Properties

Label 2340.2.bi.d.161.5
Level $2340$
Weight $2$
Character 2340.161
Analytic conductor $18.685$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(161,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bi (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.58498535041007616.52
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{9} + 72x^{6} - 324x^{3} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 161.5
Root \(-0.779723 + 1.54662i\) of defining polynomial
Character \(\chi\) \(=\) 2340.161
Dual form 2340.2.bi.d.1061.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{5} +(-0.766897 - 0.766897i) q^{7} +(0.912129 - 0.912129i) q^{11} +(3.52305 + 0.766897i) q^{13} +2.49877 q^{17} +(2.00000 - 2.00000i) q^{19} -2.90881 q^{23} +1.00000i q^{25} +3.23847i q^{29} +(-1.53379 + 1.53379i) q^{31} -1.08456i q^{35} +(1.52305 + 1.52305i) q^{37} +(-1.25698 - 1.25698i) q^{41} -9.64748i q^{43} +(2.90881 - 2.90881i) q^{47} -5.82374i q^{49} +6.80660i q^{53} +1.28995 q^{55} +11.4036 q^{61} +(1.94889 + 3.03345i) q^{65} +(5.04610 - 5.04610i) q^{67} +(10.2175 + 10.2175i) q^{71} +(0.756152 + 0.756152i) q^{73} -1.39902 q^{77} +0.688564 q^{79} +(3.91298 + 3.91298i) q^{83} +(1.76690 + 1.76690i) q^{85} +(-2.98566 + 2.98566i) q^{89} +(-2.11368 - 3.28995i) q^{91} +2.82843 q^{95} +(7.05684 - 7.05684i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{13} + 24 q^{19} - 12 q^{37} - 24 q^{55} - 12 q^{73} + 24 q^{79} + 12 q^{85} + 72 q^{91} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) −0.766897 0.766897i −0.289860 0.289860i 0.547165 0.837025i \(-0.315707\pi\)
−0.837025 + 0.547165i \(0.815707\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.912129 0.912129i 0.275017 0.275017i −0.556099 0.831116i \(-0.687702\pi\)
0.831116 + 0.556099i \(0.187702\pi\)
\(12\) 0 0
\(13\) 3.52305 + 0.766897i 0.977118 + 0.212699i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.49877 0.606041 0.303020 0.952984i \(-0.402005\pi\)
0.303020 + 0.952984i \(0.402005\pi\)
\(18\) 0 0
\(19\) 2.00000 2.00000i 0.458831 0.458831i −0.439440 0.898272i \(-0.644823\pi\)
0.898272 + 0.439440i \(0.144823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.90881 −0.606530 −0.303265 0.952906i \(-0.598077\pi\)
−0.303265 + 0.952906i \(0.598077\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.23847i 0.601369i 0.953724 + 0.300685i \(0.0972151\pi\)
−0.953724 + 0.300685i \(0.902785\pi\)
\(30\) 0 0
\(31\) −1.53379 + 1.53379i −0.275477 + 0.275477i −0.831301 0.555823i \(-0.812403\pi\)
0.555823 + 0.831301i \(0.312403\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.08456i 0.183323i
\(36\) 0 0
\(37\) 1.52305 + 1.52305i 0.250388 + 0.250388i 0.821130 0.570742i \(-0.193344\pi\)
−0.570742 + 0.821130i \(0.693344\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.25698 1.25698i −0.196308 0.196308i 0.602107 0.798415i \(-0.294328\pi\)
−0.798415 + 0.602107i \(0.794328\pi\)
\(42\) 0 0
\(43\) 9.64748i 1.47123i −0.677402 0.735613i \(-0.736894\pi\)
0.677402 0.735613i \(-0.263106\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.90881 2.90881i 0.424294 0.424294i −0.462385 0.886679i \(-0.653006\pi\)
0.886679 + 0.462385i \(0.153006\pi\)
\(48\) 0 0
\(49\) 5.82374i 0.831963i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.80660i 0.934958i 0.884004 + 0.467479i \(0.154838\pi\)
−0.884004 + 0.467479i \(0.845162\pi\)
\(54\) 0 0
\(55\) 1.28995 0.173936
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 0 0
\(61\) 11.4036 1.46009 0.730043 0.683402i \(-0.239500\pi\)
0.730043 + 0.683402i \(0.239500\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.94889 + 3.03345i 0.241730 + 0.376253i
\(66\) 0 0
\(67\) 5.04610 5.04610i 0.616479 0.616479i −0.328148 0.944626i \(-0.606424\pi\)
0.944626 + 0.328148i \(0.106424\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.2175 + 10.2175i 1.21259 + 1.21259i 0.970171 + 0.242423i \(0.0779423\pi\)
0.242423 + 0.970171i \(0.422058\pi\)
\(72\) 0 0
\(73\) 0.756152 + 0.756152i 0.0885008 + 0.0885008i 0.749971 0.661470i \(-0.230067\pi\)
−0.661470 + 0.749971i \(0.730067\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.39902 −0.159433
\(78\) 0 0
\(79\) 0.688564 0.0774695 0.0387348 0.999250i \(-0.487667\pi\)
0.0387348 + 0.999250i \(0.487667\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.91298 + 3.91298i 0.429506 + 0.429506i 0.888460 0.458954i \(-0.151776\pi\)
−0.458954 + 0.888460i \(0.651776\pi\)
