Properties

Label 2340.2.bi.d.1061.4
Level $2340$
Weight $2$
Character 2340.1061
Analytic conductor $18.685$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(161,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bi (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.58498535041007616.52
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{9} + 72x^{6} - 324x^{3} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1061.4
Root \(1.72927 + 0.0980500i\) of defining polynomial
Character \(\chi\) \(=\) 2340.1061
Dual form 2340.2.bi.d.161.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{5} +(-1.63122 + 1.63122i) q^{7} +(-3.24154 - 3.24154i) q^{11} +(-3.21545 - 1.63122i) q^{13} +3.72111 q^{17} +(2.00000 + 2.00000i) q^{19} +4.17618 q^{23} -1.00000i q^{25} +5.06886i q^{29} +(-3.26245 - 3.26245i) q^{31} +2.30690i q^{35} +(-5.21545 + 5.21545i) q^{37} +(-7.85533 + 7.85533i) q^{41} +1.35644i q^{43} +(-4.17618 - 4.17618i) q^{47} +1.67822i q^{49} +11.0304i q^{53} -4.58423 q^{55} -4.49023 q^{61} +(-3.42711 + 1.12022i) q^{65} +(-8.43090 - 8.43090i) q^{67} +(-10.5508 + 10.5508i) q^{71} +(-6.84667 + 6.84667i) q^{73} +10.5753 q^{77} -10.3716 q^{79} +(5.13533 - 5.13533i) q^{83} +(2.63122 - 2.63122i) q^{85} +(3.61269 + 3.61269i) q^{89} +(7.90600 - 2.58423i) q^{91} +2.82843 q^{95} +(2.04700 + 2.04700i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{13} + 24 q^{19} - 12 q^{37} - 24 q^{55} - 12 q^{73} + 24 q^{79} + 12 q^{85} + 72 q^{91} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 0 0
\(7\) −1.63122 + 1.63122i −0.616544 + 0.616544i −0.944643 0.328099i \(-0.893592\pi\)
0.328099 + 0.944643i \(0.393592\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.24154 3.24154i −0.977360 0.977360i 0.0223892 0.999749i \(-0.492873\pi\)
−0.999749 + 0.0223892i \(0.992873\pi\)
\(12\) 0 0
\(13\) −3.21545 1.63122i −0.891805 0.452420i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.72111 0.902502 0.451251 0.892397i \(-0.350978\pi\)
0.451251 + 0.892397i \(0.350978\pi\)
\(18\) 0 0
\(19\) 2.00000 + 2.00000i 0.458831 + 0.458831i 0.898272 0.439440i \(-0.144823\pi\)
−0.439440 + 0.898272i \(0.644823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.17618 0.870793 0.435396 0.900239i \(-0.356608\pi\)
0.435396 + 0.900239i \(0.356608\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.06886i 0.941264i 0.882330 + 0.470632i \(0.155974\pi\)
−0.882330 + 0.470632i \(0.844026\pi\)
\(30\) 0 0
\(31\) −3.26245 3.26245i −0.585953 0.585953i 0.350580 0.936533i \(-0.385984\pi\)
−0.936533 + 0.350580i \(0.885984\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.30690i 0.389937i
\(36\) 0 0
\(37\) −5.21545 + 5.21545i −0.857414 + 0.857414i −0.991033 0.133618i \(-0.957340\pi\)
0.133618 + 0.991033i \(0.457340\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.85533 + 7.85533i −1.22680 + 1.22680i −0.261628 + 0.965169i \(0.584259\pi\)
−0.965169 + 0.261628i \(0.915741\pi\)
\(42\) 0 0
\(43\) 1.35644i 0.206856i 0.994637 + 0.103428i \(0.0329811\pi\)
−0.994637 + 0.103428i \(0.967019\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.17618 4.17618i −0.609158 0.609158i 0.333568 0.942726i \(-0.391747\pi\)
−0.942726 + 0.333568i \(0.891747\pi\)
\(48\) 0 0
\(49\) 1.67822i 0.239746i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.0304i 1.51514i 0.652752 + 0.757571i \(0.273614\pi\)
−0.652752 + 0.757571i \(0.726386\pi\)
\(54\) 0 0
\(55\) −4.58423 −0.618137
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(60\) 0 0
\(61\) −4.49023 −0.574915 −0.287458 0.957793i \(-0.592810\pi\)
−0.287458 + 0.957793i \(0.592810\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.42711 + 1.12022i −0.425081 + 0.138946i
\(66\) 0 0
\(67\) −8.43090 8.43090i −1.03000 1.03000i −0.999536 0.0304621i \(-0.990302\pi\)
−0.0304621 0.999536i \(-0.509698\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.5508 + 10.5508i −1.25215 + 1.25215i −0.297400 + 0.954753i \(0.596120\pi\)
−0.954753 + 0.297400i \(0.903880\pi\)
\(72\) 0 0
\(73\) −6.84667 + 6.84667i −0.801342 + 0.801342i −0.983305 0.181963i \(-0.941755\pi\)
0.181963 + 0.983305i \(0.441755\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.5753 1.20517
\(78\) 0 0
\(79\) −10.3716 −1.16689 −0.583446 0.812152i \(-0.698296\pi\)
−0.583446 + 0.812152i \(0.698296\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.13533 5.13533i 0.563675 0.563675i −0.366674 0.930349i \(-0.619504\pi\)
