Properties

Label 234.8.h.c.55.3
Level $234$
Weight $8$
Character 234.55
Analytic conductor $73.098$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,8,Mod(55,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.55"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 234.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-32,0,-256,386] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.0980959633\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 14114 x^{6} + 42351 x^{5} + 205543918 x^{4} + 13390412127 x^{3} + \cdots + 28150431267204 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{3}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.3
Root \(-80.7401 + 46.6153i\) of defining polynomial
Character \(\chi\) \(=\) 234.55
Dual form 234.8.h.c.217.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +292.365 q^{5} +(682.601 - 1182.30i) q^{7} +512.000 q^{8} +(-1169.46 - 2025.56i) q^{10} +(-3147.44 - 5451.52i) q^{11} +(-519.190 - 7904.36i) q^{13} -10921.6 q^{14} +(-2048.00 - 3547.24i) q^{16} +(7071.69 - 12248.5i) q^{17} +(-24494.2 + 42425.1i) q^{19} +(-9355.67 + 16204.5i) q^{20} +(-25179.5 + 43612.2i) q^{22} +(-27761.4 - 48084.2i) q^{23} +7352.11 q^{25} +(-52686.3 + 35214.5i) q^{26} +(43686.5 + 75667.2i) q^{28} +(-29134.9 - 50463.2i) q^{29} +96117.8 q^{31} +(-16384.0 + 28377.9i) q^{32} -113147. q^{34} +(199568. - 345663. i) q^{35} +(126083. + 218382. i) q^{37} +391907. q^{38} +149691. q^{40} +(-226376. - 392094. i) q^{41} +(-298773. + 517491. i) q^{43} +402872. q^{44} +(-222092. + 384674. i) q^{46} +879720. q^{47} +(-520116. - 900868. i) q^{49} +(-29408.4 - 50936.9i) q^{50} +(454718. + 224163. i) q^{52} -1.19574e6 q^{53} +(-920200. - 1.59383e6i) q^{55} +(349492. - 605337. i) q^{56} +(-233080. + 403706. i) q^{58} +(366838. - 635382. i) q^{59} +(37257.1 - 64531.2i) q^{61} +(-384471. - 665924. i) q^{62} +262144. q^{64} +(-151793. - 2.31096e6i) q^{65} +(295983. + 512658. i) q^{67} +(452588. + 783906. i) q^{68} -3.19309e6 q^{70} +(-298650. + 517277. i) q^{71} +602204. q^{73} +(1.00866e6 - 1.74705e6i) q^{74} +(-1.56763e6 - 2.71521e6i) q^{76} -8.59377e6 q^{77} +5.60729e6 q^{79} +(-598763. - 1.03709e6i) q^{80} +(-1.81100e6 + 3.13675e6i) q^{82} -6.43871e6 q^{83} +(2.06751e6 - 3.58104e6i) q^{85} +4.78037e6 q^{86} +(-1.61149e6 - 2.79118e6i) q^{88} +(5.94525e6 + 1.02975e7i) q^{89} +(-9.69972e6 - 4.78169e6i) q^{91} +3.55346e6 q^{92} +(-3.51888e6 - 6.09488e6i) q^{94} +(-7.16123e6 + 1.24036e7i) q^{95} +(-7.90111e6 + 1.36851e7i) q^{97} +(-4.16093e6 + 7.20694e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{2} - 256 q^{4} + 386 q^{5} + 757 q^{7} + 4096 q^{8} - 1544 q^{10} - 4524 q^{11} + 13272 q^{13} - 12112 q^{14} - 16384 q^{16} + 12775 q^{17} + 38646 q^{19} - 12352 q^{20} - 36192 q^{22} - 24428 q^{23}+ \cdots + 4224696 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) 292.365 1.04600 0.522998 0.852334i \(-0.324814\pi\)
0.522998 + 0.852334i \(0.324814\pi\)
\(6\) 0 0
\(7\) 682.601 1182.30i 0.752183 1.30282i −0.194579 0.980887i \(-0.562334\pi\)
0.946763 0.321933i \(-0.104333\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −1169.46 2025.56i −0.369815 0.640539i
\(11\) −3147.44 5451.52i −0.712989 1.23493i −0.963730 0.266879i \(-0.914008\pi\)
