Properties

Label 2340.2.bi.d.161.6
Level $2340$
Weight $2$
Character 2340.161
Analytic conductor $18.685$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(161,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bi (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.58498535041007616.52
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{9} + 72x^{6} - 324x^{3} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.6
Root \(-0.949550 - 1.44857i\) of defining polynomial
Character \(\chi\) \(=\) 2340.161
Dual form 2340.2.bi.d.1061.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(2.39812 + 2.39812i) q^{7} +(-1.91323 + 1.91323i) q^{11} +(2.69240 - 2.39812i) q^{13} -1.97724 q^{17} +(2.00000 - 2.00000i) q^{19} +7.21792 q^{23} +1.00000i q^{25} -2.41225i q^{29} +(4.79624 - 4.79624i) q^{31} +3.39145i q^{35} +(0.692400 + 0.692400i) q^{37} +(4.86968 + 4.86968i) q^{41} +11.0039i q^{43} +(-7.21792 + 7.21792i) q^{47} +4.50196i q^{49} -0.0188362i q^{53} -2.70572 q^{55} -6.91340 q^{61} +(3.59954 + 0.208088i) q^{65} +(3.38480 - 3.38480i) q^{67} +(-3.90931 - 3.90931i) q^{71} +(3.09052 + 3.09052i) q^{73} -9.17632 q^{77} +15.6830 q^{79} +(-0.563027 - 0.563027i) q^{83} +(-1.39812 - 1.39812i) q^{85} +(-9.11232 + 9.11232i) q^{89} +(12.2077 + 0.705720i) q^{91} +2.82843 q^{95} +(-0.103840 + 0.103840i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{13} + 24 q^{19} - 12 q^{37} - 24 q^{55} - 12 q^{73} + 24 q^{79} + 12 q^{85} + 72 q^{91} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 2.39812 + 2.39812i 0.906404 + 0.906404i 0.995980 0.0895758i \(-0.0285511\pi\)
−0.0895758 + 0.995980i \(0.528551\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.91323 + 1.91323i −0.576861 + 0.576861i −0.934037 0.357176i \(-0.883740\pi\)
0.357176 + 0.934037i \(0.383740\pi\)
\(12\) 0 0
\(13\) 2.69240 2.39812i 0.746738 0.665119i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.97724 −0.479551 −0.239776 0.970828i \(-0.577074\pi\)
−0.239776 + 0.970828i \(0.577074\pi\)
\(18\) 0 0
\(19\) 2.00000 2.00000i 0.458831 0.458831i −0.439440 0.898272i \(-0.644823\pi\)
0.898272 + 0.439440i \(0.144823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.21792 1.50504 0.752520 0.658569i \(-0.228838\pi\)
0.752520 + 0.658569i \(0.228838\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.41225i 0.447944i −0.974596 0.223972i \(-0.928098\pi\)
0.974596 0.223972i \(-0.0719024\pi\)
\(30\) 0 0
\(31\) 4.79624 4.79624i 0.861430 0.861430i −0.130074 0.991504i \(-0.541522\pi\)
0.991504 + 0.130074i \(0.0415215\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.39145i 0.573260i
\(36\) 0 0
\(37\) 0.692400 + 0.692400i 0.113830 + 0.113830i 0.761727 0.647898i \(-0.224352\pi\)
−0.647898 + 0.761727i \(0.724352\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.86968 + 4.86968i 0.760515 + 0.760515i 0.976415 0.215900i \(-0.0692685\pi\)
−0.215900 + 0.976415i \(0.569269\pi\)
\(42\) 0 0
\(43\) 11.0039i 1.67808i 0.544068 + 0.839041i \(0.316883\pi\)
−0.544068 + 0.839041i \(0.683117\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.21792 + 7.21792i −1.05284 + 1.05284i −0.0543181 + 0.998524i \(0.517298\pi\)
−0.998524 + 0.0543181i \(0.982702\pi\)
\(48\) 0 0
\(49\) 4.50196i 0.643137i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.0188362i 0.00258735i −0.999999 0.00129368i \(-0.999588\pi\)
0.999999 0.00129368i \(-0.000411790\pi\)
\(54\) 0 0
\(55\) −2.70572 −0.364839
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 0 0
\(61\) −6.91340 −0.885170 −0.442585 0.896727i \(-0.645939\pi\)
−0.442585 + 0.896727i \(0.645939\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.59954 + 0.208088i 0.446468 + 0.0258101i
\(66\) 0 0
\(67\) 3.38480 3.38480i 0.413519 0.413519i −0.469443 0.882963i \(-0.655545\pi\)
0.882963 + 0.469443i \(0.155545\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.90931 3.90931i −0.463950 0.463950i 0.435998 0.899948i \(-0.356395\pi\)
−0.899948 + 0.435998i \(0.856395\pi\)
\(72\) 0 0
\(73\) 3.09052 + 3.09052i 0.361718 + 0.361718i 0.864445 0.502727i \(-0.167670\pi\)
−0.502727 + 0.864445i \(0.667670\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.17632 −1.04574
\(78\) 0 0
\(79\) 15.6830 1.76448 0.882238 0.470804i \(-0.156036\pi\)
0.882238 + 0.470804i \(0.156036\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.563027 0.563027i −0.0618002 0.0618002i 0.675531 0.737331i \(-0.263914\pi\)
