Properties

Label 2340.1.gi.a
Level $2340$
Weight $1$
Character orbit 2340.gi
Analytic conductor $1.168$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,1,Mod(229,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 4, 6, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.229"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2340.gi (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.16781212956\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.17795700.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{3} + \zeta_{12} q^{5} + \zeta_{12}^{2} q^{9} - \zeta_{12} q^{13} + \zeta_{12}^{2} q^{15} - q^{17} + (\zeta_{12}^{3} + 1) q^{19} - \zeta_{12}^{4} q^{23} + \zeta_{12}^{2} q^{25} + \zeta_{12}^{3} q^{27} + \cdots + ( - \zeta_{12}^{5} + \zeta_{12}^{2}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{9} + 2 q^{15} - 4 q^{17} + 4 q^{19} + 2 q^{23} + 2 q^{25} - 2 q^{39} - 2 q^{43} - 2 q^{57} + 2 q^{59} - 2 q^{61} - 2 q^{65} - 4 q^{71} - 2 q^{79} - 2 q^{81} - 2 q^{83} - 4 q^{89} - 2 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(-1\) \(\zeta_{12}^{3}\) \(1\) \(\zeta_{12}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
229.1
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0 0.866025 + 0.500000i 0 0.866025 + 0.500000i 0 0 0 0.500000 + 0.866025i 0
889.1 0 0.866025 0.500000i 0 0.866025 0.500000i 0 0 0 0.500000 0.866025i 0
1669.1 0 −0.866025 0.500000i 0 −0.866025 0.500000i 0 0 0 0.500000 + 0.866025i 0
1789.1 0 −0.866025 + 0.500000i 0 −0.866025 + 0.500000i 0 0 0 0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
65.g odd 4 1 inner
585.db odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.1.gi.a 4
5.b even 2 1 2340.1.gi.b yes 4
9.c even 3 1 inner 2340.1.gi.a 4
13.d odd 4 1 2340.1.gi.b yes 4
45.j even 6 1 2340.1.gi.b yes 4
65.g odd 4 1 inner 2340.1.gi.a 4
117.y odd 12 1 2340.1.gi.b yes 4
585.db odd 12 1 inner 2340.1.gi.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2340.1.gi.a 4 1.a even 1 1 trivial
2340.1.gi.a 4 9.c even 3 1 inner
2340.1.gi.a 4 65.g odd 4 1 inner
2340.1.gi.a 4 585.db odd 12 1 inner
2340.1.gi.b yes 4 5.b even 2 1
2340.1.gi.b yes 4 13.d odd 4 1
2340.1.gi.b yes 4 45.j even 6 1
2340.1.gi.b yes 4 117.y odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{17} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2340, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$61$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$89$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 2 T^{3} + \cdots + 4 \) Copy content Toggle raw display
show more
show less