0.250741 0.968054i \(-0.419326\pi\)
\(12\) 0 0
\(13\) −519.190 7904.36i −0.0655428 0.997850i
\(14\) −10921.6 −1.06375
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) 7071.69 12248.5i 0.349102 0.604662i −0.636988 0.770873i \(-0.719820\pi\)
0.986090 + 0.166212i \(0.0531534\pi\)
\(18\) 0 0
\(19\) −24494.2 + 42425.1i −0.819266 + 1.41901i 0.0869571 + 0.996212i \(0.472286\pi\)
−0.906224 + 0.422799i \(0.861048\pi\)
\(20\) −9355.67 + 16204.5i −0.261499 + 0.452929i
\(21\) 0 0
\(22\) −25179.5 + 43612.2i −0.504159 + 0.873229i
\(23\) −27761.4 48084.2i −0.475767 0.824053i 0.523847 0.851812i \(-0.324496\pi\)
−0.999615 + 0.0277591i \(0.991163\pi\)
\(24\) 0 0
\(25\) 7352.11 0.0941070
\(26\) −52686.3 + 35214.5i −0.587883 + 0.392930i
\(27\) 0 0
\(28\) 43686.5 + 75667.2i 0.376092 + 0.651410i
\(29\) −29134.9 50463.2i −0.221831 0.384222i 0.733533 0.679653i \(-0.237870\pi\)
−0.955364 + 0.295432i \(0.904537\pi\)
\(30\) 0 0
\(31\) 96117.8 0.579479 0.289740 0.957105i \(-0.406431\pi\)
0.289740 + 0.957105i \(0.406431\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −113147. −0.493704
\(35\) 199568. 345663.i 0.786780 1.36274i
\(36\) 0 0
\(37\) 126083. + 218382.i 0.409213 + 0.708778i 0.994802 0.101831i \(-0.0324700\pi\)
−0.585589 + 0.810608i \(0.699137\pi\)
\(38\) 391907. 1.15862
\(39\) 0 0
\(40\) 149691. 0.369815
\(41\) −226376. 392094.i −0.512963 0.888478i −0.999887 0.0150337i \(-0.995214\pi\)
0.486924 0.873444i \(-0.338119\pi\)
\(42\) 0 0
\(43\) −298773. + 517491.i −0.573063 + 0.992574i 0.423186 + 0.906043i \(0.360912\pi\)
−0.996249 + 0.0865313i \(0.972422\pi\)
\(44\) 402872. 0.712989
\(45\) 0 0
\(46\) −222092. + 384674.i −0.336418 + 0.582694i
\(47\) 879720. 1.23595 0.617977 0.786196i \(-0.287953\pi\)
0.617977 + 0.786196i \(0.287953\pi\)
\(48\) 0 0
\(49\) −520116. 900868.i −0.631559 1.09389i
\(50\) −29408.4 50936.9i −0.0332718 0.0576285i
\(51\) 0 0
\(52\) 454718. + 224163.i 0.448467 + 0.221082i
\(53\) −1.19574e6 −1.10324 −0.551622 0.834094i \(-0.685991\pi\)
−0.551622 + 0.834094i \(0.685991\pi\)
\(54\) 0 0
\(55\) −920200. 1.59383e6i −0.745783 1.29173i
\(56\) 349492. 605337.i 0.265937 0.460616i
\(57\) 0 0
\(58\) −233080. + 403706.i −0.156858 + 0.271686i
\(59\) 366838. 635382.i 0.232537 0.402766i −0.726017 0.687677i \(-0.758631\pi\)
0.958554 + 0.284911i \(0.0919640\pi\)
\(60\) 0 0
\(61\) 37257.1 64531.2i 0.0210162 0.0364011i −0.855326 0.518090i \(-0.826643\pi\)
0.876342 + 0.481689i \(0.159977\pi\)
\(62\) −384471. 665924.i −0.204877 0.354857i
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) −151793. 2.31096e6i −0.0685574 1.04375i
\(66\) 0 0
\(67\) 295983. + 512658.i 0.120228 + 0.208241i 0.919857 0.392253i \(-0.128304\pi\)
−0.799630 + 0.600494i \(0.794971\pi\)
\(68\) 452588. + 783906.i 0.174551 + 0.302331i
\(69\) 0 0
\(70\) −3.19309e6 −1.11268
\(71\) −298650. + 517277.i −0.0990280 + 0.171521i −0.911283 0.411782i \(-0.864907\pi\)
0.812255 + 0.583303i \(0.198240\pi\)
\(72\) 0 0
\(73\) 602204. 0.181182 0.0905908 0.995888i \(-0.471124\pi\)
0.0905908 + 0.995888i \(0.471124\pi\)
\(74\) 1.00866e6 1.74705e6i 0.289357 0.501181i
\(75\) 0 0
\(76\) −1.56763e6 2.71521e6i −0.409633 0.709505i
\(77\) −8.59377e6 −2.14519
\(78\) 0 0
\(79\) 5.60729e6 1.27955 0.639776 0.768561i \(-0.279027\pi\)