−0.737331 + 0.675531i \(0.763914\pi\)
\(84\) 0 0
\(85\) −1.39812 1.39812i −0.151647 0.151647i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.11232 + 9.11232i −0.965904 + 0.965904i −0.999438 0.0335340i \(-0.989324\pi\)
0.0335340 + 0.999438i \(0.489324\pi\)
\(90\) 0 0
\(91\) 12.2077 + 0.705720i 1.27971 + 0.0739795i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.82843 0.290191
\(96\) 0 0
\(97\) −0.103840 + 0.103840i −0.0105433 + 0.0105433i −0.712359 0.701815i \(-0.752373\pi\)
0.701815 + 0.712359i \(0.252373\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.3193 −1.12631 −0.563154 0.826352i \(-0.690412\pi\)
−0.563154 + 0.826352i \(0.690412\pi\)
\(102\) 0 0
\(103\) 2.02664i 0.199691i 0.995003 + 0.0998453i \(0.0318348\pi\)
−0.995003 + 0.0998453i \(0.968165\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.38949i 0.424348i −0.977232 0.212174i \(-0.931946\pi\)
0.977232 0.212174i \(-0.0680544\pi\)
\(108\) 0 0
\(109\) −5.11716 + 5.11716i −0.490135 + 0.490135i −0.908349 0.418214i \(-0.862656\pi\)
0.418214 + 0.908349i \(0.362656\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.8520i 1.39716i 0.715532 + 0.698580i \(0.246184\pi\)
−0.715532 + 0.698580i \(0.753816\pi\)
\(114\) 0 0
\(115\) 5.10384 + 5.10384i 0.475936 + 0.475936i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.74166 4.74166i −0.434667 0.434667i
\(120\) 0 0
\(121\) 3.67908i 0.334462i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 11.3848i 1.01024i −0.863050 0.505119i \(-0.831449\pi\)
0.863050 0.505119i \(-0.168551\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.3942i 1.43237i 0.697910 + 0.716186i \(0.254114\pi\)
−0.697910 + 0.716186i \(0.745886\pi\)
\(132\) 0 0
\(133\) 9.59248 0.831774
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.1704 12.1704i 1.03979 1.03979i 0.0406159 0.999175i \(-0.487068\pi\)
0.999175 0.0406159i \(-0.0129320\pi\)
\(138\) 0 0
\(139\) 11.6830 0.990939 0.495470 0.868625i \(-0.334996\pi\)
0.495470 + 0.868625i \(0.334996\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.563027 + 9.73935i −0.0470827 + 0.814445i
\(144\) 0 0
\(145\) 1.70572 1.70572i 0.141652 0.141652i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.04321 1.04321i −0.0854631 0.0854631i 0.663083 0.748546i \(-0.269248\pi\)
−0.748546 + 0.663083i \(0.769248\pi\)
\(150\) 0 0
\(151\) −8.11716 8.11716i −0.660565 0.660565i 0.294948 0.955513i \(-0.404698\pi\)
−0.955513 + 0.294948i \(0.904698\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.78291 0.544816
\(156\) 0 0
\(157\) 23.1850 1.85036 0.925181 0.379527i \(-0.123913\pi\)
0.925181 + 0.379527i \(0.123913\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 17.3094 + 17.3094i 1.36417 + 1.36417i
\(162\) 0 0
\(163\) −5.99060 5.99060i −0.469220 0.469220i 0.432442 0.901662i \(-0.357652\pi\)
−0.901662 + 0.432442i \(0.857652\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.38949 4.38949i 0.339669 0.339669i −0.516574 0.856243i \(-0.672793\pi\)
0.856243 + 0.516574i \(0.172793\pi\)
\(168\) 0 0
\(169\) 1.49804 12.9134i 0.115234 0.993338i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.41225 0.183400 0.0917001 0.995787i \(-0.470770\pi\)
0.0917001 + 0.995787i \(0.470770\pi\)
\(174\) 0 0
\(175\) −2.39812 + 2.39812i −0.181281 + 0.181281i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.65882 0.348216 0.174108 0.984727i \(-0.444296\pi\)
0.174108 + 0.984727i \(0.444296\pi\)
\(180\) 0 0
\(181\) 19.8640i 1.47648i 0.674537 + 0.738241i \(0.264343\pi\)
−0.674537 + 0.738241i \(0.735657\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.979202i 0.0719924i
\(186\) 0 0
\(187\) 3.78292 3.78292i 0.276635 0.276635i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.3962i 1.11403i 0.830502 + 0.557015i \(0.188053\pi\)
−0.830502 + 0.557015i \(0.811947\pi\)
\(192\) 0 0
\(193\) 8.28488 + 8.28488i 0.596359 + 0.596359i 0.939342 0.342983i \(-0.111437\pi\)
−0.342983 + 0.939342i \(0.611437\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.2890 14.2890i −1.01805 1.01805i −0.999834 0.0182141i \(-0.994202\pi\)
−0.0182141 0.999834i \(-0.505798\pi\)
\(198\) 0 0
\(199\) 2.58856i 0.183498i −0.995782 0.0917491i \(-0.970754\pi\)
0.995782 0.0917491i \(-0.0292458\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.78487 5.78487i 0.406018 0.406018i
\(204\) 0 0
\(205\) 6.88676i 0.480992i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.65293i 0.529364i