\(84\) 0 0
\(85\) 1.76690 + 1.76690i 0.191647 + 0.191647i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.98566 + 2.98566i −0.316479 + 0.316479i −0.847413 0.530934i \(-0.821841\pi\)
0.530934 + 0.847413i \(0.321841\pi\)
\(90\) 0 0
\(91\) −2.11368 3.28995i −0.221574 0.344880i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.82843 0.290191
\(96\) 0 0
\(97\) 7.05684 7.05684i 0.716514 0.716514i −0.251376 0.967890i \(-0.580883\pi\)
0.967890 + 0.251376i \(0.0808830\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.8862 1.77975 0.889873 0.456208i \(-0.150793\pi\)
0.889873 + 0.456208i \(0.150793\pi\)
\(102\) 0 0
\(103\) 7.62599i 0.751411i −0.926739 0.375705i \(-0.877400\pi\)
0.926739 0.375705i \(-0.122600\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.73724i 0.554640i 0.960778 + 0.277320i \(0.0894462\pi\)
−0.960778 + 0.277320i \(0.910554\pi\)
\(108\) 0 0
\(109\) 6.86984 6.86984i 0.658011 0.658011i −0.296898 0.954909i \(-0.595952\pi\)
0.954909 + 0.296898i \(0.0959522\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.249271i 0.0234495i 0.999931 + 0.0117247i \(0.00373218\pi\)
−0.999931 + 0.0117247i \(0.996268\pi\)
\(114\) 0 0
\(115\) −2.05684 2.05684i −0.191801 0.191801i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.91630 1.91630i −0.175667 0.175667i
\(120\) 0 0
\(121\) 9.33604i 0.848731i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 13.0461i 1.15765i −0.815450 0.578827i \(-0.803511\pi\)
0.815450 0.578827i \(-0.196489\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.50980i 0.131912i −0.997823 0.0659558i \(-0.978990\pi\)
0.997823 0.0659558i \(-0.0210096\pi\)
\(132\) 0 0
\(133\) −3.06759 −0.265994
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.5590 + 12.5590i −1.07299 + 1.07299i −0.0758735 + 0.997117i \(0.524175\pi\)
−0.997117 + 0.0758735i \(0.975825\pi\)
\(138\) 0 0
\(139\) −3.31144 −0.280872 −0.140436 0.990090i \(-0.544850\pi\)
−0.140436 + 0.990090i \(0.544850\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.91298 2.51397i 0.327220 0.210228i
\(144\) 0 0
\(145\) −2.28995 + 2.28995i −0.190170 + 0.190170i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.567275 0.567275i −0.0464730 0.0464730i 0.683488 0.729961i \(-0.260462\pi\)
−0.729961 + 0.683488i \(0.760462\pi\)
\(150\) 0 0
\(151\) 3.86984 + 3.86984i 0.314923 + 0.314923i 0.846813 0.531890i \(-0.178518\pi\)
−0.531890 + 0.846813i \(0.678518\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.16911 −0.174227
\(156\) 0 0
\(157\) −2.13517 −0.170405 −0.0852027 0.996364i \(-0.527154\pi\)
−0.0852027 + 0.996364i \(0.527154\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.23076 + 2.23076i 0.175809 + 0.175809i
\(162\) 0 0
\(163\) 9.83448 + 9.83448i 0.770296 + 0.770296i 0.978158 0.207862i \(-0.0666505\pi\)
−0.207862 + 0.978158i \(0.566650\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.73724 + 5.73724i −0.443961 + 0.443961i −0.893341 0.449380i \(-0.851645\pi\)
0.449380 + 0.893341i \(0.351645\pi\)
\(168\) 0 0
\(169\) 11.8237 + 5.40363i 0.909518 + 0.415664i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.23847 −0.246216 −0.123108 0.992393i \(-0.539286\pi\)
−0.123108 + 0.992393i \(0.539286\pi\)
\(174\) 0 0
\(175\) 0.766897 0.766897i 0.0579719 0.0579719i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.3095 0.770571 0.385286 0.922797i \(-0.374103\pi\)
0.385286 + 0.922797i \(0.374103\pi\)
\(180\) 0 0
\(181\) 0.200867i 0.0149304i 0.999972 + 0.00746518i \(0.00237626\pi\)
−0.999972 + 0.00746518i \(0.997624\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.15392i 0.158359i
\(186\) 0 0
\(187\) 2.27920 2.27920i 0.166672 0.166672i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.14289i 0.227411i 0.993514 + 0.113706i \(0.0362721\pi\)
−0.993514 + 0.113706i \(0.963728\pi\)
\(192\) 0 0
\(193\) −3.54454 3.54454i −0.255141 0.255141i 0.567933 0.823075i \(-0.307743\pi\)
−0.823075 + 0.567933i \(0.807743\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.16225 4.16225i −0.296548 0.296548i 0.543112 0.839660i \(-0.317246\pi\)
−0.839660 + 0.543112i \(0.817246\pi\)
\(198\) 0 0
\(199\) 10.5799i 0.749989i −0.927027 0.374994i \(-0.877645\pi\)
0.927027 0.374994i \(-0.122355\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.48357 2.48357i 0.174313 0.174313i
\(204\) 0 0
\(205\) 1.77764i 0.124156i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.64852i 0.252373i