0.930349 + 0.366674i \(0.119504\pi\)
\(84\) 0 0
\(85\) 2.63122 2.63122i 0.285396 0.285396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.61269 + 3.61269i 0.382945 + 0.382945i 0.872162 0.489217i \(-0.162717\pi\)
−0.489217 + 0.872162i \(0.662717\pi\)
\(90\) 0 0
\(91\) 7.90600 2.58423i 0.828774 0.270900i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.82843 0.290191
\(96\) 0 0
\(97\) 2.04700 + 2.04700i 0.207841 + 0.207841i 0.803349 0.595508i \(-0.203049\pi\)
−0.595508 + 0.803349i \(0.703049\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.16094 0.613036 0.306518 0.951865i \(-0.400836\pi\)
0.306518 + 0.951865i \(0.400836\pi\)
\(102\) 0 0
\(103\) 17.5993i 1.73412i −0.498208 0.867058i \(-0.666008\pi\)
0.498208 0.867058i \(-0.333992\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.34775i 0.130292i 0.997876 + 0.0651459i \(0.0207513\pi\)
−0.997876 + 0.0651459i \(0.979249\pi\)
\(108\) 0 0
\(109\) −10.7527 10.7527i −1.02992 1.02992i −0.999538 0.0303812i \(-0.990328\pi\)
−0.0303812 0.999538i \(-0.509672\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.11192i 0.574961i −0.957787 0.287480i \(-0.907182\pi\)
0.957787 0.287480i \(-0.0928176\pi\)
\(114\) 0 0
\(115\) 2.95300 2.95300i 0.275369 0.275369i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.06996 + 6.06996i −0.556433 + 0.556433i
\(120\) 0 0
\(121\) 10.0151i 0.910466i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 0.430897i 0.0382360i −0.999817 0.0191180i \(-0.993914\pi\)
0.999817 0.0191180i \(-0.00608581\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.39917i 0.559098i 0.960131 + 0.279549i \(0.0901849\pi\)
−0.960131 + 0.279549i \(0.909815\pi\)
\(132\) 0 0
\(133\) −6.52489 −0.565780
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.388599 + 0.388599i 0.0332003 + 0.0332003i 0.723512 0.690312i \(-0.242527\pi\)
−0.690312 + 0.723512i \(0.742527\pi\)
\(138\) 0 0
\(139\) −14.3716 −1.21898 −0.609490 0.792794i \(-0.708626\pi\)
−0.609490 + 0.792794i \(0.708626\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.13533 + 15.7107i 0.429437 + 1.31379i
\(144\) 0 0
\(145\) 3.58423 + 3.58423i 0.297654 + 0.297654i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.3384 14.3384i 1.17465 1.17465i 0.193560 0.981089i \(-0.437997\pi\)
0.981089 0.193560i \(-0.0620033\pi\)
\(150\) 0 0
\(151\) −13.7527 + 13.7527i −1.11918 + 1.11918i −0.127315 + 0.991862i \(0.540636\pi\)
−0.991862 + 0.127315i \(0.959364\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.61380 −0.370589
\(156\) 0 0
\(157\) −9.04979 −0.722252 −0.361126 0.932517i \(-0.617608\pi\)
−0.361126 + 0.932517i \(0.617608\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.81228 + 6.81228i −0.536882 + 0.536882i
\(162\) 0 0
\(163\) 14.1561 14.1561i 1.10879 1.10879i 0.115483 0.993309i \(-0.463158\pi\)
0.993309 0.115483i \(-0.0368416\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.34775 + 1.34775i 0.104292 + 0.104292i 0.757327 0.653035i \(-0.226505\pi\)
−0.653035 + 0.757327i \(0.726505\pi\)
\(168\) 0 0
\(169\) 7.67822 + 10.4902i 0.590632 + 0.806941i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.06886 0.385378 0.192689 0.981260i \(-0.438279\pi\)
0.192689 + 0.981260i \(0.438279\pi\)
\(174\) 0 0
\(175\) 1.63122 + 1.63122i 0.123309 + 0.123309i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.00221 0.149652 0.0748260 0.997197i \(-0.476160\pi\)
0.0748260 + 0.997197i \(0.476160\pi\)
\(180\) 0 0
\(181\) 26.0649i 1.93739i 0.248255 + 0.968695i \(0.420143\pi\)
−0.248255 + 0.968695i \(0.579857\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.37576i 0.542277i
\(186\) 0 0
\(187\) −12.0621 12.0621i −0.882070 0.882070i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0538i 0.727468i 0.931503 + 0.363734i \(0.118498\pi\)
−0.931503 + 0.363734i \(0.881502\pi\)
\(192\) 0 0
\(193\) −13.7403 + 13.7403i −0.989051 + 0.989051i −0.999941 0.0108893i \(-0.996534\pi\)
0.0108893 + 0.999941i \(0.496534\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.2472 + 11.2472i −0.801333 + 0.801333i −0.983304 0.181971i \(-0.941752\pi\)
0.181971 + 0.983304i \(0.441752\pi\)
\(198\) 0 0
\(199\) 1.16845i 0.0828293i −0.999142 0.0414146i \(-0.986814\pi\)
0.999142 0.0414146i \(-0.0131865\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.26844 8.26844i −0.580331 0.580331i
\(204\) 0 0
\(205\) 11.1091i 0.775894i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 12.9661i 0.896887i