\(210\) 0 0
\(211\) −21.7735 −1.49895 −0.749476 0.662032i \(-0.769694\pi\)
−0.749476 + 0.662032i \(0.769694\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.78095 + 7.78095i −0.530656 + 0.530656i
\(216\) 0 0
\(217\) 23.0039 1.56161
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.32352 + 4.74166i −0.358099 + 0.318959i
\(222\) 0 0
\(223\) 12.2077 12.2077i 0.817487 0.817487i −0.168257 0.985743i \(-0.553814\pi\)
0.985743 + 0.168257i \(0.0538137\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.48920 6.48920i −0.430704 0.430704i 0.458164 0.888868i \(-0.348507\pi\)
−0.888868 + 0.458164i \(0.848507\pi\)
\(228\) 0 0
\(229\) −3.79624 3.79624i −0.250863 0.250863i 0.570462 0.821324i \(-0.306764\pi\)
−0.821324 + 0.570462i \(0.806764\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22.0699 −1.44585 −0.722925 0.690927i \(-0.757203\pi\)
−0.722925 + 0.690927i \(0.757203\pi\)
\(234\) 0 0
\(235\) −10.2077 −0.665876
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.86771 + 5.86771i 0.379551 + 0.379551i 0.870940 0.491389i \(-0.163511\pi\)
−0.491389 + 0.870940i \(0.663511\pi\)
\(240\) 0 0
\(241\) 8.29428 + 8.29428i 0.534282 + 0.534282i 0.921844 0.387562i \(-0.126683\pi\)
−0.387562 + 0.921844i \(0.626683\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.18337 + 3.18337i −0.203378 + 0.203378i
\(246\) 0 0
\(247\) 0.588561 10.1810i 0.0374492 0.647804i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.1025 0.953261 0.476631 0.879104i \(-0.341858\pi\)
0.476631 + 0.879104i \(0.341858\pi\)
\(252\) 0 0
\(253\) −13.8096 + 13.8096i −0.868200 + 0.868200i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.23283 0.575928 0.287964 0.957641i \(-0.407022\pi\)
0.287964 + 0.957641i \(0.407022\pi\)
\(258\) 0 0
\(259\) 3.32092i 0.206352i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.3942i 1.01091i −0.862852 0.505456i \(-0.831324\pi\)
0.862852 0.505456i \(-0.168676\pi\)
\(264\) 0 0
\(265\) 0.0133192 0.0133192i 0.000818192 0.000818192i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.2737i 0.931256i −0.884981 0.465628i \(-0.845829\pi\)
0.884981 0.465628i \(-0.154171\pi\)
\(270\) 0 0
\(271\) −1.29428 1.29428i −0.0786219 0.0786219i 0.666702 0.745324i \(-0.267705\pi\)
−0.745324 + 0.666702i \(0.767705\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.91323 1.91323i −0.115372 0.115372i
\(276\) 0 0
\(277\) 23.0306i 1.38377i 0.722007 + 0.691886i \(0.243220\pi\)
−0.722007 + 0.691886i \(0.756780\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.1402 15.1402i 0.903187 0.903187i −0.0925235 0.995711i \(-0.529493\pi\)
0.995711 + 0.0925235i \(0.0294933\pi\)
\(282\) 0 0
\(283\) 26.2077i 1.55788i −0.627095 0.778942i \(-0.715756\pi\)
0.627095 0.778942i \(-0.284244\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23.3561i 1.37867i
\(288\) 0 0
\(289\) −13.0905 −0.770031
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.91092 6.91092i 0.403740 0.403740i −0.475808 0.879549i \(-0.657844\pi\)
0.879549 + 0.475808i \(0.157844\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 19.4335 17.3094i 1.12387 1.00103i
\(300\) 0 0
\(301\) −26.3887 + 26.3887i −1.52102 + 1.52102i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.88851 4.88851i −0.279915 0.279915i
\(306\) 0 0
\(307\) −0.779001 0.779001i −0.0444600 0.0444600i 0.684527 0.728987i \(-0.260009\pi\)
−0.728987 + 0.684527i \(0.760009\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.0966 1.02616 0.513082 0.858339i \(-0.328503\pi\)
0.513082 + 0.858339i \(0.328503\pi\)
\(312\) 0 0
\(313\) −8.41536 −0.475664 −0.237832 0.971306i \(-0.576437\pi\)
−0.237832 + 0.971306i \(0.576437\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.6408 18.6408i −1.04697 1.04697i −0.998841 0.0481310i \(-0.984674\pi\)
−0.0481310 0.998841i \(-0.515326\pi\)
\(318\) 0 0
\(319\) 4.61520 + 4.61520i 0.258402 + 0.258402i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.95448 + 3.95448i −0.220033 + 0.220033i
\(324\) 0 0
\(325\) 2.39812 + 2.69240i 0.133024 + 0.149348i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −34.6189 −1.90860
\(330\) 0 0
\(331\) −12.7696 + 12.7696i −0.701881 + 0.701881i −0.964814 0.262933i \(-0.915310\pi\)
0.262933 + 0.964814i \(0.415310\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.78683 0.261533
\(336\) 0 0
\(337\) 9.41144i 0.512674i −0.966588 0.256337i \(-0.917484\pi\)