\(210\) 0 0
\(211\) −4.44472 −0.305987 −0.152993 0.988227i \(-0.548891\pi\)
−0.152993 + 0.988227i \(0.548891\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.82180 6.82180i 0.465243 0.465243i
\(216\) 0 0
\(217\) 2.35252 0.159700
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.80329 + 1.91630i 0.592173 + 0.128904i
\(222\) 0 0
\(223\) −2.11368 + 2.11368i −0.141543 + 0.141543i −0.774328 0.632785i \(-0.781912\pi\)
0.632785 + 0.774328i \(0.281912\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.7907 17.7907i −1.18081 1.18081i −0.979535 0.201272i \(-0.935493\pi\)
−0.201272 0.979535i \(-0.564507\pi\)
\(228\) 0 0
\(229\) 2.53379 + 2.53379i 0.167438 + 0.167438i 0.785852 0.618414i \(-0.212225\pi\)
−0.618414 + 0.785852i \(0.712225\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.65954 0.174232 0.0871162 0.996198i \(-0.472235\pi\)
0.0871162 + 0.996198i \(0.472235\pi\)
\(234\) 0 0
\(235\) 4.11368 0.268347
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.90967 5.90967i −0.382265 0.382265i 0.489653 0.871917i \(-0.337124\pi\)
−0.871917 + 0.489653i \(0.837124\pi\)
\(240\) 0 0
\(241\) 12.2899 + 12.2899i 0.791665 + 0.791665i 0.981765 0.190100i \(-0.0608812\pi\)
−0.190100 + 0.981765i \(0.560881\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.11801 4.11801i 0.263090 0.263090i
\(246\) 0 0
\(247\) 8.57989 5.51230i 0.545925 0.350739i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.1027 1.45823 0.729113 0.684393i \(-0.239933\pi\)
0.729113 + 0.684393i \(0.239933\pi\)
\(252\) 0 0
\(253\) −2.65321 + 2.65321i −0.166806 + 0.166806i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −19.0208 −1.18648 −0.593242 0.805024i \(-0.702152\pi\)
−0.593242 + 0.805024i \(0.702152\pi\)
\(258\) 0 0
\(259\) 2.33604i 0.145155i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.50980i 0.0930980i 0.998916 + 0.0465490i \(0.0148224\pi\)
−0.998916 + 0.0465490i \(0.985178\pi\)
\(264\) 0 0
\(265\) −4.81299 + 4.81299i −0.295660 + 0.295660i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 22.8838i 1.39525i 0.716464 + 0.697624i \(0.245759\pi\)
−0.716464 + 0.697624i \(0.754241\pi\)
\(270\) 0 0
\(271\) −5.28995 5.28995i −0.321341 0.321341i 0.527940 0.849282i \(-0.322964\pi\)
−0.849282 + 0.527940i \(0.822964\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.912129 + 0.912129i 0.0550034 + 0.0550034i
\(276\) 0 0
\(277\) 7.27346i 0.437020i −0.975835 0.218510i \(-0.929880\pi\)
0.975835 0.218510i \(-0.0701196\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.48945 9.48945i 0.566093 0.566093i −0.364938 0.931032i \(-0.618910\pi\)
0.931032 + 0.364938i \(0.118910\pi\)
\(282\) 0 0
\(283\) 11.8863i 0.706568i −0.935516 0.353284i \(-0.885065\pi\)
0.935516 0.353284i \(-0.114935\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.92795i 0.113803i
\(288\) 0 0
\(289\) −10.7562 −0.632715
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.34239 + 5.34239i −0.312106 + 0.312106i −0.845725 0.533619i \(-0.820832\pi\)
0.533619 + 0.845725i \(0.320832\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.2479 2.23076i −0.592651 0.129008i
\(300\) 0 0
\(301\) −7.39862 + 7.39862i −0.426449 + 0.426449i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.06358 + 8.06358i 0.461719 + 0.461719i
\(306\) 0 0
\(307\) −19.9267 19.9267i −1.13728 1.13728i −0.988937 0.148339i \(-0.952607\pi\)
−0.148339 0.988937i \(-0.547393\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.14460 0.518543 0.259271 0.965805i \(-0.416518\pi\)
0.259271 + 0.965805i \(0.416518\pi\)
\(312\) 0 0
\(313\) 20.2274 1.14332 0.571659 0.820491i \(-0.306300\pi\)
0.571659 + 0.820491i \(0.306300\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0382 12.0382i −0.676133 0.676133i 0.282990 0.959123i \(-0.408674\pi\)
−0.959123 + 0.282990i \(0.908674\pi\)
\(318\) 0 0
\(319\) 2.95390 + 2.95390i 0.165387 + 0.165387i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.99754 4.99754i 0.278070 0.278070i
\(324\) 0 0
\(325\) −0.766897 + 3.52305i −0.0425398 + 0.195424i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.46152 −0.245972
\(330\) 0 0
\(331\) −16.0922 + 16.0922i −0.884507 + 0.884507i −0.993989 0.109482i \(-0.965081\pi\)
0.109482 + 0.993989i \(0.465081\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.13626 0.389895
\(336\) 0 0
\(337\) 1.42011i 0.0773583i −0.999252 0.0386792i \(-0.987685\pi\)
