Properties

Label 2340.1.ga.b
Level $2340$
Weight $1$
Character orbit 2340.ga
Analytic conductor $1.168$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,1,Mod(539,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 6, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.539"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2340.ga (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.16781212956\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{24}^{5} q^{2} + \zeta_{24}^{10} q^{4} - \zeta_{24}^{7} q^{5} - \zeta_{24}^{3} q^{8} + q^{10} + \zeta_{24}^{8} q^{13} - \zeta_{24}^{8} q^{16} + ( - \zeta_{24}^{11} - \zeta_{24}^{9}) q^{17} + \zeta_{24}^{5} q^{20} + \cdots + \zeta_{24}^{7} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{10} - 4 q^{13} + 4 q^{16} + 4 q^{34} - 4 q^{37} - 4 q^{58} + 4 q^{61} + 4 q^{73} - 4 q^{85} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(-1\) \(\zeta_{24}^{10}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
539.1
−0.965926 0.258819i
0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 + 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
−0.258819 0.965926i 0 −0.866025 + 0.500000i −0.258819 + 0.965926i 0 0 0.707107 + 0.707107i 0 1.00000
539.2 0.258819 + 0.965926i 0 −0.866025 + 0.500000i 0.258819 0.965926i 0 0 −0.707107 0.707107i 0 1.00000
899.1 −0.965926 0.258819i 0 0.866025 + 0.500000i −0.965926 + 0.258819i 0 0 −0.707107 0.707107i 0 1.00000
899.2 0.965926 + 0.258819i 0 0.866025 + 0.500000i 0.965926 0.258819i 0 0 0.707107 + 0.707107i 0 1.00000
1259.1 −0.258819 + 0.965926i 0 −0.866025 0.500000i −0.258819 0.965926i 0 0 0.707107 0.707107i 0 1.00000
1259.2 0.258819 0.965926i 0 −0.866025 0.500000i 0.258819 + 0.965926i 0 0 −0.707107 + 0.707107i 0 1.00000
1619.1 −0.965926 + 0.258819i 0 0.866025 0.500000i −0.965926 0.258819i 0 0 −0.707107 + 0.707107i 0 1.00000
1619.2 0.965926 0.258819i 0 0.866025 0.500000i 0.965926 + 0.258819i 0 0 0.707107 0.707107i 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 539.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
3.b odd 2 1 inner
12.b even 2 1 inner
65.s odd 12 1 inner
195.bh even 12 1 inner
260.bc even 12 1 inner
780.cr odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2340.1.ga.b yes 8
3.b odd 2 1 inner 2340.1.ga.b yes 8
4.b odd 2 1 CM 2340.1.ga.b yes 8
5.b even 2 1 2340.1.ga.a 8
12.b even 2 1 inner 2340.1.ga.b yes 8
13.f odd 12 1 2340.1.ga.a 8
15.d odd 2 1 2340.1.ga.a 8
20.d odd 2 1 2340.1.ga.a 8
39.k even 12 1 2340.1.ga.a 8
52.l even 12 1 2340.1.ga.a 8
60.h even 2 1 2340.1.ga.a 8
65.s odd 12 1 inner 2340.1.ga.b yes 8
156.v odd 12 1 2340.1.ga.a 8
195.bh even 12 1 inner 2340.1.ga.b yes 8
260.bc even 12 1 inner 2340.1.ga.b yes 8
780.cr odd 12 1 inner 2340.1.ga.b yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2340.1.ga.a 8 5.b even 2 1
2340.1.ga.a 8 13.f odd 12 1
2340.1.ga.a 8 15.d odd 2 1
2340.1.ga.a 8 20.d odd 2 1
2340.1.ga.a 8 39.k even 12 1
2340.1.ga.a 8 52.l even 12 1
2340.1.ga.a 8 60.h even 2 1
2340.1.ga.a 8 156.v odd 12 1
2340.1.ga.b yes 8 1.a even 1 1 trivial
2340.1.ga.b yes 8 3.b odd 2 1 inner
2340.1.ga.b yes 8 4.b odd 2 1 CM
2340.1.ga.b yes 8 12.b even 2 1 inner
2340.1.ga.b yes 8 65.s odd 12 1 inner
2340.1.ga.b yes 8 195.bh even 12 1 inner
2340.1.ga.b yes 8 260.bc even 12 1 inner
2340.1.ga.b yes 8 780.cr odd 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{37}^{4} + 2T_{37}^{3} + 5T_{37}^{2} + 4T_{37} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2340, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( T^{8} - 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( (T^{4} + 2 T^{3} + 5 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( (T^{4} - 4 T^{2} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} - 16T^{4} + 256 \) Copy content Toggle raw display
$97$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
show more
show less