0.639776 + 0.768561i \(0.279027\pi\)
\(80\) −598763. 1.03709e6i −0.130749 0.226465i
\(81\) 0 0
\(82\) −1.81100e6 + 3.13675e6i −0.362720 + 0.628249i
\(83\) −6.43871e6 −1.23602 −0.618010 0.786170i \(-0.712061\pi\)
−0.618010 + 0.786170i \(0.712061\pi\)
\(84\) 0 0
\(85\) 2.06751e6 3.58104e6i 0.365159 0.632474i
\(86\) 4.78037e6 0.810433
\(87\) 0 0
\(88\) −1.61149e6 2.79118e6i −0.252080 0.436615i
\(89\) 5.94525e6 + 1.02975e7i 0.893933 + 1.54834i 0.835119 + 0.550069i \(0.185399\pi\)
0.0588141 + 0.998269i \(0.481268\pi\)
\(90\) 0 0
\(91\) −9.69972e6 4.78169e6i −1.34932 0.665175i
\(92\) 3.55346e6 0.475767
\(93\) 0 0
\(94\) −3.51888e6 6.09488e6i −0.436975 0.756864i
\(95\) −7.16123e6 + 1.24036e7i −0.856949 + 1.48428i
\(96\) 0 0
\(97\) −7.90111e6 + 1.36851e7i −0.878996 + 1.52247i −0.0265515 + 0.999647i \(0.508453\pi\)
−0.852444 + 0.522818i \(0.824881\pi\)
\(98\) −4.16093e6 + 7.20694e6i −0.446580 + 0.773499i
\(99\) 0 0
\(100\) −235267. + 407495.i −0.0235267 + 0.0407495i
\(101\) 6.12652e6 + 1.06114e7i 0.591683 + 1.02482i 0.994006 + 0.109327i \(0.0348695\pi\)
−0.402323 + 0.915498i \(0.631797\pi\)
\(102\) 0 0
\(103\) 9.45306e6 0.852398 0.426199 0.904629i \(-0.359852\pi\)
0.426199 + 0.904629i \(0.359852\pi\)
\(104\) −265825. 4.04703e6i −0.0231729 0.352793i
\(105\) 0 0
\(106\) 4.78296e6 + 8.28433e6i 0.390056 + 0.675596i
\(107\) −1.06857e7 1.85082e7i −0.843260 1.46057i −0.887124 0.461531i \(-0.847300\pi\)
0.0438646 0.999037i \(-0.486033\pi\)
\(108\) 0 0
\(109\) −1.40494e7 −1.03912 −0.519559 0.854435i \(-0.673904\pi\)
−0.519559 + 0.854435i \(0.673904\pi\)
\(110\) −7.36160e6 + 1.27507e7i −0.527348 + 0.913394i
\(111\) 0 0
\(112\) −5.59187e6 −0.376092
\(113\) 2.00220e6 3.46791e6i 0.130537 0.226096i −0.793347 0.608770i \(-0.791663\pi\)
0.923884 + 0.382674i \(0.124997\pi\)
\(114\) 0 0
\(115\) −8.11646e6 1.40581e7i −0.497651 0.861956i
\(116\) 3.72927e6 0.221831
\(117\) 0 0
\(118\) −5.86941e6 −0.328857
\(119\) −9.65428e6 1.67217e7i −0.525177 0.909633i
\(120\) 0 0
\(121\) −1.00691e7 + 1.74403e7i −0.516706 + 0.894961i
\(122\) −596113. −0.0297214
\(123\) 0 0
\(124\) −3.07577e6 + 5.32739e6i −0.144870 + 0.250922i
\(125\) −2.06915e7 −0.947560
\(126\) 0 0
\(127\) −1.99573e7 3.45671e7i −0.864548 1.49744i −0.867495 0.497446i \(-0.834271\pi\)
0.00294673 0.999996i \(-0.499062\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.54036e7 + 1.02955e7i −0.614923 + 0.411003i
\(131\) 2.63495e7 1.02405 0.512027 0.858969i \(-0.328895\pi\)
0.512027 + 0.858969i \(0.328895\pi\)
\(132\) 0 0
\(133\) 3.34395e7 + 5.79189e7i 1.23248 + 2.13471i
\(134\) 2.36786e6 4.10126e6i 0.0850139 0.147248i
\(135\) 0 0
\(136\) 3.62070e6 6.27124e6i 0.123426 0.213780i
\(137\) 2.14607e7 3.71710e7i 0.713052 1.23504i −0.250654 0.968077i \(-0.580646\pi\)
0.963706 0.266966i \(-0.0860210\pi\)
\(138\) 0 0
\(139\) −2.04074e7 + 3.53466e7i −0.644518 + 1.11634i 0.339895 + 0.940463i \(0.389608\pi\)
−0.984413 + 0.175874i \(0.943725\pi\)
\(140\) 1.27724e7 + 2.21224e7i 0.393390 + 0.681372i
\(141\) 0 0
\(142\) 4.77840e6 0.140047
\(143\) −4.14567e7 + 2.77089e7i −1.18555 + 0.792397i
\(144\) 0 0
\(145\) −8.51803e6 1.47537e7i −0.232034 0.401894i
\(146\) −2.40882e6 4.17219e6i −0.0640573 0.110951i
\(147\) 0 0
\(148\) −1.61386e7 −0.409213