0.999252 0.0386792i \(-0.0123150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.79803i 0.151522i
\(342\) 0 0
\(343\) −9.83448 + 9.83448i −0.531012 + 0.531012i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.19705i 0.225310i −0.993634 0.112655i \(-0.964065\pi\)
0.993634 0.112655i \(-0.0359354\pi\)
\(348\) 0 0
\(349\) −3.46621 3.46621i −0.185542 0.185542i 0.608224 0.793766i \(-0.291882\pi\)
−0.793766 + 0.608224i \(0.791882\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.1897 19.1897i −1.02136 1.02136i −0.999767 0.0215962i \(-0.993125\pi\)
−0.0215962 0.999767i \(-0.506875\pi\)
\(354\) 0 0
\(355\) 14.4497i 0.766912i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.17745 4.17745i 0.220477 0.220477i −0.588222 0.808699i \(-0.700172\pi\)
0.808699 + 0.588222i \(0.200172\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.06936i 0.0559728i
\(366\) 0 0
\(367\) −10.9539 −0.571789 −0.285895 0.958261i \(-0.592291\pi\)
−0.285895 + 0.958261i \(0.592291\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.21996 5.21996i 0.271007 0.271007i
\(372\) 0 0
\(373\) 15.6690 0.811308 0.405654 0.914027i \(-0.367044\pi\)
0.405654 + 0.914027i \(0.367044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.48357 + 11.4093i −0.127911 + 0.587608i
\(378\) 0 0
\(379\) −13.6690 + 13.6690i −0.702128 + 0.702128i −0.964867 0.262739i \(-0.915374\pi\)
0.262739 + 0.964867i \(0.415374\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.90464 + 1.90464i 0.0973228 + 0.0973228i 0.754092 0.656769i \(-0.228077\pi\)
−0.656769 + 0.754092i \(0.728077\pi\)
\(384\) 0 0
\(385\) −0.989255 0.989255i −0.0504171 0.0504171i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −33.8526 −1.71640 −0.858198 0.513319i \(-0.828416\pi\)
−0.858198 + 0.513319i \(0.828416\pi\)
\(390\) 0 0
\(391\) −7.26845 −0.367582
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.486889 + 0.486889i 0.0244980 + 0.0244980i
\(396\) 0 0
\(397\) 14.1244 + 14.1244i 0.708885 + 0.708885i 0.966301 0.257416i \(-0.0828710\pi\)
−0.257416 + 0.966301i \(0.582871\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.410044 0.410044i 0.0204766 0.0204766i −0.696794 0.717271i \(-0.745391\pi\)
0.717271 + 0.696794i \(0.245391\pi\)
\(402\) 0 0
\(403\) −6.57989 + 4.22737i −0.327768 + 0.210580i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.77843 0.137722
\(408\) 0 0
\(409\) −3.68856 + 3.68856i −0.182388 + 0.182388i −0.792395 0.610008i \(-0.791166\pi\)
0.610008 + 0.792395i \(0.291166\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.53379i 0.271643i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.2323i 1.67236i −0.548458 0.836178i \(-0.684785\pi\)
0.548458 0.836178i \(-0.315215\pi\)
\(420\) 0 0
\(421\) −23.7858 + 23.7858i −1.15925 + 1.15925i −0.174610 + 0.984638i \(0.555866\pi\)
−0.984638 + 0.174610i \(0.944134\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.49877i 0.121208i
\(426\) 0 0
\(427\) −8.74541 8.74541i −0.423220 0.423220i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.45072 + 7.45072i 0.358889 + 0.358889i 0.863403 0.504515i \(-0.168329\pi\)
−0.504515 + 0.863403i \(0.668329\pi\)
\(432\) 0 0
\(433\) 22.4332i 1.07807i 0.842282 + 0.539036i \(0.181212\pi\)
−0.842282 + 0.539036i \(0.818788\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.81763 + 5.81763i −0.278295 + 0.278295i
\(438\) 0 0
\(439\) 24.2438i 1.15710i −0.815648 0.578548i \(-0.803620\pi\)
0.815648 0.578548i \(-0.196380\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.8818i 0.707057i −0.935424 0.353529i \(-0.884982\pi\)
0.935424 0.353529i \(-0.115018\pi\)
\(444\) 0 0
\(445\) −4.22236 −0.200159
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −7.95280 + 7.95280i −0.375316 + 0.375316i −0.869409 0.494093i \(-0.835500\pi\)
0.494093 + 0.869409i \(0.335500\pi\)
\(450\) 0 0
\(451\) −2.29306 −0.107976
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.831742 3.82094i 0.0389927 0.179129i
\(456\) 0 0
\(457\) −10.9432 + 10.9432i −0.511899 + 0.511899i −0.915108 0.403209i \(-0.867895\pi\)
0.403209 + 0.915108i \(0.367895\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −19.9633 19.9633i −0.929784 0.929784i 0.0679078 0.997692i \(-0.478368\pi\)
−0.997692 + 0.0679078i \(0.978368\pi\)
\(462\) 0 0
\(463\) −27.0865 27.0865i −1.25881 1.25881i −0.951660 0.307155i \(-0.900623\pi\)
−0.307155 0.951660i \(-0.599377\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.1739 −1.48883 −0.744416 0.667716i \(-0.767272\pi\)