0.966588 0.256337i \(-0.0825156\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 18.3526i 0.993852i
\(342\) 0 0
\(343\) 5.99060 5.99060i 0.323462 0.323462i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.5290i 1.47783i −0.673797 0.738916i \(-0.735338\pi\)
0.673797 0.738916i \(-0.264662\pi\)
\(348\) 0 0
\(349\) −9.79624 9.79624i −0.524381 0.524381i 0.394511 0.918891i \(-0.370914\pi\)
−0.918891 + 0.394511i \(0.870914\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.6655 15.6655i −0.833792 0.833792i 0.154241 0.988033i \(-0.450707\pi\)
−0.988033 + 0.154241i \(0.950707\pi\)
\(354\) 0 0
\(355\) 5.52860i 0.293428i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.52688 6.52688i 0.344475 0.344475i −0.513571 0.858047i \(-0.671678\pi\)
0.858047 + 0.513571i \(0.171678\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.37066i 0.228771i
\(366\) 0 0
\(367\) −12.6152 −0.658508 −0.329254 0.944241i \(-0.606797\pi\)
−0.329254 + 0.944241i \(0.606797\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.0451715 0.0451715i 0.00234519 0.00234519i
\(372\) 0 0
\(373\) −15.9812 −0.827475 −0.413738 0.910396i \(-0.635777\pi\)
−0.413738 + 0.910396i \(0.635777\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.78487 6.49475i −0.297936 0.334497i
\(378\) 0 0
\(379\) 17.9812 17.9812i 0.923632 0.923632i −0.0736518 0.997284i \(-0.523465\pi\)
0.997284 + 0.0736518i \(0.0234653\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.8728 13.8728i −0.708868 0.708868i 0.257430 0.966297i \(-0.417124\pi\)
−0.966297 + 0.257430i \(0.917124\pi\)
\(384\) 0 0
\(385\) −6.48864 6.48864i −0.330692 0.330692i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.00358 0.0508836 0.0254418 0.999676i \(-0.491901\pi\)
0.0254418 + 0.999676i \(0.491901\pi\)
\(390\) 0 0
\(391\) −14.2716 −0.721744
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.0896 + 11.0896i 0.557976 + 0.557976i
\(396\) 0 0
\(397\) −5.69632 5.69632i −0.285890 0.285890i 0.549563 0.835453i \(-0.314794\pi\)
−0.835453 + 0.549563i \(0.814794\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.24068 + 5.24068i −0.261707 + 0.261707i −0.825747 0.564040i \(-0.809246\pi\)
0.564040 + 0.825747i \(0.309246\pi\)
\(402\) 0 0
\(403\) 1.41144 24.4154i 0.0703088 1.21622i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.64945 −0.131328
\(408\) 0 0
\(409\) −18.6830 + 18.6830i −0.923815 + 0.923815i −0.997297 0.0734816i \(-0.976589\pi\)
0.0734816 + 0.997297i \(0.476589\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.796240i 0.0390859i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.27996i 0.453356i −0.973970 0.226678i \(-0.927214\pi\)
0.973970 0.226678i \(-0.0727865\pi\)
\(420\) 0 0
\(421\) 1.84952 1.84952i 0.0901399 0.0901399i −0.660599 0.750739i \(-0.729698\pi\)
0.750739 + 0.660599i \(0.229698\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.97724i 0.0959102i
\(426\) 0 0
\(427\) −16.5792 16.5792i −0.802322 0.802322i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.3546 + 17.3546i 0.835942 + 0.835942i 0.988322 0.152380i \(-0.0486937\pi\)
−0.152380 + 0.988322i \(0.548694\pi\)
\(432\) 0 0
\(433\) 23.8534i 1.14632i −0.819442 0.573162i \(-0.805717\pi\)
0.819442 0.573162i \(-0.194283\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.4358 14.4358i 0.690560 0.690560i
\(438\) 0 0
\(439\) 21.9095i 1.04568i −0.852430 0.522841i \(-0.824872\pi\)
0.852430 0.522841i \(-0.175128\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.7071i 0.651245i −0.945500 0.325623i \(-0.894426\pi\)
0.945500 0.325623i \(-0.105574\pi\)
\(444\) 0 0
\(445\) −12.8868 −0.610891
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.6821 + 20.6821i −0.976047 + 0.976047i −0.999720 0.0236732i \(-0.992464\pi\)
0.0236732 + 0.999720i \(0.492464\pi\)
\(450\) 0 0
\(451\) −18.6336 −0.877424
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 8.13311 + 9.13115i 0.381286 + 0.428075i
\(456\) 0 0
\(457\) −18.1038 + 18.1038i −0.846862 + 0.846862i −0.989740 0.142878i \(-0.954364\pi\)
0.142878 + 0.989740i \(0.454364\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.6703 + 26.6703i 1.24216 + 1.24216i 0.959104 + 0.283055i \(0.0913480\pi\)
0.283055 + 0.959104i \(0.408652\pi\)
\(462\) 0 0
\(463\) 8.04388 + 8.04388i 0.373831 + 0.373831i 0.868870 0.495040i \(-0.164846\pi\)
−0.495040 + 0.868870i \(0.664846\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.50770 0.439964 0.219982 0.975504i \(-0.429400\pi\)