\(149\) −9.52509e6 + 1.64979e7i −0.235894 + 0.408581i −0.959532 0.281599i \(-0.909135\pi\)
0.723638 + 0.690180i \(0.242469\pi\)
\(150\) 0 0
\(151\) −3.29124e7 −0.777929 −0.388965 0.921253i \(-0.627167\pi\)
−0.388965 + 0.921253i \(0.627167\pi\)
\(152\) −1.25410e7 + 2.17217e7i −0.289654 + 0.501696i
\(153\) 0 0
\(154\) 3.43751e7 + 5.95394e7i 0.758440 + 1.31366i
\(155\) 2.81015e7 0.606133
\(156\) 0 0
\(157\) −9.18409e7 −1.89403 −0.947016 0.321187i \(-0.895918\pi\)
−0.947016 + 0.321187i \(0.895918\pi\)
\(158\) −2.24292e7 3.88484e7i −0.452390 0.783563i
\(159\) 0 0
\(160\) −4.79010e6 + 8.29670e6i −0.0924538 + 0.160135i
\(161\) −7.57999e7 −1.43146
\(162\) 0 0
\(163\) 1.40858e7 2.43972e7i 0.254755 0.441249i −0.710074 0.704127i \(-0.751338\pi\)
0.964829 + 0.262878i \(0.0846717\pi\)
\(164\) 2.89761e7 0.512963
\(165\) 0 0
\(166\) 2.57549e7 + 4.46087e7i 0.436999 + 0.756905i
\(167\) −1.93187e7 3.34610e7i −0.320975 0.555945i 0.659714 0.751516i \(-0.270677\pi\)
−0.980689 + 0.195571i \(0.937344\pi\)
\(168\) 0 0
\(169\) −6.22094e7 + 8.20774e6i −0.991408 + 0.130804i
\(170\) −3.30802e7 −0.516413
\(171\) 0 0
\(172\) −1.91215e7 3.31194e7i −0.286531 0.496287i
\(173\) 130701. 226380.i 0.00191918 0.00332412i −0.865064 0.501661i \(-0.832722\pi\)
0.866983 + 0.498337i \(0.166056\pi\)
\(174\) 0 0
\(175\) 5.01855e6 8.69239e6i 0.0707857 0.122604i
\(176\) −1.28919e7 + 2.23294e7i −0.178247 + 0.308733i
\(177\) 0 0
\(178\) 4.75620e7 8.23798e7i 0.632106 1.09484i
\(179\) −2.19120e6 3.79527e6i −0.0285560 0.0494604i 0.851394 0.524526i \(-0.175758\pi\)
−0.879950 + 0.475066i \(0.842424\pi\)
\(180\) 0 0
\(181\) −2.70440e7 −0.338997 −0.169499 0.985530i \(-0.554215\pi\)
−0.169499 + 0.985530i \(0.554215\pi\)
\(182\) 5.67039e6 + 8.63284e7i 0.0697210 + 1.06146i
\(183\) 0 0
\(184\) −1.42139e7 2.46191e7i −0.168209 0.291347i
\(185\) 3.68621e7 + 6.38471e7i 0.428035 + 0.741378i
\(186\) 0 0
\(187\) −8.90308e7 −0.995622
\(188\) −2.81510e7 + 4.87590e7i −0.308988 + 0.535183i
\(189\) 0 0
\(190\) 1.14580e8 1.21191
\(191\) 4.82447e7 8.35623e7i 0.500995 0.867748i −0.499005 0.866599i \(-0.666301\pi\)
0.999999 0.00114877i \(-0.000365666\pi\)
\(192\) 0 0
\(193\) −1.05389e7 1.82539e7i −0.105523 0.182770i 0.808429 0.588594i \(-0.200318\pi\)
−0.913952 + 0.405823i \(0.866985\pi\)
\(194\) 1.26418e8 1.24309
\(195\) 0 0
\(196\) 6.65749e7 0.631559
\(197\) −8.09174e7 1.40153e8i −0.754068 1.30608i −0.945837 0.324643i \(-0.894756\pi\)
0.191769 0.981440i \(-0.438578\pi\)
\(198\) 0 0
\(199\) 1.08635e8 1.88161e8i 0.977201 1.69256i 0.304728 0.952440i \(-0.401435\pi\)
0.672473 0.740122i \(-0.265232\pi\)
\(200\) 3.76428e6 0.0332718
\(201\) 0 0
\(202\) 4.90121e7 8.48915e7i 0.418383 0.724660i
\(203\) −7.95502e7 −0.667429
\(204\) 0 0
\(205\) −6.61842e7 1.14634e8i −0.536557 0.929344i
\(206\) −3.78123e7 6.54927e7i −0.301368 0.521985i
\(207\) 0 0
\(208\) −2.69754e7 + 1.80298e7i −0.207848 + 0.138922i
\(209\) 3.08375e8 2.33651
\(210\) 0 0
\(211\) 1.01779e8 + 1.76286e8i 0.745881 + 1.29190i 0.949782 + 0.312913i \(0.101305\pi\)
−0.203901 + 0.978992i \(0.565362\pi\)
\(212\) 3.82637e7 6.62747e7i 0.275811 0.477718i
\(213\) 0 0
\(214\) −8.54859e7 + 1.48066e8i −0.596275 + 1.03278i
\(215\) −8.73508e7 + 1.51296e8i −0.599421 + 1.03823i
\(216\) 0 0