−0.744416 + 0.667716i \(0.767272\pi\)
\(468\) 0 0
\(469\) −7.73967 −0.357385
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.79974 8.79974i −0.404613 0.404613i
\(474\) 0 0
\(475\) 2.00000 + 2.00000i 0.0917663 + 0.0917663i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.5927 + 10.5927i −0.483995 + 0.483995i −0.906405 0.422410i \(-0.861184\pi\)
0.422410 + 0.906405i \(0.361184\pi\)
\(480\) 0 0
\(481\) 4.19775 + 6.53379i 0.191401 + 0.297915i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.97988 0.453163
\(486\) 0 0
\(487\) −5.36828 + 5.36828i −0.243260 + 0.243260i −0.818197 0.574937i \(-0.805026\pi\)
0.574937 + 0.818197i \(0.305026\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 35.2061 1.58883 0.794414 0.607377i \(-0.207778\pi\)
0.794414 + 0.607377i \(0.207778\pi\)
\(492\) 0 0
\(493\) 8.09219i 0.364454i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.6715i 0.702964i
\(498\) 0 0
\(499\) −6.20087 + 6.20087i −0.277589 + 0.277589i −0.832146 0.554557i \(-0.812888\pi\)
0.554557 + 0.832146i \(0.312888\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 30.4230i 1.35649i 0.734834 + 0.678247i \(0.237260\pi\)
−0.734834 + 0.678247i \(0.762740\pi\)
\(504\) 0 0
\(505\) 12.6475 + 12.6475i 0.562805 + 0.562805i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13.6097 13.6097i −0.603238 0.603238i 0.337933 0.941170i \(-0.390272\pi\)
−0.941170 + 0.337933i \(0.890272\pi\)
\(510\) 0 0
\(511\) 1.15978i 0.0513057i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.39239 5.39239i 0.237617 0.237617i
\(516\) 0 0
\(517\) 5.30643i 0.233376i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 29.8593i 1.30816i 0.756426 + 0.654079i \(0.226944\pi\)
−0.756426 + 0.654079i \(0.773056\pi\)
\(522\) 0 0
\(523\) −25.9785 −1.13596 −0.567980 0.823042i \(-0.692275\pi\)
−0.567980 + 0.823042i \(0.692275\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.83260 + 3.83260i −0.166951 + 0.166951i
\(528\) 0 0
\(529\) −14.5388 −0.632122
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.46443 5.39239i −0.150061 0.233570i
\(534\) 0 0
\(535\) −4.05684 + 4.05684i −0.175393 + 0.175393i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.31200 5.31200i −0.228804 0.228804i
\(540\) 0 0
\(541\) 12.0511 + 12.0511i 0.518118 + 0.518118i 0.917001 0.398884i \(-0.130602\pi\)
−0.398884 + 0.917001i \(0.630602\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.71541 0.416163
\(546\) 0 0
\(547\) −17.8319 −0.762435 −0.381218 0.924485i \(-0.624495\pi\)
−0.381218 + 0.924485i \(0.624495\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.47694 + 6.47694i 0.275927 + 0.275927i
\(552\) 0 0
\(553\) −0.528058 0.528058i −0.0224553 0.0224553i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.48357 + 2.48357i −0.105232 + 0.105232i −0.757763 0.652530i \(-0.773708\pi\)
0.652530 + 0.757763i \(0.273708\pi\)
\(558\) 0 0
\(559\) 7.39862 33.9885i 0.312928 1.43756i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15.7323 −0.663038 −0.331519 0.943449i \(-0.607561\pi\)
−0.331519 + 0.943449i \(0.607561\pi\)
\(564\) 0 0
\(565\) −0.176261 + 0.176261i −0.00741537 + 0.00741537i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.0124 −0.713199 −0.356599 0.934257i \(-0.616064\pi\)
−0.356599 + 0.934257i \(0.616064\pi\)
\(570\) 0 0
\(571\) 46.3461i 1.93952i 0.244056 + 0.969761i \(0.421522\pi\)
−0.244056 + 0.969761i \(0.578478\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.90881i 0.121306i
\(576\) 0 0
\(577\) 6.59064 6.59064i 0.274372 0.274372i −0.556486 0.830857i \(-0.687851\pi\)
0.830857 + 0.556486i \(0.187851\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00171i 0.248993i
\(582\) 0 0
\(583\) 6.20850 + 6.20850i 0.257130 + 0.257130i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.3193 30.3193i −1.25141 1.25141i −0.955088 0.296324i \(-0.904239\pi\)
−0.296324 0.955088i \(-0.595761\pi\)
\(588\) 0 0
\(589\) 6.13517i 0.252795i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.5480 13.5480i 0.556350 0.556350i −0.371916 0.928266i \(-0.621299\pi\)
0.928266 + 0.371916i \(0.121299\pi\)
\(594\) 0 0
\(595\) 2.71005i 0.111101i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.813004i 0.0332184i −0.999862 0.0166092i \(-0.994713\pi\)
0.999862 0.0166092i \(-0.00528712\pi\)
\(600\) 0 0
\(601\) −11.5288 −0.470269 −0.235134 0.971963i \(-0.575553\pi\)