\(210\) 0 0
\(211\) 14.2182 0.978824 0.489412 0.872053i \(-0.337211\pi\)
0.489412 + 0.872053i \(0.337211\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.959150 + 0.959150i 0.0654135 + 0.0654135i
\(216\) 0 0
\(217\) 10.6436 0.722532
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.9650 6.06996i −0.804856 0.408310i
\(222\) 0 0
\(223\) 7.90600 + 7.90600i 0.529425 + 0.529425i 0.920401 0.390976i \(-0.127862\pi\)
−0.390976 + 0.920401i \(0.627862\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.17599 + 1.17599i −0.0780531 + 0.0780531i −0.745056 0.667002i \(-0.767577\pi\)
0.667002 + 0.745056i \(0.267577\pi\)
\(228\) 0 0
\(229\) 4.26245 4.26245i 0.281670 0.281670i −0.552105 0.833775i \(-0.686175\pi\)
0.833775 + 0.552105i \(0.186175\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.2881 −0.673995 −0.336998 0.941505i \(-0.609411\pi\)
−0.336998 + 0.941505i \(0.609411\pi\)
\(234\) 0 0
\(235\) −5.90600 −0.385265
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.20069 + 4.20069i −0.271720 + 0.271720i −0.829792 0.558072i \(-0.811541\pi\)
0.558072 + 0.829792i \(0.311541\pi\)
\(240\) 0 0
\(241\) 6.41577 6.41577i 0.413276 0.413276i −0.469602 0.882878i \(-0.655603\pi\)
0.882878 + 0.469602i \(0.155603\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.18668 + 1.18668i 0.0758143 + 0.0758143i
\(246\) 0 0
\(247\) −3.16845 9.69334i −0.201604 0.616773i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.26403 −0.269143 −0.134572 0.990904i \(-0.542966\pi\)
−0.134572 + 0.990904i \(0.542966\pi\)
\(252\) 0 0
\(253\) −13.5372 13.5372i −0.851078 0.851078i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.5159 1.40450 0.702251 0.711930i \(-0.252179\pi\)
0.702251 + 0.711930i \(0.252179\pi\)
\(258\) 0 0
\(259\) 17.0151i 1.05727i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.39917i 0.394589i −0.980344 0.197295i \(-0.936784\pi\)
0.980344 0.197295i \(-0.0632156\pi\)
\(264\) 0 0
\(265\) 7.79967 + 7.79967i 0.479130 + 0.479130i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.6032i 0.829399i −0.909958 0.414700i \(-0.863887\pi\)
0.909958 0.414700i \(-0.136113\pi\)
\(270\) 0 0
\(271\) 0.584225 0.584225i 0.0354892 0.0354892i −0.689140 0.724629i \(-0.742011\pi\)
0.724629 + 0.689140i \(0.242011\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.24154 + 3.24154i −0.195472 + 0.195472i
\(276\) 0 0
\(277\) 26.2429i 1.57678i −0.615174 0.788392i \(-0.710914\pi\)
0.615174 0.788392i \(-0.289086\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 17.7968 + 17.7968i 1.06167 + 1.06167i 0.997969 + 0.0636978i \(0.0202894\pi\)
0.0636978 + 0.997969i \(0.479711\pi\)
\(282\) 0 0
\(283\) 21.9060i 1.30218i 0.759002 + 0.651088i \(0.225687\pi\)
−0.759002 + 0.651088i \(0.774313\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 25.6276i 1.51275i
\(288\) 0 0
\(289\) −3.15333 −0.185490
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.5391 18.5391i −1.08307 1.08307i −0.996222 0.0868434i \(-0.972322\pi\)
−0.0868434 0.996222i \(-0.527678\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.4283 6.81228i −0.776577 0.393964i
\(300\) 0 0
\(301\) −2.21266 2.21266i −0.127536 0.127536i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.17507 + 3.17507i −0.181804 + 0.181804i
\(306\) 0 0
\(307\) 2.70568 2.70568i 0.154421 0.154421i −0.625668 0.780089i \(-0.715174\pi\)
0.780089 + 0.625668i \(0.215174\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.69991 0.379917 0.189959 0.981792i \(-0.439165\pi\)
0.189959 + 0.981792i \(0.439165\pi\)
\(312\) 0 0
\(313\) 0.187991 0.0106259 0.00531295 0.999986i \(-0.498309\pi\)
0.00531295 + 0.999986i \(0.498309\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.46582 9.46582i 0.531653 0.531653i −0.389411 0.921064i \(-0.627321\pi\)
0.921064 + 0.389411i \(0.127321\pi\)
\(318\) 0 0
\(319\) 16.4309 16.4309i 0.919954 0.919954i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.44222 + 7.44222i 0.414096 + 0.414096i
\(324\) 0 0
\(325\) −1.63122 + 3.21545i −0.0904840 + 0.178361i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13.6246 0.751146
\(330\) 0 0
\(331\) 10.8618 + 10.8618i 0.597018 + 0.597018i 0.939518 0.342500i \(-0.111274\pi\)
−0.342500 + 0.939518i \(0.611274\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.9231 −0.651428
\(336\) 0 0
\(337\) 13.1685i 0.717331i 0.933466 + 0.358666i \(0.116768\pi\)
