(834\) 0 0
\(835\) −8.99681 + 15.5829i −0.311347 + 0.539270i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.95822 + 2.13240i 0.274748 + 0.0736186i 0.393562 0.919298i \(-0.371243\pi\)
−0.118814 + 0.992917i \(0.537909\pi\)
\(840\) 0 0
\(841\) −6.37621 11.0439i −0.219869 0.380825i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.31408 + 11.3636i −0.217211 + 0.390921i
\(846\) 0 0
\(847\) −6.36235 23.7446i −0.218613 0.815874i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.35664 27.4554i 0.252182 0.941158i
\(852\) 0 0
\(853\) −20.0299 20.0299i −0.685810 0.685810i 0.275493 0.961303i \(-0.411159\pi\)
−0.961303 + 0.275493i \(0.911159\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.9955 −0.580556 −0.290278 0.956942i \(-0.593748\pi\)
−0.290278 + 0.956942i \(0.593748\pi\)
\(858\) 0 0
\(859\) 34.6252 1.18140 0.590698 0.806893i \(-0.298852\pi\)
0.590698 + 0.806893i \(0.298852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.07272 + 3.07272i 0.104597 + 0.104597i 0.757468 0.652872i \(-0.226436\pi\)
−0.652872 + 0.757468i \(0.726436\pi\)
\(864\) 0 0
\(865\) −5.44049 + 20.3042i −0.184982 + 0.690363i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.60634 + 13.4590i 0.122337 + 0.456567i
\(870\) 0 0
\(871\) 28.6150 + 11.5781i 0.969581 + 0.392309i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.72188 2.98239i −0.0582103 0.100823i
\(876\) 0 0
\(877\) −50.5323 13.5401i −1.70635 0.457216i −0.731828 0.681490i \(-0.761332\pi\)
−0.974526 + 0.224274i \(0.927999\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −5.53663 + 9.58972i −0.186534 + 0.323086i −0.944092 0.329681i \(-0.893059\pi\)
0.757558 + 0.652767i \(0.226392\pi\)
\(882\) 0 0
\(883\) 16.6757i 0.561182i −0.959827 0.280591i \(-0.909469\pi\)
0.959827 0.280591i \(-0.0905305\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −29.8908 17.2575i −1.00364 0.579449i −0.0943136 0.995543i \(-0.530066\pi\)
−0.909322 + 0.416093i \(0.863399\pi\)
\(888\) 0 0
\(889\) 4.89136 4.89136i 0.164051 0.164051i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 36.4310 21.0334i 1.21912 0.703857i
\(894\) 0 0
\(895\) −8.68154 + 2.32621i −0.290192 + 0.0777567i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −38.3398 + 10.2731i −1.27870 + 0.342628i
\(900\) 0 0
\(901\) 39.4630 22.7840i 1.31470 0.759045i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.13770 5.13770i 0.170783 0.170783i
\(906\) 0 0
\(907\) 1.12688 + 0.650606i 0.0374175 + 0.0216030i 0.518592 0.855022i \(-0.326456\pi\)
−0.481175 + 0.876625i \(0.659790\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 38.6264i 1.27975i −0.768479 0.639875i \(-0.778986\pi\)
0.768479 0.639875i \(-0.221014\pi\)
\(912\) 0 0
\(913\) −14.6533 + 25.3803i −0.484955 + 0.839966i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.94681 2.12934i −0.262427 0.0703170i
\(918\) 0 0
\(919\) −5.16469 8.94550i −0.170367 0.295085i 0.768181 0.640233i \(-0.221162\pi\)
−0.938548 + 0.345148i \(0.887829\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.9271 33.2200i −0.853402 1.09345i
\(924\) 0 0
\(925\) 1.80979 + 6.75423i 0.0595056 + 0.222078i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −11.6165 + 43.3535i −0.381126 + 1.42238i 0.463058 + 0.886328i \(0.346752\pi\)
−0.844184 + 0.536054i \(0.819914\pi\)
\(930\) 0 0
\(931\) −21.0610 21.0610i −0.690246 0.690246i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11.2095 −0.366589
\(936\) 0 0
\(937\) 17.3699 0.567451 0.283726 0.958905i \(-0.408429\pi\)
0.283726 + 0.958905i \(0.408429\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 22.2216 + 22.2216i 0.724403 + 0.724403i 0.969499 0.245096i \(-0.0788195\pi\)
−0.245096 + 0.969499i \(0.578820\pi\)
\(942\) 0 0
\(943\) −9.08772 + 33.9158i −0.295937 + 1.10445i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.51192 + 28.0349i 0.244105 + 0.911011i 0.973831 + 0.227272i \(0.0729806\pi\)
−0.729727 + 0.683739i \(0.760353\pi\)
\(948\) 0 0
\(949\) 41.5868 5.82309i 1.34996 0.189026i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.9684 39.7824i −0.744020 1.28868i −0.950651 0.310261i \(-0.899584\pi\)
0.206632 0.978419i \(-0.433750\pi\)
\(954\) 0 0
\(955\) 9.05945 + 2.42747i 0.293157 + 0.0785512i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 31.2534 54.1325i 1.00923 1.74803i
\(960\) 0 0
\(961\) 65.9668i 2.12796i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −15.4634 8.92780i −0.497785 0.287396i
\(966\) 0 0
\(967\) 39.6468 39.6468i 1.27496 1.27496i 0.331502 0.943455i \(-0.392445\pi\)
0.943455 0.331502i \(-0.107555\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −40.4780 + 23.3700i −1.29900 + 0.749978i −0.980231 0.197855i \(-0.936602\pi\)
−0.318768 + 0.947833i \(0.603269\pi\)
\(972\) 0 0
\(973\) −28.4724 + 7.62916i −0.912783 + 0.244580i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.90189 + 2.65320i −0.316789 + 0.0848835i −0.413710 0.910409i \(-0.635767\pi\)
0.0969208 + 0.995292i \(0.469101\pi\)
\(978\) 0 0
\(979\) 3.28560 1.89694i 0.105008 0.0606265i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.59079 + 4.59079i −0.146423 + 0.146423i −0.776518 0.630095i \(-0.783016\pi\)
0.630095 + 0.776518i \(0.283016\pi\)
\(984\) 0 0
\(985\) −6.39941 3.69470i −0.203902 0.117723i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.44774i 0.205026i
\(990\) 0 0
\(991\) −14.0237 + 24.2898i −0.445478 + 0.771590i −0.998085 0.0618513i \(-0.980300\pi\)
0.552607 + 0.833442i \(0.313633\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.8088 2.89621i −0.342663 0.0918161i
\(996\) 0 0
\(997\) 14.8959 + 25.8005i 0.471759 + 0.817111i 0.999478 0.0323083i \(-0.0102858\pi\)
−0.527719 + 0.849419i \(0.676953\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.fo.b.1241.4 40
3.2 odd 2 inner 2340.2.fo.b.1241.6 yes 40
13.11 odd 12 inner 2340.2.fo.b.1961.6 yes 40
39.11 even 12 inner 2340.2.fo.b.1961.4 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.fo.b.1241.4 40 1.1 even 1 trivial
2340.2.fo.b.1241.6 yes 40 3.2 odd 2 inner
2340.2.fo.b.1961.4 yes 40 39.11 even 12 inner
2340.2.fo.b.1961.6 yes 40 13.11 odd 12 inner