0.219982 + 0.975504i \(0.429400\pi\)
\(468\) 0 0
\(469\) 16.2343 0.749631
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −21.0531 21.0531i −0.968021 0.968021i
\(474\) 0 0
\(475\) 2.00000 + 2.00000i 0.0917663 + 0.0917663i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.3900 22.3900i 1.02302 1.02302i 0.0232953 0.999729i \(-0.492584\pi\)
0.999729 0.0232953i \(-0.00741579\pi\)
\(480\) 0 0
\(481\) 3.52468 + 0.203760i 0.160712 + 0.00929065i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.146852 −0.00666818
\(486\) 0 0
\(487\) 16.7868 16.7868i 0.760684 0.760684i −0.215762 0.976446i \(-0.569223\pi\)
0.976446 + 0.215762i \(0.0692234\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 31.4591 1.41973 0.709864 0.704339i \(-0.248756\pi\)
0.709864 + 0.704339i \(0.248756\pi\)
\(492\) 0 0
\(493\) 4.76960i 0.214812i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.7500i 0.841052i
\(498\) 0 0
\(499\) −25.8640 + 25.8640i −1.15783 + 1.15783i −0.172893 + 0.984941i \(0.555311\pi\)
−0.984941 + 0.172893i \(0.944689\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.0256i 1.65089i 0.564483 + 0.825445i \(0.309076\pi\)
−0.564483 + 0.825445i \(0.690924\pi\)
\(504\) 0 0
\(505\) −8.00392 8.00392i −0.356170 0.356170i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −26.3389 26.3389i −1.16745 1.16745i −0.982805 0.184647i \(-0.940886\pi\)
−0.184647 0.982805i \(-0.559114\pi\)
\(510\) 0 0
\(511\) 14.8229i 0.655726i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.43305 + 1.43305i −0.0631477 + 0.0631477i
\(516\) 0 0
\(517\) 27.6191i 1.21469i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.60579i 0.420837i 0.977611 + 0.210419i \(0.0674827\pi\)
−0.977611 + 0.210419i \(0.932517\pi\)
\(522\) 0 0
\(523\) −36.9773 −1.61690 −0.808452 0.588562i \(-0.799694\pi\)
−0.808452 + 0.588562i \(0.799694\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.48332 + 9.48332i −0.413100 + 0.413100i
\(528\) 0 0
\(529\) 29.0984 1.26515
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.7892 + 1.43305i 1.07374 + 0.0620723i
\(534\) 0 0
\(535\) 3.10384 3.10384i 0.134191 0.134191i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.61330 8.61330i −0.371001 0.371001i
\(540\) 0 0
\(541\) −26.9173 26.9173i −1.15727 1.15727i −0.985061 0.172205i \(-0.944911\pi\)
−0.172205 0.985061i \(-0.555089\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.23676 −0.309989
\(546\) 0 0
\(547\) 9.46472 0.404682 0.202341 0.979315i \(-0.435145\pi\)
0.202341 + 0.979315i \(0.435145\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.82450 4.82450i −0.205531 0.205531i
\(552\) 0 0
\(553\) 37.6097 + 37.6097i 1.59933 + 1.59933i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.78487 + 5.78487i −0.245113 + 0.245113i −0.818961 0.573849i \(-0.805450\pi\)
0.573849 + 0.818961i \(0.305450\pi\)
\(558\) 0 0
\(559\) 26.3887 + 29.6270i 1.11612 + 1.25309i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.2985 0.518318 0.259159 0.965835i \(-0.416555\pi\)
0.259159 + 0.965835i \(0.416555\pi\)
\(564\) 0 0
\(565\) −10.5020 + 10.5020i −0.441821 + 0.441821i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 22.5426 0.945036 0.472518 0.881321i \(-0.343345\pi\)
0.472518 + 0.881321i \(0.343345\pi\)
\(570\) 0 0
\(571\) 33.9252i 1.41972i −0.704341 0.709862i \(-0.748757\pi\)
0.704341 0.709862i \(-0.251243\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.21792i 0.301008i
\(576\) 0 0
\(577\) −6.90008 + 6.90008i −0.287254 + 0.287254i −0.835993 0.548739i \(-0.815108\pi\)
0.548739 + 0.835993i \(0.315108\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.70041i 0.112032i
\(582\) 0 0
\(583\) 0.0360380 + 0.0360380i 0.00149254 + 0.00149254i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.84299 9.84299i −0.406264 0.406264i 0.474170 0.880433i \(-0.342748\pi\)
−0.880433 + 0.474170i \(0.842748\pi\)
\(588\) 0 0
\(589\) 19.1850i 0.790503i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.24656 2.24656i 0.0922553 0.0922553i −0.659473 0.751728i \(-0.729220\pi\)
0.751728 + 0.659473i \(0.229220\pi\)
\(594\) 0 0
\(595\) 6.70572i 0.274908i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 42.2718i 1.72718i −0.504195 0.863590i \(-0.668211\pi\)
0.504195 0.863590i \(-0.331789\pi\)
\(600\) 0 0
\(601\) −42.5059 −1.73385 −0.866925 0.498438i \(-0.833907\pi\)