−0.933466 + 0.358666i \(0.883232\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 21.1507i 1.14537i
\(342\) 0 0
\(343\) −14.1561 14.1561i −0.764358 0.764358i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 31.7260i 1.70314i −0.524239 0.851571i \(-0.675650\pi\)
0.524239 0.851571i \(-0.324350\pi\)
\(348\) 0 0
\(349\) −1.73755 + 1.73755i −0.0930091 + 0.0930091i −0.752080 0.659071i \(-0.770950\pi\)
0.659071 + 0.752080i \(0.270950\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.39935 9.39935i 0.500277 0.500277i −0.411247 0.911524i \(-0.634907\pi\)
0.911524 + 0.411247i \(0.134907\pi\)
\(354\) 0 0
\(355\) 14.9211i 0.791931i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.2368 + 23.2368i 1.22639 + 1.22639i 0.965319 + 0.261072i \(0.0840760\pi\)
0.261072 + 0.965319i \(0.415924\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 9.68266i 0.506813i
\(366\) 0 0
\(367\) −24.4309 −1.27528 −0.637641 0.770333i \(-0.720090\pi\)
−0.637641 + 0.770333i \(0.720090\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −17.9931 17.9931i −0.934153 0.934153i
\(372\) 0 0
\(373\) 24.3122 1.25884 0.629420 0.777065i \(-0.283293\pi\)
0.629420 + 0.777065i \(0.283293\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.26844 16.2987i 0.425846 0.839424i
\(378\) 0 0
\(379\) −22.3122 22.3122i −1.14610 1.14610i −0.987312 0.158790i \(-0.949241\pi\)
−0.158790 0.987312i \(-0.550759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.4877 + 13.4877i −0.689188 + 0.689188i −0.962052 0.272864i \(-0.912029\pi\)
0.272864 + 0.962052i \(0.412029\pi\)
\(384\) 0 0
\(385\) 7.47790 7.47790i 0.381109 0.381109i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.8200 −0.700702 −0.350351 0.936618i \(-0.613938\pi\)
−0.350351 + 0.936618i \(0.613938\pi\)
\(390\) 0 0
\(391\) 15.5400 0.785892
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.33380 + 7.33380i −0.369004 + 0.369004i
\(396\) 0 0
\(397\) 12.5719 12.5719i 0.630965 0.630965i −0.317345 0.948310i \(-0.602791\pi\)
0.948310 + 0.317345i \(0.102791\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.89729 7.89729i −0.394372 0.394372i 0.481871 0.876242i \(-0.339958\pi\)
−0.876242 + 0.481871i \(0.839958\pi\)
\(402\) 0 0
\(403\) 5.16845 + 15.8120i 0.257459 + 0.787652i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 33.8121 1.67601
\(408\) 0 0
\(409\) 7.37157 + 7.37157i 0.364500 + 0.364500i 0.865467 0.500966i \(-0.167022\pi\)
−0.500966 + 0.865467i \(0.667022\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 7.26245i 0.356499i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.0564i 0.882113i −0.897479 0.441056i \(-0.854604\pi\)
0.897479 0.441056i \(-0.145396\pi\)
\(420\) 0 0
\(421\) 24.9363 + 24.9363i 1.21532 + 1.21532i 0.969253 + 0.246065i \(0.0791377\pi\)
0.246065 + 0.969253i \(0.420862\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.72111i 0.180500i
\(426\) 0 0
\(427\) 7.32457 7.32457i 0.354461 0.354461i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.8053 + 24.8053i −1.19483 + 1.19483i −0.219136 + 0.975694i \(0.570324\pi\)
−0.975694 + 0.219136i \(0.929676\pi\)
\(432\) 0 0
\(433\) 34.5798i 1.66180i 0.556422 + 0.830900i \(0.312174\pi\)
−0.556422 + 0.830900i \(0.687826\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.35235 + 8.35235i 0.399547 + 0.399547i
\(438\) 0 0
\(439\) 31.8467i 1.51996i 0.649947 + 0.759979i \(0.274791\pi\)
−0.649947 + 0.759979i \(0.725209\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.35216i 0.254289i 0.991884 + 0.127144i \(0.0405812\pi\)
−0.991884 + 0.127144i \(0.959419\pi\)
\(444\) 0 0
\(445\) 5.10912 0.242195
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.1496 + 20.1496i 0.950917 + 0.950917i 0.998851 0.0479332i \(-0.0152634\pi\)
−0.0479332 + 0.998851i \(0.515263\pi\)
\(450\) 0 0
\(451\) 50.9267 2.39804
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.76307 7.41771i 0.176415 0.347748i
\(456\) 0 0
\(457\) −15.9530 15.9530i −0.746250 0.746250i 0.227523 0.973773i \(-0.426937\pi\)
−0.973773 + 0.227523i \(0.926937\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.77830 1.77830i 0.0828238 0.0828238i −0.664481 0.747305i \(-0.731347\pi\)
0.747305 + 0.664481i \(0.231347\pi\)
\(462\) 0 0
\(463\) 19.0426 19.0426i 0.884984 0.884984i −0.109052 0.994036i \(-0.534782\pi\)
0.994036 + 0.109052i \(0.0347816\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.69568 0.263565 0.131782 0.991279i \(-0.457930\pi\)