\(217\) 6.56101e7 1.13640e8i 0.435875 0.754957i
\(218\) 5.61975e7 + 9.73370e7i 0.367383 + 0.636327i
\(219\) 0 0
\(220\) 1.17786e8 0.745783
\(221\) −1.00488e8 4.95379e7i −0.626243 0.308720i
\(222\) 0 0
\(223\) −1.74200e7 3.01723e7i −0.105192 0.182197i 0.808625 0.588325i \(-0.200212\pi\)
−0.913816 + 0.406127i \(0.866879\pi\)
\(224\) 2.23675e7 + 3.87416e7i 0.132968 + 0.230308i
\(225\) 0 0
\(226\) −3.20352e7 −0.184607
\(227\) 4.81864e7 8.34613e7i 0.273422 0.473581i −0.696314 0.717738i \(-0.745178\pi\)
0.969736 + 0.244156i \(0.0785110\pi\)
\(228\) 0 0
\(229\) 1.90546e8 1.04852 0.524260 0.851559i \(-0.324342\pi\)
0.524260 + 0.851559i \(0.324342\pi\)
\(230\) −6.49317e7 + 1.12465e8i −0.351892 + 0.609495i
\(231\) 0 0
\(232\) −1.49171e7 2.58372e7i −0.0784289 0.135843i
\(233\) 4.84822e7 0.251094 0.125547 0.992088i \(-0.459931\pi\)
0.125547 + 0.992088i \(0.459931\pi\)
\(234\) 0 0
\(235\) 2.57199e8 1.29280
\(236\) 2.34776e7 + 4.06644e7i 0.116269 + 0.201383i
\(237\) 0 0
\(238\) −7.72343e7 + 1.33774e8i −0.371356 + 0.643208i
\(239\) 9.77332e7 0.463073 0.231537 0.972826i \(-0.425625\pi\)
0.231537 + 0.972826i \(0.425625\pi\)
\(240\) 0 0
\(241\) 1.40752e8 2.43789e8i 0.647731 1.12190i −0.335932 0.941886i \(-0.609051\pi\)
0.983663 0.180017i \(-0.0576153\pi\)
\(242\) 1.61106e8 0.730733
\(243\) 0 0
\(244\) 2.38445e6 + 4.12999e6i 0.0105081 + 0.0182006i
\(245\) −1.52064e8 2.63382e8i −0.660608 1.14421i
\(246\) 0 0
\(247\) 3.48061e8 + 1.71584e8i 1.46966 + 0.724499i
\(248\) 4.92123e7 0.204877
\(249\) 0 0
\(250\) 8.27660e7 + 1.43355e8i 0.335013 + 0.580260i
\(251\) 4.65639e7 8.06511e7i 0.185863 0.321923i −0.758004 0.652250i \(-0.773825\pi\)
0.943867 + 0.330326i \(0.107159\pi\)
\(252\) 0 0
\(253\) −1.74755e8 + 3.02684e8i −0.678434 + 1.17508i
\(254\) −1.59659e8 + 2.76537e8i −0.611328 + 1.05885i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) −1.66536e8 2.88448e8i −0.611986 1.05999i −0.990905 0.134561i \(-0.957038\pi\)
0.378920 0.925430i \(-0.376296\pi\)
\(258\) 0 0
\(259\) 3.44257e8 1.23121
\(260\) 1.32944e8 + 6.55374e7i 0.469095 + 0.231250i
\(261\) 0 0
\(262\) −1.05398e8 1.82555e8i −0.362058 0.627102i
\(263\) 6.25613e7 + 1.08359e8i 0.212061 + 0.367300i 0.952359 0.304978i \(-0.0986491\pi\)
−0.740298 + 0.672278i \(0.765316\pi\)
\(264\) 0 0
\(265\) −3.49592e8 −1.15399
\(266\) 2.67516e8 4.63351e8i 0.871493 1.50947i
\(267\) 0 0
\(268\) −3.78858e7 −0.120228
\(269\) 1.50279e8 2.60291e8i 0.470723 0.815317i −0.528716 0.848799i \(-0.677326\pi\)
0.999439 + 0.0334822i \(0.0106597\pi\)
\(270\) 0 0
\(271\) −2.43902e8 4.22451e8i −0.744428 1.28939i −0.950461 0.310843i \(-0.899389\pi\)
0.206033 0.978545i \(-0.433945\pi\)
\(272\) −5.79313e7 −0.174551
\(273\) 0 0
\(274\) −3.43371e8 −1.00841
\(275\) −2.31403e7 4.00802e7i −0.0670972 0.116216i
\(276\) 0 0
\(277\) −1.83303e8 + 3.17491e8i −0.518193 + 0.897537i 0.481584 + 0.876400i \(0.340062\pi\)
−0.999777 + 0.0211365i \(0.993272\pi\)
\(278\) 3.26518e8 0.911486
\(279\) 0 0
\(280\) 1.02179e8 1.76979e8i 0.278169 0.481803i
\(281\) −1.05557e6 −0.00283802 −0.00141901 0.999999i \(-0.500452\pi\)
−0.00141901 + 0.999999i \(0.500452\pi\)
\(282\) 0 0
\(283\) −3.05192e8 5.28608e8i −0.800425 1.38638i −0.919336 0.393472i \(-0.871274\pi\)
0.118911 0.992905i \(-0.462060\pi\)