−0.866925 + 0.498438i \(0.833907\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.60150 + 2.60150i −0.105766 + 0.105766i
\(606\) 0 0
\(607\) 5.17712 0.210133 0.105066 0.994465i \(-0.466494\pi\)
0.105066 + 0.994465i \(0.466494\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.12409 + 36.7430i −0.0859316 + 1.48646i
\(612\) 0 0
\(613\) −29.2622 + 29.2622i −1.18189 + 1.18189i −0.202633 + 0.979255i \(0.564950\pi\)
−0.979255 + 0.202633i \(0.935050\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29.7944 29.7944i −1.19948 1.19948i −0.974323 0.225153i \(-0.927712\pi\)
−0.225153 0.974323i \(-0.572288\pi\)
\(618\) 0 0
\(619\) −14.2982 14.2982i −0.574693 0.574693i 0.358743 0.933436i \(-0.383205\pi\)
−0.933436 + 0.358743i \(0.883205\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −43.7049 −1.75100
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.36904 1.36904i −0.0545873 0.0545873i
\(630\) 0 0
\(631\) 1.79232 + 1.79232i 0.0713512 + 0.0713512i 0.741882 0.670531i \(-0.233934\pi\)
−0.670531 + 0.741882i \(0.733934\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.05027 8.05027i 0.319465 0.319465i
\(636\) 0 0
\(637\) 10.7962 + 12.1211i 0.427763 + 0.480255i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.3346 1.27714 0.638571 0.769563i \(-0.279526\pi\)
0.638571 + 0.769563i \(0.279526\pi\)
\(642\) 0 0
\(643\) 12.3793 12.3793i 0.488193 0.488193i −0.419543 0.907736i \(-0.637810\pi\)
0.907736 + 0.419543i \(0.137810\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.5961 −0.416575 −0.208287 0.978068i \(-0.566789\pi\)
−0.208287 + 0.978068i \(0.566789\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.2957i 0.989897i −0.868922 0.494949i \(-0.835187\pi\)
0.868922 0.494949i \(-0.164813\pi\)
\(654\) 0 0
\(655\) −11.5925 + 11.5925i −0.452956 + 0.452956i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.53599i 0.371469i −0.982600 0.185735i \(-0.940533\pi\)
0.982600 0.185735i \(-0.0594665\pi\)
\(660\) 0 0
\(661\) −3.64184 3.64184i −0.141651 0.141651i 0.632725 0.774376i \(-0.281936\pi\)
−0.774376 + 0.632725i \(0.781936\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.78291 + 6.78291i 0.263030 + 0.263030i
\(666\) 0 0
\(667\) 17.4114i 0.674174i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 13.2269 13.2269i 0.510620 0.510620i
\(672\) 0 0
\(673\) 37.8002i 1.45709i −0.684998 0.728545i \(-0.740197\pi\)
0.684998 0.728545i \(-0.259803\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.0178i 1.42271i −0.702832 0.711355i \(-0.748082\pi\)
0.702832 0.711355i \(-0.251918\pi\)
\(678\) 0 0
\(679\) −0.498040 −0.0191130
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.68516 3.68516i 0.141009 0.141009i −0.633079 0.774087i \(-0.718209\pi\)
0.774087 + 0.633079i \(0.218209\pi\)
\(684\) 0 0
\(685\) 17.2116 0.657621
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −0.0451715 0.0507146i −0.00172090 0.00193207i
\(690\) 0 0
\(691\) −23.2943 + 23.2943i −0.886156 + 0.886156i −0.994151 0.107995i \(-0.965557\pi\)
0.107995 + 0.994151i \(0.465557\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.26113 + 8.26113i 0.313362 + 0.313362i
\(696\) 0 0
\(697\) −9.62852 9.62852i −0.364706 0.364706i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −25.6647 −0.969344 −0.484672 0.874696i \(-0.661061\pi\)
−0.484672 + 0.874696i \(0.661061\pi\)
\(702\) 0 0
\(703\) 2.76960 0.104458
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −27.1449 27.1449i −1.02089 1.02089i
\(708\) 0 0
\(709\) −20.9173 20.9173i −0.785566 0.785566i 0.195198 0.980764i \(-0.437465\pi\)
−0.980764 + 0.195198i \(0.937465\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 34.6189 34.6189i 1.29649 1.29649i
\(714\) 0 0
\(715\) −7.28488 + 6.48864i −0.272439 + 0.242661i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.95252 −0.184698 −0.0923489 0.995727i \(-0.529438\pi\)
−0.0923489 + 0.995727i \(0.529438\pi\)
\(720\) 0 0
\(721\) −4.86012 + 4.86012i −0.181000 + 0.181000i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.41225 0.0895888
\(726\) 0 0
\(727\) 10.6418i 0.394684i 0.980335 + 0.197342i \(0.0632309\pi\)
−0.980335 + 0.197342i \(0.936769\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.7574i 0.804726i
\(732\) 0 0
\(733\) −5.33424 + 5.33424i −0.197025 + 0.197025i −0.798723 0.601699i \(-0.794491\pi\)
0.601699 + 0.798723i \(0.294491\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.9518i 0.477087i
\(738\) 0 0