0.131782 + 0.991279i \(0.457930\pi\)
\(468\) 0 0
\(469\) 27.5054 1.27008
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.39696 4.39696i 0.202172 0.202172i
\(474\) 0 0
\(475\) 2.00000 2.00000i 0.0917663 0.0917663i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.5251 24.5251i −1.12058 1.12058i −0.991654 0.128929i \(-0.958846\pi\)
−0.128929 0.991654i \(-0.541154\pi\)
\(480\) 0 0
\(481\) 25.2776 8.26245i 1.15256 0.376735i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.89489 0.131450
\(486\) 0 0
\(487\) −11.4186 11.4186i −0.517424 0.517424i 0.399367 0.916791i \(-0.369230\pi\)
−0.916791 + 0.399367i \(0.869230\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −32.7240 −1.47681 −0.738407 0.674356i \(-0.764422\pi\)
−0.738407 + 0.674356i \(0.764422\pi\)
\(492\) 0 0
\(493\) 18.8618i 0.849493i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 34.4215i 1.54402i
\(498\) 0 0
\(499\) 20.0649 + 20.0649i 0.898229 + 0.898229i 0.995279 0.0970507i \(-0.0309409\pi\)
−0.0970507 + 0.995279i \(0.530941\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.91896i 0.397677i −0.980032 0.198838i \(-0.936283\pi\)
0.980032 0.198838i \(-0.0637169\pi\)
\(504\) 0 0
\(505\) 4.35644 4.35644i 0.193859 0.193859i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.4927 14.4927i 0.642379 0.642379i −0.308761 0.951140i \(-0.599914\pi\)
0.951140 + 0.308761i \(0.0999143\pi\)
\(510\) 0 0
\(511\) 22.3369i 0.988126i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.4446 12.4446i −0.548375 0.548375i
\(516\) 0 0
\(517\) 27.0745i 1.19073i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.6893i 0.687360i −0.939087 0.343680i \(-0.888326\pi\)
0.939087 0.343680i \(-0.111674\pi\)
\(522\) 0 0
\(523\) −9.04421 −0.395476 −0.197738 0.980255i \(-0.563359\pi\)
−0.197738 + 0.980255i \(0.563359\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.1399 12.1399i −0.528824 0.528824i
\(528\) 0 0
\(529\) −5.55956 −0.241720
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 38.0722 12.4446i 1.64909 0.539036i
\(534\) 0 0
\(535\) 0.953002 + 0.953002i 0.0412019 + 0.0412019i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.44002 5.44002i 0.234318 0.234318i
\(540\) 0 0
\(541\) −12.1338 + 12.1338i −0.521672 + 0.521672i −0.918076 0.396404i \(-0.870258\pi\)
0.396404 + 0.918076i \(0.370258\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15.2066 −0.651378
\(546\) 0 0
\(547\) 44.3671 1.89700 0.948501 0.316774i \(-0.102600\pi\)
0.948501 + 0.316774i \(0.102600\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.1377 + 10.1377i −0.431881 + 0.431881i
\(552\) 0 0
\(553\) 16.9183 16.9183i 0.719441 0.719441i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.26844 + 8.26844i 0.350345 + 0.350345i 0.860238 0.509893i \(-0.170315\pi\)
−0.509893 + 0.860238i \(0.670315\pi\)
\(558\) 0 0
\(559\) 2.21266 4.36157i 0.0935856 0.184475i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.5367 −0.570504 −0.285252 0.958453i \(-0.592077\pi\)
−0.285252 + 0.958453i \(0.592077\pi\)
\(564\) 0 0
\(565\) −4.32178 4.32178i −0.181819 0.181819i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 41.1389 1.72463 0.862316 0.506371i \(-0.169013\pi\)
0.862316 + 0.506371i \(0.169013\pi\)
\(570\) 0 0
\(571\) 5.57910i 0.233478i −0.993163 0.116739i \(-0.962756\pi\)
0.993163 0.116739i \(-0.0372441\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.17618i 0.174159i
\(576\) 0 0
\(577\) 3.30944 + 3.30944i 0.137774 + 0.137774i 0.772630 0.634856i \(-0.218941\pi\)
−0.634856 + 0.772630i \(0.718941\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.7537i 0.695062i
\(582\) 0 0
\(583\) 35.7555 35.7555i 1.48084 1.48084i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23.1917 23.1917i 0.957225 0.957225i −0.0418972 0.999122i \(-0.513340\pi\)
0.999122 + 0.0418972i \(0.0133402\pi\)
\(588\) 0 0
\(589\) 13.0498i 0.537707i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.06665 3.06665i −0.125932 0.125932i 0.641332 0.767264i \(-0.278382\pi\)
−0.767264 + 0.641332i \(0.778382\pi\)
\(594\) 0 0
\(595\) 8.58423i 0.351919i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0.658403i 0.0269016i −0.999910 0.0134508i \(-0.995718\pi\)
0.999910 0.0134508i \(-0.00428165\pi\)
\(600\) 0 0
\(601\) −23.9653 −0.977566 −0.488783 0.872405i \(-0.662559\pi\)
−0.488783 + 0.872405i \(0.662559\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.08176 + 7.08176i 0.287915 + 0.287915i