−0.235134 + 0.971963i \(0.575553\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.60158 + 6.60158i −0.268392 + 0.268392i
\(606\) 0 0
\(607\) 21.1598 0.858849 0.429424 0.903103i \(-0.358716\pi\)
0.429424 + 0.903103i \(0.358716\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.4787 8.01713i 0.504832 0.324338i
\(612\) 0 0
\(613\) −6.43397 + 6.43397i −0.259866 + 0.259866i −0.824999 0.565134i \(-0.808825\pi\)
0.565134 + 0.824999i \(0.308825\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.9385 10.9385i −0.440366 0.440366i 0.451769 0.892135i \(-0.350793\pi\)
−0.892135 + 0.451769i \(0.850793\pi\)
\(618\) 0 0
\(619\) 2.35753 + 2.35753i 0.0947572 + 0.0947572i 0.752896 0.658139i \(-0.228656\pi\)
−0.658139 + 0.752896i \(0.728656\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.57938 0.183469
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.80575 + 3.80575i 0.151745 + 0.151745i
\(630\) 0 0
\(631\) 16.1137 + 16.1137i 0.641476 + 0.641476i 0.950918 0.309443i \(-0.100142\pi\)
−0.309443 + 0.950918i \(0.600142\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.22498 9.22498i 0.366082 0.366082i
\(636\) 0 0
\(637\) 4.46621 20.5173i 0.176958 0.812926i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.52671 0.178794 0.0893971 0.995996i \(-0.471506\pi\)
0.0893971 + 0.995996i \(0.471506\pi\)
\(642\) 0 0
\(643\) −22.4359 + 22.4359i −0.884784 + 0.884784i −0.994016 0.109232i \(-0.965161\pi\)
0.109232 + 0.994016i \(0.465161\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.3867 1.03737 0.518684 0.854966i \(-0.326422\pi\)
0.518684 + 0.854966i \(0.326422\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.0424i 0.510388i −0.966890 0.255194i \(-0.917861\pi\)
0.966890 0.255194i \(-0.0821393\pi\)
\(654\) 0 0
\(655\) 1.06759 1.06759i 0.0417141 0.0417141i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 27.8857i 1.08627i −0.839644 0.543137i \(-0.817237\pi\)
0.839644 0.543137i \(-0.182763\pi\)
\(660\) 0 0
\(661\) 7.67208 + 7.67208i 0.298409 + 0.298409i 0.840391 0.541981i \(-0.182326\pi\)
−0.541981 + 0.840391i \(0.682326\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.16911 2.16911i −0.0841145 0.0841145i
\(666\) 0 0
\(667\) 9.42011i 0.364748i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.4016 10.4016i 0.401549 0.401549i
\(672\) 0 0
\(673\) 10.8187i 0.417031i −0.978019 0.208516i \(-0.933137\pi\)
0.978019 0.208516i \(-0.0668632\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.1703i 0.813640i 0.913508 + 0.406820i \(0.133362\pi\)
−0.913508 + 0.406820i \(0.866638\pi\)
\(678\) 0 0
\(679\) −10.8237 −0.415377
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.0443 + 21.0443i −0.805238 + 0.805238i −0.983909 0.178670i \(-0.942820\pi\)
0.178670 + 0.983909i \(0.442820\pi\)
\(684\) 0 0
\(685\) −17.7612 −0.678619
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.21996 + 23.9800i −0.198865 + 0.913565i
\(690\) 0 0
\(691\) −27.2899 + 27.2899i −1.03816 + 1.03816i −0.0389160 + 0.999242i \(0.512390\pi\)
−0.999242 + 0.0389160i \(0.987610\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.34154 2.34154i −0.0888196 0.0888196i
\(696\) 0 0
\(697\) −3.14091 3.14091i −0.118970 0.118970i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 34.1438 1.28959 0.644796 0.764354i \(-0.276942\pi\)
0.644796 + 0.764354i \(0.276942\pi\)
\(702\) 0 0
\(703\) 6.09219 0.229771
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −13.7169 13.7169i −0.515877 0.515877i
\(708\) 0 0
\(709\) 18.0511 + 18.0511i 0.677924 + 0.677924i 0.959530 0.281606i \(-0.0908673\pi\)
−0.281606 + 0.959530i \(0.590867\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.46152 4.46152i 0.167085 0.167085i
\(714\) 0 0
\(715\) 4.54454 + 0.989255i 0.169956 + 0.0369960i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.65022 0.359893 0.179946 0.983676i \(-0.442408\pi\)
0.179946 + 0.983676i \(0.442408\pi\)
\(720\) 0 0
\(721\) −5.84834 + 5.84834i −0.217804 + 0.217804i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.23847 −0.120274
\(726\) 0 0
\(727\) 0.672083i 0.0249262i −0.999922 0.0124631i \(-0.996033\pi\)
0.999922 0.0124631i \(-0.00396723\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 24.1068i 0.891623i
\(732\) 0 0
\(733\) 5.14904 5.14904i 0.190184 0.190184i −0.605592 0.795776i \(-0.707063\pi\)
0.795776 + 0.605592i \(0.207063\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.20538i 0.339085i
\(738\) 0 0