\(739\) −16.3887 16.3887i −0.602869 0.602869i 0.338204 0.941073i \(-0.390181\pi\)
−0.941073 + 0.338204i \(0.890181\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.2538 + 30.2538i 1.10990 + 1.10990i 0.993162 + 0.116740i \(0.0372446\pi\)
0.116740 + 0.993162i \(0.462755\pi\)
\(744\) 0 0
\(745\) 1.47532i 0.0540516i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.5265 10.5265i 0.384631 0.384631i
\(750\) 0 0
\(751\) 3.91732i 0.142945i 0.997443 + 0.0714725i \(0.0227698\pi\)
−0.997443 + 0.0714725i \(0.977230\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.4794i 0.417778i
\(756\) 0 0
\(757\) 7.98120 0.290082 0.145041 0.989426i \(-0.453669\pi\)
0.145041 + 0.989426i \(0.453669\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.70041 + 2.70041i −0.0978899 + 0.0978899i −0.754356 0.656466i \(-0.772051\pi\)
0.656466 + 0.754356i \(0.272051\pi\)
\(762\) 0 0
\(763\) −24.5431 −0.888521
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −36.0039 + 36.0039i −1.29833 + 1.29833i −0.368843 + 0.929492i \(0.620246\pi\)
−0.929492 + 0.368843i \(0.879754\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.9239 + 35.9239i 1.29209 + 1.29209i 0.933490 + 0.358603i \(0.116747\pi\)
0.358603 + 0.933490i \(0.383253\pi\)
\(774\) 0 0
\(775\) 4.79624 + 4.79624i 0.172286 + 0.172286i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 19.4787 0.697897
\(780\) 0 0
\(781\) 14.9588 0.535269
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.3942 + 16.3942i 0.585136 + 0.585136i
\(786\) 0 0
\(787\) 32.5964 + 32.5964i 1.16194 + 1.16194i 0.984051 + 0.177885i \(0.0569255\pi\)
0.177885 + 0.984051i \(0.443075\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −35.6169 + 35.6169i −1.26639 + 1.26639i
\(792\) 0 0
\(793\) −18.6136 + 16.5792i −0.660990 + 0.588743i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.5286 1.08138 0.540690 0.841222i \(-0.318163\pi\)
0.540690 + 0.841222i \(0.318163\pi\)
\(798\) 0 0
\(799\) 14.2716 14.2716i 0.504892 0.504892i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.8258 −0.417322
\(804\) 0 0
\(805\) 24.4792i 0.862780i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 29.5062i 1.03738i 0.854961 + 0.518692i \(0.173581\pi\)
−0.854961 + 0.518692i \(0.826419\pi\)
\(810\) 0 0
\(811\) −14.9773 + 14.9773i −0.525923 + 0.525923i −0.919354 0.393431i \(-0.871288\pi\)
0.393431 + 0.919354i \(0.371288\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.47199i 0.296761i
\(816\) 0 0
\(817\) 22.0078 + 22.0078i 0.769957 + 0.769957i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.2977 23.2977i −0.813094 0.813094i 0.172002 0.985097i \(-0.444976\pi\)
−0.985097 + 0.172002i \(0.944976\pi\)
\(822\) 0 0
\(823\) 6.96944i 0.242939i −0.992595 0.121470i \(-0.961239\pi\)
0.992595 0.121470i \(-0.0387607\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.1646 15.1646i 0.527323 0.527323i −0.392450 0.919773i \(-0.628372\pi\)
0.919773 + 0.392450i \(0.128372\pi\)
\(828\) 0 0
\(829\) 12.5886i 0.437219i −0.975812 0.218609i \(-0.929848\pi\)
0.975812 0.218609i \(-0.0701521\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 8.90146i 0.308417i
\(834\) 0 0
\(835\) 6.20768 0.214826
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.4398 + 37.4398i −1.29257 + 1.29257i −0.359371 + 0.933195i \(0.617009\pi\)
−0.933195 + 0.359371i \(0.882991\pi\)
\(840\) 0 0
\(841\) 23.1810 0.799346
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.1904 8.07188i 0.350561 0.277681i
\(846\) 0 0
\(847\) −8.82288 + 8.82288i −0.303158 + 0.303158i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.99769 + 4.99769i 0.171319 + 0.171319i
\(852\) 0 0
\(853\) 2.90008 + 2.90008i 0.0992968 + 0.0992968i 0.755010 0.655713i \(-0.227632\pi\)
−0.655713 + 0.755010i \(0.727632\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −30.5175 −1.04246 −0.521230 0.853416i \(-0.674527\pi\)
−0.521230 + 0.853416i \(0.674527\pi\)
\(858\) 0 0
\(859\) −30.9212 −1.05502 −0.527510 0.849549i \(-0.676874\pi\)
−0.527510 + 0.849549i \(0.676874\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.20070 9.20070i −0.313196 0.313196i 0.532951 0.846146i \(-0.321083\pi\)
−0.846146 + 0.532951i \(0.821083\pi\)
\(864\) 0 0
\(865\) 1.70572 + 1.70572i 0.0579962 + 0.0579962i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −30.0052 + 30.0052i −1.01786 + 1.01786i
\(870\) 0 0
\(871\) 0.996080 17.2304i 0.0337509 0.583830i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.39145 −0.114652