\(284\) −1.91136e7 3.31057e7i −0.0495140 0.0857607i
\(285\) 0 0
\(286\) 3.57799e8 + 1.76385e8i 0.904396 + 0.445841i
\(287\) −6.18097e8 −1.54337
\(288\) 0 0
\(289\) 1.05152e8 + 1.82128e8i 0.256256 + 0.443848i
\(290\) −6.81442e7 + 1.18029e8i −0.164073 + 0.284182i
\(291\) 0 0
\(292\) −1.92705e7 + 3.33776e7i −0.0452954 + 0.0784539i
\(293\) −2.49118e8 + 4.31485e8i −0.578587 + 1.00214i 0.417055 + 0.908881i \(0.363062\pi\)
−0.995642 + 0.0932602i \(0.970271\pi\)
\(294\) 0 0
\(295\) 1.07250e8 1.85763e8i 0.243233 0.421291i
\(296\) 6.45543e7 + 1.11811e8i 0.144679 + 0.250591i
\(297\) 0 0
\(298\) 1.52401e8 0.333605
\(299\) −3.65662e8 + 2.44401e8i −0.791098 + 0.528755i
\(300\) 0 0
\(301\) 4.07886e8 + 7.06479e8i 0.862097 + 1.49320i
\(302\) 1.31650e8 + 2.28024e8i 0.275040 + 0.476382i
\(303\) 0 0
\(304\) 2.00656e8 0.409633
\(305\) 1.08927e7 1.88666e7i 0.0219829 0.0380754i
\(306\) 0 0
\(307\) 4.97378e8 0.981075 0.490537 0.871420i \(-0.336801\pi\)
0.490537 + 0.871420i \(0.336801\pi\)
\(308\) 2.75001e8 4.76315e8i 0.536298 0.928896i
\(309\) 0 0
\(310\) −1.12406e8 1.94693e8i −0.214300 0.371179i
\(311\) 1.05279e9 1.98463 0.992317 0.123721i \(-0.0394829\pi\)
0.992317 + 0.123721i \(0.0394829\pi\)
\(312\) 0 0
\(313\) −2.19688e8 −0.404950 −0.202475 0.979287i \(-0.564899\pi\)
−0.202475 + 0.979287i \(0.564899\pi\)
\(314\) 3.67364e8 + 6.36292e8i 0.669641 + 1.15985i
\(315\) 0 0
\(316\) −1.79433e8 + 3.10787e8i −0.319888 + 0.554062i
\(317\) −9.50641e8 −1.67614 −0.838068 0.545567i \(-0.816315\pi\)
−0.838068 + 0.545567i \(0.816315\pi\)
\(318\) 0 0
\(319\) −1.83401e8 + 3.17660e8i −0.316325 + 0.547892i
\(320\) 7.66416e7 0.130749
\(321\) 0 0
\(322\) 3.03200e8 + 5.25157e8i 0.506096 + 0.876585i
\(323\) 3.46430e8 + 6.00035e8i 0.572015 + 0.990758i
\(324\) 0 0
\(325\) −3.81714e6 5.81137e7i −0.00616803 0.0939046i
\(326\) −2.25372e8 −0.360279
\(327\) 0 0
\(328\) −1.15904e8 2.00752e8i −0.181360 0.314124i
\(329\) 6.00498e8 1.04009e9i 0.929663 1.61022i
\(330\) 0 0
\(331\) 5.48701e8 9.50379e8i 0.831645 1.44045i −0.0650879 0.997880i \(-0.520733\pi\)
0.896733 0.442572i \(-0.145934\pi\)
\(332\) 2.06039e8 3.56870e8i 0.309005 0.535213i
\(333\) 0 0
\(334\) −1.54550e8 + 2.67688e8i −0.226964 + 0.393112i
\(335\) 8.65350e7 + 1.49883e8i 0.125758 + 0.217819i
\(336\) 0 0
\(337\) 4.21771e8 0.600305 0.300153 0.953891i \(-0.402962\pi\)
0.300153 + 0.953891i \(0.402962\pi\)
\(338\) 3.05702e8 + 3.98168e8i 0.430616 + 0.560865i
\(339\) 0 0
\(340\) 1.32321e8 + 2.29186e8i 0.182579 + 0.316237i
\(341\) −3.02525e8 5.23989e8i −0.413162 0.715618i
\(342\) 0 0
\(343\) −2.95825e8 −0.395827
\(344\) −1.52972e8 + 2.64955e8i −0.202608 + 0.350928i
\(345\) 0 0
\(346\) −2.09121e6 −0.00271414
\(347\) −2.86132e8 + 4.95594e8i −0.367631 + 0.636756i −0.989195 0.146608i \(-0.953165\pi\)
0.621563 + 0.783364i \(0.286498\pi\)
\(348\) 0 0
\(349\) 5.47641e8 + 9.48542e8i 0.689616 + 1.19445i 0.971962 + 0.235137i \(0.0755539\pi\)
−0.282347 + 0.959312i \(0.591113\pi\)
\(350\) −8.02969e7 −0.100106
\(351\) 0 0
\(352\) 2.06270e8 0.252080
\(353\) −1.38676e8 2.40193e8i −0.167799 0.290636i 0.769847 0.638229i \(-0.220332\pi\)
−0.937646 + 0.347593i \(0.886999\pi\)
\(354\) 0 0
\(355\) −8.73146e7 + 1.51233e8i −0.103583 + 0.179411i
\(356\) −7.60992e8 −0.893933