\(739\) 2.60138 + 2.60138i 0.0956933 + 0.0956933i 0.753333 0.657639i \(-0.228445\pi\)
−0.657639 + 0.753333i \(0.728445\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25.8078 25.8078i −0.946796 0.946796i 0.0518587 0.998654i \(-0.483485\pi\)
−0.998654 + 0.0518587i \(0.983485\pi\)
\(744\) 0 0
\(745\) 0.802248i 0.0293921i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.39987 4.39987i 0.160768 0.160768i
\(750\) 0 0
\(751\) 35.0511i 1.27903i −0.768777 0.639517i \(-0.779135\pi\)
0.768777 0.639517i \(-0.220865\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.47277i 0.199175i
\(756\) 0 0
\(757\) −23.6690 −0.860263 −0.430132 0.902766i \(-0.641533\pi\)
−0.430132 + 0.902766i \(0.641533\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00171 + 6.00171i −0.217562 + 0.217562i −0.807470 0.589908i \(-0.799164\pi\)
0.589908 + 0.807470i \(0.299164\pi\)
\(762\) 0 0
\(763\) −10.5369 −0.381462
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −15.3525 + 15.3525i −0.553626 + 0.553626i −0.927485 0.373859i \(-0.878034\pi\)
0.373859 + 0.927485i \(0.378034\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.24241 + 2.24241i 0.0806540 + 0.0806540i 0.746283 0.665629i \(-0.231837\pi\)
−0.665629 + 0.746283i \(0.731837\pi\)
\(774\) 0 0
\(775\) −1.53379 1.53379i −0.0550955 0.0550955i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.02793 −0.180144
\(780\) 0 0
\(781\) 18.6394 0.666968
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.50980 1.50980i −0.0538869 0.0538869i
\(786\) 0 0
\(787\) −0.715064 0.715064i −0.0254893 0.0254893i 0.694247 0.719737i \(-0.255737\pi\)
−0.719737 + 0.694247i \(0.755737\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.191165 0.191165i 0.00679705 0.00679705i
\(792\) 0 0
\(793\) 40.1755 + 8.74541i 1.42668 + 0.310558i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −38.9609 −1.38007 −0.690034 0.723777i \(-0.742404\pi\)
−0.690034 + 0.723777i \(0.742404\pi\)
\(798\) 0 0
\(799\) 7.26845 7.26845i 0.257139 0.257139i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.37942 0.0486785
\(804\) 0 0
\(805\) 3.15477i 0.111191i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.69828i 0.0597085i 0.999554 + 0.0298542i \(0.00950431\pi\)
−0.999554 + 0.0298542i \(0.990496\pi\)
\(810\) 0 0
\(811\) −3.97851 + 3.97851i −0.139704 + 0.139704i −0.773500 0.633796i \(-0.781496\pi\)
0.633796 + 0.773500i \(0.281496\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.9081i 0.487178i
\(816\) 0 0
\(817\) −19.2950 19.2950i −0.675045 0.675045i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.6853 + 25.6853i 0.896425 + 0.896425i 0.995118 0.0986930i \(-0.0314662\pi\)
−0.0986930 + 0.995118i \(0.531466\pi\)
\(822\) 0 0
\(823\) 37.2735i 1.29927i −0.760246 0.649636i \(-0.774921\pi\)
0.760246 0.649636i \(-0.225079\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26.5171 + 26.5171i −0.922090 + 0.922090i −0.997177 0.0750873i \(-0.976076\pi\)
0.0750873 + 0.997177i \(0.476076\pi\)
\(828\) 0 0
\(829\) 20.5799i 0.714769i −0.933957 0.357385i \(-0.883669\pi\)
0.933957 0.357385i \(-0.116331\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.5522i 0.504203i
\(834\) 0 0
\(835\) −8.11368 −0.280786
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 11.5432 11.5432i 0.398516 0.398516i −0.479193 0.877709i \(-0.659071\pi\)
0.877709 + 0.479193i \(0.159071\pi\)
\(840\) 0 0
\(841\) 18.5123 0.638355
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.53970 + 12.1816i 0.156171 + 0.419059i
\(846\) 0 0
\(847\) 7.15978 7.15978i 0.246013 0.246013i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.43026 4.43026i −0.151867 0.151867i
\(852\) 0 0
\(853\) −10.5906 10.5906i −0.362616 0.362616i 0.502159 0.864775i \(-0.332539\pi\)
−0.864775 + 0.502159i \(0.832539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −19.4389 −0.664022 −0.332011 0.943276i \(-0.607727\pi\)
−0.332011 + 0.943276i \(0.607727\pi\)
\(858\) 0 0
\(859\) 28.6986 0.979183 0.489592 0.871952i \(-0.337146\pi\)
0.489592 + 0.871952i \(0.337146\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.6075 + 34.6075i 1.17805 + 1.17805i 0.980239 + 0.197814i \(0.0633843\pi\)
0.197814 + 0.980239i \(0.436616\pi\)
\(864\) 0 0
\(865\) −2.28995 2.28995i −0.0778605 0.0778605i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.628059 0.628059i 0.0213055 0.0213055i
\(870\) 0 0
\(871\) 21.6475 13.9078i 0.733497 0.471248i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.08456 0.0366647