\(876\) 0 0
\(877\) 27.5059 27.5059i 0.928808 0.928808i −0.0688214 0.997629i \(-0.521924\pi\)
0.997629 + 0.0688214i \(0.0219239\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.9706 1.44772 0.723858 0.689949i \(-0.242367\pi\)
0.723858 + 0.689949i \(0.242367\pi\)
\(882\) 0 0
\(883\) 20.8495i 0.701642i 0.936443 + 0.350821i \(0.114097\pi\)
−0.936443 + 0.350821i \(0.885903\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.6227i 0.356674i −0.983969 0.178337i \(-0.942928\pi\)
0.983969 0.178337i \(-0.0570718\pi\)
\(888\) 0 0
\(889\) 27.3021 27.3021i 0.915684 0.915684i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 28.8717i 0.966154i
\(894\) 0 0
\(895\) 3.29428 + 3.29428i 0.110116 + 0.110116i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.5697 11.5697i −0.385872 0.385872i
\(900\) 0 0
\(901\) 0.0372437i 0.00124077i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.0460 + 14.0460i −0.466905 + 0.466905i
\(906\) 0 0
\(907\) 43.9279i 1.45860i −0.684193 0.729301i \(-0.739845\pi\)
0.684193 0.729301i \(-0.260155\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 37.2289i 1.23345i 0.787179 + 0.616725i \(0.211541\pi\)
−0.787179 + 0.616725i \(0.788459\pi\)
\(912\) 0 0
\(913\) 2.15440 0.0713003
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −39.3154 + 39.3154i −1.29831 + 1.29831i
\(918\) 0 0
\(919\) 49.2222 1.62369 0.811845 0.583873i \(-0.198463\pi\)
0.811845 + 0.583873i \(0.198463\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −19.9004 1.15043i −0.655030 0.0378670i
\(924\) 0 0
\(925\) −0.692400 + 0.692400i −0.0227660 + 0.0227660i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.9545 28.9545i −0.949967 0.949967i 0.0488396 0.998807i \(-0.484448\pi\)
−0.998807 + 0.0488396i \(0.984448\pi\)
\(930\) 0 0
\(931\) 9.00392 + 9.00392i 0.295092 + 0.295092i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.34986 0.174959
\(936\) 0 0
\(937\) −14.0345 −0.458486 −0.229243 0.973369i \(-0.573625\pi\)
−0.229243 + 0.973369i \(0.573625\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −33.5757 33.5757i −1.09454 1.09454i −0.995038 0.0994976i \(-0.968276\pi\)
−0.0994976 0.995038i \(-0.531724\pi\)
\(942\) 0 0
\(943\) 35.1489 + 35.1489i 1.14461 + 1.14461i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25.8643 25.8643i 0.840476 0.840476i −0.148445 0.988921i \(-0.547427\pi\)
0.988921 + 0.148445i \(0.0474267\pi\)
\(948\) 0 0
\(949\) 15.7324 + 0.909479i 0.510694 + 0.0295230i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 53.1560 1.72189 0.860947 0.508695i \(-0.169872\pi\)
0.860947 + 0.508695i \(0.169872\pi\)
\(954\) 0 0
\(955\) −10.8868 + 10.8868i −0.352287 + 0.352287i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 58.3723 1.88494
\(960\) 0 0
\(961\) 15.0078i 0.484124i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.7166i 0.377170i
\(966\) 0 0
\(967\) 14.9773 14.9773i 0.481637 0.481637i −0.424017 0.905654i \(-0.639380\pi\)
0.905654 + 0.424017i \(0.139380\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 28.9243i 0.928226i 0.885776 + 0.464113i \(0.153627\pi\)
−0.885776 + 0.464113i \(0.846373\pi\)
\(972\) 0 0
\(973\) 28.0172 + 28.0172i 0.898191 + 0.898191i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.5886 11.5886i −0.370751 0.370751i 0.496999 0.867751i \(-0.334435\pi\)
−0.867751 + 0.496999i \(0.834435\pi\)
\(978\) 0 0
\(979\) 34.8680i 1.11438i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.0134 + 22.0134i −0.702119 + 0.702119i −0.964865 0.262746i \(-0.915372\pi\)
0.262746 + 0.964865i \(0.415372\pi\)
\(984\) 0 0
\(985\) 20.2077i 0.643870i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 79.4254i 2.52558i
\(990\) 0 0
\(991\) 53.0568 1.68541 0.842703 0.538379i \(-0.180963\pi\)
0.842703 + 0.538379i \(0.180963\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.83039 1.83039i 0.0580272 0.0580272i
\(996\) 0 0
\(997\) 3.37696 0.106949 0.0534747 0.998569i \(-0.482970\pi\)
0.0534747 + 0.998569i \(0.482970\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bi.d.161.6 yes 12
3.2 odd 2 inner 2340.2.bi.d.161.3 12
13.8 odd 4 inner 2340.2.bi.d.1061.3 yes 12
39.8 even 4 inner 2340.2.bi.d.1061.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.bi.d.161.3 12 3.2 odd 2 inner
2340.2.bi.d.161.6 yes 12 1.1 even 1 trivial
2340.2.bi.d.1061.3 yes 12 13.8 odd 4 inner
2340.2.bi.d.1061.6 yes 12 39.8 even 4 inner