\(357\) 0 0
\(358\) −1.75296e7 + 3.03622e7i −0.0201921 + 0.0349738i
\(359\) −3.61517e8 −0.412380 −0.206190 0.978512i \(-0.566107\pi\)
−0.206190 + 0.978512i \(0.566107\pi\)
\(360\) 0 0
\(361\) −7.52993e8 1.30422e9i −0.842395 1.45907i
\(362\) 1.08176e8 + 1.87366e8i 0.119854 + 0.207592i
\(363\) 0 0
\(364\) 5.75419e8 3.84599e8i 0.625359 0.417978i
\(365\) 1.76063e8 0.189515
\(366\) 0 0
\(367\) 2.97065e8 + 5.14531e8i 0.313704 + 0.543351i 0.979161 0.203085i \(-0.0650967\pi\)
−0.665457 + 0.746436i \(0.731763\pi\)
\(368\) −1.13711e8 + 1.96953e8i −0.118942 + 0.206013i
\(369\) 0 0
\(370\) 2.94897e8 5.10777e8i 0.302666 0.524234i
\(371\) −8.16213e8 + 1.41372e9i −0.829841 + 1.43733i
\(372\) 0 0
\(373\) 2.49132e8 4.31510e8i 0.248570 0.430536i −0.714559 0.699575i \(-0.753373\pi\)
0.963129 + 0.269039i \(0.0867060\pi\)
\(374\) 3.56123e8 + 6.16823e8i 0.352006 + 0.609692i
\(375\) 0 0
\(376\) 4.50417e8 0.436975
\(377\) −3.83753e8 + 2.56493e8i −0.368856 + 0.246536i
\(378\) 0 0
\(379\) −8.71895e8 1.51017e9i −0.822672 1.42491i −0.903685 0.428197i \(-0.859149\pi\)
0.0810133 0.996713i \(-0.474184\pi\)
\(380\) −4.58319e8 7.93831e8i −0.428475 0.742140i
\(381\) 0 0
\(382\) −7.71915e8 −0.708513
\(383\) −5.61251e8 + 9.72116e8i −0.510460 + 0.884143i 0.489466 + 0.872022i \(0.337192\pi\)
−0.999927 + 0.0121206i \(0.996142\pi\)
\(384\) 0 0
\(385\) −2.51252e9 −2.24386
\(386\) −8.43113e7 + 1.46031e8i −0.0746157 + 0.129238i
\(387\) 0 0
\(388\) −5.05671e8 8.75848e8i −0.439498 0.761233i
\(389\) 1.36537e9 1.17605 0.588025 0.808843i \(-0.299906\pi\)
0.588025 + 0.808843i \(0.299906\pi\)
\(390\) 0 0
\(391\) −7.85281e8 −0.664365
\(392\) −2.66300e8 4.61244e8i −0.223290 0.386750i
\(393\) 0 0
\(394\) −6.47339e8 + 1.12122e9i −0.533206 + 0.923540i
\(395\) 1.63937e9 1.33841
\(396\) 0 0
\(397\) −1.36988e8 + 2.37270e8i −0.109879 + 0.190316i −0.915721 0.401814i \(-0.868380\pi\)
0.805842 + 0.592131i \(0.201713\pi\)
\(398\) −1.73816e9 −1.38197
\(399\) 0 0
\(400\) −1.50571e7 2.60797e7i −0.0117634 0.0203748i
\(401\) −4.37653e8 7.58037e8i −0.338942 0.587064i 0.645292 0.763936i \(-0.276736\pi\)
−0.984234 + 0.176872i \(0.943402\pi\)
\(402\) 0 0
\(403\) −4.99034e7 7.59750e8i −0.0379807 0.578233i
\(404\) −7.84194e8 −0.591683
\(405\) 0 0
\(406\) 3.18201e8 + 5.51140e8i 0.235972 + 0.408715i
\(407\) 7.93675e8 1.37468e9i 0.583529 1.01070i
\(408\) 0 0
\(409\) −9.25251e6 + 1.60258e7i −0.00668695 + 0.0115821i −0.869350 0.494198i \(-0.835462\pi\)
0.862663 + 0.505780i \(0.168795\pi\)
\(410\) −5.29474e8 + 9.17076e8i −0.379403 + 0.657146i
\(411\) 0 0
\(412\) −3.02498e8 + 5.23942e8i −0.213099 + 0.369099i
\(413\) −5.00808e8 8.67424e8i −0.349821 0.605908i
\(414\) 0 0
\(415\) −1.88245e9 −1.29287
\(416\) 2.32816e8 + 1.14772e8i 0.158557 + 0.0781641i
\(417\) 0 0
\(418\) −1.23350e9 2.13649e9i −0.826081 1.43082i
\(419\) −8.70914e8 1.50847e9i −0.578397 1.00181i −0.995663 0.0930289i \(-0.970345\pi\)
0.417266 0.908784i \(-0.362988\pi\)
\(420\) 0 0
\(421\) −1.06714e8 −0.0697005 −0.0348503 0.999393i \(-0.511095\pi\)
−0.0348503 + 0.999393i \(0.511095\pi\)
\(422\) 8.14232e8 1.41029e9i 0.527418 0.913514i
\(423\) 0 0
\(424\) −6.12219e8 −0.390056
\(425\) 5.19918e7 9.00525e7i 0.0328529 0.0569029i
\(426\) 0 0
\(427\) −5.08634e7 8.80981e7i −0.0316161 0.0547607i