\(876\) 0 0
\(877\) −3.47122 + 3.47122i −0.117215 + 0.117215i −0.763281 0.646066i \(-0.776413\pi\)
0.646066 + 0.763281i \(0.276413\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 45.3200 1.52687 0.763435 0.645884i \(-0.223511\pi\)
0.763435 + 0.645884i \(0.223511\pi\)
\(882\) 0 0
\(883\) 4.78577i 0.161054i −0.996752 0.0805269i \(-0.974340\pi\)
0.996752 0.0805269i \(-0.0256603\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.4000i 0.617811i −0.951093 0.308905i \(-0.900037\pi\)
0.951093 0.308905i \(-0.0999626\pi\)
\(888\) 0 0
\(889\) −10.0050 + 10.0050i −0.335557 + 0.335557i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.6353i 0.389359i
\(894\) 0 0
\(895\) 7.28995 + 7.28995i 0.243676 + 0.243676i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.96715 4.96715i −0.165664 0.165664i
\(900\) 0 0
\(901\) 17.0081i 0.566623i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.142035 + 0.142035i −0.00472139 + 0.00472139i
\(906\) 0 0
\(907\) 31.5830i 1.04870i −0.851504 0.524348i \(-0.824309\pi\)
0.851504 0.524348i \(-0.175691\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0.0233077i 0.000772218i 1.00000 0.000386109i \(0.000122902\pi\)
−1.00000 0.000386109i \(0.999877\pi\)
\(912\) 0 0
\(913\) 7.13829 0.236243
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.15786 + 1.15786i −0.0382358 + 0.0382358i
\(918\) 0 0
\(919\) 40.8730 1.34827 0.674137 0.738606i \(-0.264516\pi\)
0.674137 + 0.738606i \(0.264516\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 28.1610 + 43.8325i 0.926930 + 1.44276i
\(924\) 0 0
\(925\) −1.52305 + 1.52305i −0.0500775 + 0.0500775i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.0285 + 20.0285i 0.657114 + 0.657114i 0.954696 0.297582i \(-0.0961803\pi\)
−0.297582 + 0.954696i \(0.596180\pi\)
\(930\) 0 0
\(931\) −11.6475 11.6475i −0.381731 0.381731i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.22328 0.105412
\(936\) 0 0
\(937\) 36.9209 1.20615 0.603077 0.797683i \(-0.293941\pi\)
0.603077 + 0.797683i \(0.293941\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.89424 3.89424i −0.126949 0.126949i 0.640778 0.767726i \(-0.278612\pi\)
−0.767726 + 0.640778i \(0.778612\pi\)
\(942\) 0 0
\(943\) 3.65633 + 3.65633i 0.119066 + 0.119066i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0705 + 20.0705i −0.652205 + 0.652205i −0.953524 0.301319i \(-0.902573\pi\)
0.301319 + 0.953524i \(0.402573\pi\)
\(948\) 0 0
\(949\) 2.08407 + 3.24385i 0.0676517 + 0.105300i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −16.3335 −0.529095 −0.264547 0.964373i \(-0.585223\pi\)
−0.264547 + 0.964373i \(0.585223\pi\)
\(954\) 0 0
\(955\) −2.22236 + 2.22236i −0.0719138 + 0.0719138i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.2630 0.622034
\(960\) 0 0
\(961\) 26.2950i 0.848224i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.01273i 0.161366i
\(966\) 0 0
\(967\) 3.97851 3.97851i 0.127940 0.127940i −0.640237 0.768177i \(-0.721164\pi\)
0.768177 + 0.640237i \(0.221164\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.4179i 0.398508i 0.979948 + 0.199254i \(0.0638519\pi\)
−0.979948 + 0.199254i \(0.936148\pi\)
\(972\) 0 0
\(973\) 2.53953 + 2.53953i 0.0814136 + 0.0814136i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.83945 + 1.83945i 0.0588493 + 0.0588493i 0.735919 0.677070i \(-0.236750\pi\)
−0.677070 + 0.735919i \(0.736750\pi\)
\(978\) 0 0
\(979\) 5.44661i 0.174074i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.7603 + 17.7603i −0.566464 + 0.566464i −0.931136 0.364672i \(-0.881181\pi\)
0.364672 + 0.931136i \(0.381181\pi\)
\(984\) 0 0
\(985\) 5.88632i 0.187554i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.0627i 0.892342i
\(990\) 0 0
\(991\) −33.2293 −1.05556 −0.527781 0.849380i \(-0.676976\pi\)
−0.527781 + 0.849380i \(0.676976\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.48111 7.48111i 0.237167 0.237167i
\(996\) 0 0
\(997\) 46.3411 1.46764 0.733818 0.679346i \(-0.237737\pi\)
0.733818 + 0.679346i \(0.237737\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bi.d.161.5 yes 12
3.2 odd 2 inner 2340.2.bi.d.161.2 12
13.8 odd 4 inner 2340.2.bi.d.1061.2 yes 12
39.8 even 4 inner 2340.2.bi.d.1061.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.bi.d.161.2 12 3.2 odd 2 inner
2340.2.bi.d.161.5 yes 12 1.1 even 1 trivial
2340.2.bi.d.1061.2 yes 12 13.8 odd 4 inner
2340.2.bi.d.1061.5 yes 12 39.8 even 4 inner