\(606\) 0 0
\(607\) −2.33690 −0.0948519 −0.0474260 0.998875i \(-0.515102\pi\)
−0.0474260 + 0.998875i \(0.515102\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.61600 + 20.2406i 0.267655 + 0.818845i
\(612\) 0 0
\(613\) 20.6961 + 20.6961i 0.835909 + 0.835909i 0.988318 0.152409i \(-0.0487030\pi\)
−0.152409 + 0.988318i \(0.548703\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.7623 23.7623i 0.956633 0.956633i −0.0424650 0.999098i \(-0.513521\pi\)
0.999098 + 0.0424650i \(0.0135211\pi\)
\(618\) 0 0
\(619\) −0.0593323 + 0.0593323i −0.00238477 + 0.00238477i −0.708298 0.705913i \(-0.750537\pi\)
0.705913 + 0.708298i \(0.250537\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.7862 −0.472205
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.4073 + 19.4073i −0.773818 + 0.773818i
\(630\) 0 0
\(631\) 6.09400 6.09400i 0.242598 0.242598i −0.575326 0.817924i \(-0.695125\pi\)
0.817924 + 0.575326i \(0.195125\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.304691 0.304691i −0.0120913 0.0120913i
\(636\) 0 0
\(637\) 2.73755 5.39623i 0.108466 0.213807i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −32.6187 −1.28836 −0.644181 0.764873i \(-0.722802\pi\)
−0.644181 + 0.764873i \(0.722802\pi\)
\(642\) 0 0
\(643\) −31.9435 31.9435i −1.25973 1.25973i −0.951223 0.308504i \(-0.900172\pi\)
−0.308504 0.951223i \(-0.599828\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.6358 1.04716 0.523580 0.851976i \(-0.324596\pi\)
0.523580 + 0.851976i \(0.324596\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.154317i 0.00603889i −0.999995 0.00301945i \(-0.999039\pi\)
0.999995 0.00301945i \(-0.000961121\pi\)
\(654\) 0 0
\(655\) 4.52489 + 4.52489i 0.176802 + 0.176802i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 45.9070i 1.78828i −0.447785 0.894141i \(-0.647787\pi\)
0.447785 0.894141i \(-0.352213\pi\)
\(660\) 0 0
\(661\) −31.0302 + 31.0302i −1.20694 + 1.20694i −0.234923 + 0.972014i \(0.575484\pi\)
−0.972014 + 0.234923i \(0.924516\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.61380 + 4.61380i −0.178915 + 0.178915i
\(666\) 0 0
\(667\) 21.1685i 0.819646i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 14.5552 + 14.5552i 0.561899 + 0.561899i
\(672\) 0 0
\(673\) 17.3811i 0.669993i 0.942219 + 0.334996i \(0.108735\pi\)
−0.942219 + 0.334996i \(0.891265\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.0607i 1.42436i −0.701997 0.712180i \(-0.747708\pi\)
0.701997 0.712180i \(-0.252292\pi\)
\(678\) 0 0
\(679\) −6.67822 −0.256287
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.09668 8.09668i −0.309811 0.309811i 0.535025 0.844836i \(-0.320302\pi\)
−0.844836 + 0.535025i \(0.820302\pi\)
\(684\) 0 0
\(685\) 0.549562 0.0209977
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 17.9931 35.4677i 0.685481 1.35121i
\(690\) 0 0
\(691\) −21.4158 21.4158i −0.814694 0.814694i 0.170639 0.985334i \(-0.445417\pi\)
−0.985334 + 0.170639i \(0.945417\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.1622 + 10.1622i −0.385475 + 0.385475i
\(696\) 0 0
\(697\) −29.2306 + 29.2306i −1.10719 + 1.10719i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −38.1775 −1.44194 −0.720972 0.692964i \(-0.756305\pi\)
−0.720972 + 0.692964i \(0.756305\pi\)
\(702\) 0 0
\(703\) −20.8618 −0.786817
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.0499 + 10.0499i −0.377964 + 0.377964i
\(708\) 0 0
\(709\) −6.13379 + 6.13379i −0.230359 + 0.230359i −0.812843 0.582483i \(-0.802081\pi\)
0.582483 + 0.812843i \(0.302081\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −13.6246 13.6246i −0.510243 0.510243i
\(714\) 0 0
\(715\) 14.7403 + 7.47790i 0.551258 + 0.279657i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.78758 0.141253 0.0706264 0.997503i \(-0.477500\pi\)
0.0706264 + 0.997503i \(0.477500\pi\)
\(720\) 0 0
\(721\) 28.7085 + 28.7085i 1.06916 + 1.06916i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.06886 0.188253
\(726\) 0 0
\(727\) 38.0302i 1.41046i −0.708977 0.705232i \(-0.750843\pi\)
0.708977 0.705232i \(-0.249157\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.04747i 0.186688i
\(732\) 0 0
\(733\) −26.8148 26.8148i −0.990427 0.990427i 0.00952748 0.999955i \(-0.496967\pi\)
−0.999955 + 0.00952748i \(0.996967\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.6581i 2.01336i
\(738\) 0 0
\(739\) 7.78734 7.78734i 0.286462 0.286462i −0.549218 0.835679i \(-0.685074\pi\)
0.835679 + 0.549218i \(0.185074\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.4165 + 21.4165i −0.785697 + 0.785697i −0.980786 0.195089i \(-0.937500\pi\)
0.195089 + 0.980786i \(0.437500\pi\)
\(744\) 0 0
\(745\) 20.2776i 0.742913i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2.19848 2.19848i −0.0803307 0.0803307i
\(750\) 0 0
\(751\) 10.8662i 0.396514i 0.980150 + 0.198257i \(0.0635280\pi\)
−0.980150 + 0.198257i \(0.936472\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 19.4492i 0.707830i
\(756\) 0 0
\(757\) −32.3122 −1.17441 −0.587204 0.809439i \(-0.699771\pi\)
−0.587204 + 0.809439i \(0.699771\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16.7537 16.7537i −0.607322 0.607322i 0.334923 0.942245i \(-0.391290\pi\)
−0.942245 + 0.334923i \(0.891290\pi\)
\(762\) 0 0
\(763\) 35.0800 1.26998
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −23.6436 23.6436i −0.852608 0.852608i 0.137845 0.990454i \(-0.455982\pi\)
−0.990454 + 0.137845i \(0.955982\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.7454 12.7454i 0.458419 0.458419i −0.439717 0.898136i \(-0.644921\pi\)
0.898136 + 0.439717i \(0.144921\pi\)
\(774\) 0 0
\(775\) −3.26245 + 3.26245i −0.117191 + 0.117191i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.4213 −1.12579
\(780\) 0 0
\(781\) 68.4018 2.44761
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.39917 + 6.39917i −0.228396 + 0.228396i
\(786\) 0 0
\(787\) 4.11866 4.11866i 0.146815 0.146815i −0.629879 0.776693i \(-0.716895\pi\)
0.776693 + 0.629879i \(0.216895\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9.96990 + 9.96990i 0.354489 + 0.354489i
\(792\) 0 0
\(793\) 14.4381 + 7.32457i 0.512712 + 0.260103i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −38.2367 −1.35441 −0.677207 0.735792i \(-0.736810\pi\)
−0.677207 + 0.735792i \(0.736810\pi\)
\(798\) 0 0
\(799\) −15.5400 15.5400i −0.549766 0.549766i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 44.3875 1.56640
\(804\) 0 0
\(805\) 9.63401i 0.339554i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 35.4471i 1.24625i 0.782120 + 0.623127i \(0.214138\pi\)
−0.782120 + 0.623127i \(0.785862\pi\)
\(810\) 0 0
\(811\) 12.9558 + 12.9558i 0.454939 + 0.454939i 0.896990 0.442051i \(-0.145749\pi\)
−0.442051 + 0.896990i \(0.645749\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 20.0198i 0.701262i
\(816\) 0 0
\(817\) −2.71288 + 2.71288i −0.0949118 + 0.0949118i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.1156 + 15.1156i −0.527538 + 0.527538i −0.919838 0.392299i \(-0.871680\pi\)
0.392299 + 0.919838i \(0.371680\pi\)
\(822\) 0 0
\(823\) 3.75709i 0.130964i 0.997854 + 0.0654820i \(0.0208585\pi\)
−0.997854 + 0.0654820i \(0.979141\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.3525 + 11.3525i 0.394766 + 0.394766i 0.876382 0.481616i \(-0.159950\pi\)
−0.481616 + 0.876382i \(0.659950\pi\)
\(828\) 0 0
\(829\) 8.83155i 0.306732i 0.988169 + 0.153366i \(0.0490114\pi\)
−0.988169 + 0.153366i \(0.950989\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.24485i 0.216371i
\(834\) 0 0
\(835\) 1.90600 0.0659600
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −29.2577 29.2577i −1.01009 1.01009i −0.999949 0.0101408i \(-0.996772\pi\)
−0.0101408 0.999949i \(-0.503228\pi\)
\(840\) 0 0
\(841\) 3.30666 0.114023
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.8470 + 1.98839i 0.441951 + 0.0684027i
\(846\) 0 0
\(847\) −16.3369 16.3369i −0.561343 0.561343i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.7806 + 21.7806i −0.746630 + 0.746630i
\(852\) 0 0
\(853\) −7.30944 + 7.30944i −0.250271 + 0.250271i −0.821082 0.570811i \(-0.806629\pi\)
0.570811 + 0.821082i \(0.306629\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 3.28743 0.112297 0.0561483 0.998422i \(-0.482118\pi\)
0.0561483 + 0.998422i \(0.482118\pi\)
\(858\) 0 0
\(859\) −3.77735 −0.128881 −0.0644407 0.997922i \(-0.520526\pi\)
−0.0644407 + 0.997922i \(0.520526\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.0196 17.0196i 0.579353 0.579353i −0.355372 0.934725i \(-0.615646\pi\)
0.934725 + 0.355372i \(0.115646\pi\)
\(864\) 0 0
\(865\) 3.58423 3.58423i 0.121867 0.121867i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 33.6198 + 33.6198i 1.14047 + 1.14047i
\(870\) 0 0
\(871\) 13.3564 + 40.8618i 0.452566 + 1.38455i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.30690 0.0779874
\(876\) 0 0
\(877\) 8.96534 + 8.96534i 0.302738 + 0.302738i 0.842084 0.539346i \(-0.181329\pi\)
−0.539346 + 0.842084i \(0.681329\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.2607 0.884745 0.442372 0.896831i \(-0.354137\pi\)
0.442372 + 0.896831i \(0.354137\pi\)
\(882\) 0 0
\(883\) 43.9363i 1.47857i −0.673391 0.739286i \(-0.735163\pi\)
0.673391 0.739286i \(-0.264837\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.3743i 1.01987i 0.860213 + 0.509935i \(0.170331\pi\)
−0.860213 + 0.509935i \(0.829669\pi\)
\(888\) 0 0
\(889\) 0.702890 + 0.702890i 0.0235742 + 0.0235742i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 16.7047i 0.559002i
\(894\) 0 0
\(895\) 1.41577 1.41577i 0.0473241 0.0473241i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.5369 16.5369i 0.551536 0.551536i
\(900\) 0 0
\(901\) 41.0454i 1.36742i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 18.4307 + 18.4307i 0.612656 + 0.612656i
\(906\) 0 0
\(907\) 27.5109i 0.913485i −0.889599 0.456743i \(-0.849016\pi\)
0.889599 0.456743i \(-0.150984\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 39.1153i 1.29595i −0.761663 0.647974i \(-0.775617\pi\)
0.761663 0.647974i \(-0.224383\pi\)
\(912\) 0 0
\(913\) −33.2927 −1.10183
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.4385 10.4385i −0.344709 0.344709i
\(918\) 0 0
\(919\) −24.0952 −0.794826 −0.397413 0.917640i \(-0.630092\pi\)
−0.397413 + 0.917640i \(0.630092\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 51.1364 16.7149i 1.68318 0.550177i
\(924\) 0 0
\(925\) 5.21545 + 5.21545i 0.171483 + 0.171483i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −20.7725 + 20.7725i −0.681522 + 0.681522i −0.960343 0.278821i \(-0.910056\pi\)
0.278821 + 0.960343i \(0.410056\pi\)
\(930\) 0 0
\(931\) −3.35644 + 3.35644i −0.110003 + 0.110003i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.0584 −0.557870
\(936\) 0 0
\(937\) −4.88646 −0.159634 −0.0798169 0.996810i \(-0.525434\pi\)
−0.0798169 + 0.996810i \(0.525434\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.713857 + 0.713857i −0.0232711 + 0.0232711i −0.718647 0.695376i \(-0.755238\pi\)
0.695376 + 0.718647i \(0.255238\pi\)
\(942\) 0 0
\(943\) −32.8053 + 32.8053i −1.06829 + 1.06829i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22.7643 22.7643i −0.739740 0.739740i 0.232788 0.972528i \(-0.425215\pi\)
−0.972528 + 0.232788i \(0.925215\pi\)
\(948\) 0 0
\(949\) 33.1836 10.8467i 1.07718 0.352098i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15.6093 −0.505635 −0.252818 0.967514i \(-0.581357\pi\)
−0.252818 + 0.967514i \(0.581357\pi\)
\(954\) 0 0
\(955\) 7.10912 + 7.10912i 0.230046 + 0.230046i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.26778 −0.0409389
\(960\) 0 0
\(961\) 9.71288i 0.313319i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.4318i 0.625531i
\(966\) 0 0
\(967\) −12.9558 12.9558i −0.416630 0.416630i 0.467410 0.884040i \(-0.345187\pi\)
−0.884040 + 0.467410i \(0.845187\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 41.3422i 1.32673i 0.748294 + 0.663367i \(0.230873\pi\)
−0.748294 + 0.663367i \(0.769127\pi\)
\(972\) 0 0
\(973\) 23.4432 23.4432i 0.751556 0.751556i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.50648 5.50648i 0.176168 0.176168i −0.613515 0.789683i \(-0.710245\pi\)
0.789683 + 0.613515i \(0.210245\pi\)
\(978\) 0 0
\(979\) 23.4214i 0.748550i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.8031 + 22.8031i 0.727307 + 0.727307i 0.970082 0.242776i \(-0.0780579\pi\)
−0.242776 + 0.970082i \(0.578058\pi\)
\(984\) 0 0
\(985\) 15.9060i 0.506807i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.66474i 0.180128i
\(990\) 0 0
\(991\) −49.8276 −1.58283 −0.791413 0.611282i \(-0.790654\pi\)
−0.791413 + 0.611282i \(0.790654\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.826220 0.826220i −0.0261929 0.0261929i
\(996\) 0 0
\(997\) 16.2820 0.515656 0.257828 0.966191i \(-0.416993\pi\)
0.257828 + 0.966191i \(0.416993\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bi.d.1061.4 yes 12
3.2 odd 2 inner 2340.2.bi.d.1061.1 yes 12
13.5 odd 4 inner 2340.2.bi.d.161.1 12
39.5 even 4 inner 2340.2.bi.d.161.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.bi.d.161.1 12 13.5 odd 4 inner
2340.2.bi.d.161.4 yes 12 39.5 even 4 inner
2340.2.bi.d.1061.1 yes 12 3.2 odd 2 inner
2340.2.bi.d.1061.4 yes 12 1.1 even 1 trivial