\(428\) 1.36777e9 0.843260
\(429\) 0 0
\(430\) 1.39761e9 0.847710
\(431\) −5.17174e8 8.95771e8i −0.311147 0.538923i 0.667464 0.744642i \(-0.267380\pi\)
−0.978611 + 0.205720i \(0.934047\pi\)
\(432\) 0 0
\(433\) −6.21572e8 + 1.07659e9i −0.367946 + 0.637301i −0.989244 0.146273i \(-0.953272\pi\)
0.621298 + 0.783574i \(0.286605\pi\)
\(434\) −1.04976e9 −0.616420
\(435\) 0 0
\(436\) 4.49580e8 7.78696e8i 0.259779 0.449951i
\(437\) 2.71997e9 1.55912
\(438\) 0 0
\(439\) 1.10839e9 + 1.91980e9i 0.625272 + 1.08300i 0.988488 + 0.151297i \(0.0483451\pi\)
−0.363217 + 0.931705i \(0.618322\pi\)
\(440\) −4.71142e8 8.16042e8i −0.263674 0.456697i
\(441\) 0 0
\(442\) 5.87448e7 + 8.94355e8i 0.0323587 + 0.492643i
\(443\) 2.79640e8 0.152822 0.0764110 0.997076i \(-0.475654\pi\)
0.0764110 + 0.997076i \(0.475654\pi\)
\(444\) 0 0
\(445\) 1.73818e9 + 3.01062e9i 0.935050 + 1.61955i
\(446\) −1.39360e8 + 2.41379e8i −0.0743817 + 0.128833i
\(447\) 0 0
\(448\) 1.78940e8 3.09933e8i 0.0940229 0.162852i
\(449\) −9.14533e8 + 1.58402e9i −0.476801 + 0.825843i −0.999647 0.0265839i \(-0.991537\pi\)
0.522846 + 0.852427i \(0.324870\pi\)
\(450\) 0 0
\(451\) −1.42501e9 + 2.46818e9i −0.731474 + 1.26695i
\(452\) 1.28141e8 + 2.21946e8i 0.0652684 + 0.113048i
\(453\) 0 0
\(454\) −7.70982e8 −0.386678
\(455\) −2.83586e9 1.39800e9i −1.41138 0.695771i
\(456\) 0 0
\(457\) 3.61757e8 + 6.26581e8i 0.177301 + 0.307094i 0.940955 0.338532i \(-0.109930\pi\)
−0.763654 + 0.645625i \(0.776597\pi\)
\(458\) −7.62185e8 1.32014e9i −0.370707 0.642084i
\(459\) 0 0
\(460\) 1.03891e9 0.497651
\(461\) 1.73367e8 3.00281e8i 0.0824164 0.142749i −0.821871 0.569674i \(-0.807070\pi\)
0.904287 + 0.426924i \(0.140403\pi\)
\(462\) 0 0
\(463\) −3.24685e9 −1.52030 −0.760149 0.649749i \(-0.774874\pi\)
−0.760149 + 0.649749i \(0.774874\pi\)
\(464\) −1.19337e8 + 2.06697e8i −0.0554576 + 0.0960554i
\(465\) 0 0
\(466\) −1.93929e8 3.35895e8i −0.0887752 0.153763i
\(467\) 9.84550e8 0.447331 0.223665 0.974666i \(-0.428198\pi\)
0.223665 + 0.974666i \(0.428198\pi\)
\(468\) 0 0
\(469\) 8.08153e8 0.361733
\(470\) −1.02880e9 1.78193e9i −0.457074 0.791676i
\(471\) 0 0
\(472\) 1.87821e8 3.25316e8i 0.0822143 0.142399i
\(473\) 3.76148e9 1.63435
\(474\) 0 0
\(475\) −1.80084e8 + 3.11914e8i −0.0770987 + 0.133539i
\(476\) 1.23575e9 0.525177
\(477\) 0 0
\(478\) −3.90933e8 6.77116e8i −0.163721 0.283573i
\(479\) 1.94101e9 + 3.36193e9i 0.806964 + 1.39770i 0.914957 + 0.403552i \(0.132224\pi\)
−0.107993 + 0.994152i \(0.534442\pi\)
\(480\) 0 0
\(481\) 1.66071e9 1.10998e9i 0.680433 0.454788i
\(482\) −2.25203e9 −0.916030
\(483\) 0 0
\(484\) −6.44425e8 1.11618e9i −0.258353 0.447481i
\(485\) −2.31000e9 + 4.00104e9i −0.919426 + 1.59249i
\(486\) 0 0
\(487\) −5.77838e8 + 1.00084e9i −0.226702 + 0.392659i −0.956829 0.290653i \(-0.906128\pi\)
0.730127 + 0.683312i \(0.239461\pi\)
\(488\) 1.90756e7 3.30400e7i 0.00743035 0.0128697i
\(489\) 0 0
\(490\) −1.21651e9 + 2.10706e9i −0.467121 + 0.809077i
\(491\) −1.27998e9 2.21700e9i −0.488000 0.845240i 0.511905 0.859042i \(-0.328940\pi\)
−0.999905 + 0.0138019i \(0.995607\pi\)
\(492\) 0 0
\(493\) −8.24133e8 −0.309766
\(494\) −2.03474e8 3.09777e9i −0.0759390 1.15613i
\(495\) 0 0
\(496\) −1.96849e8 3.40953e8i −0.0724349 0.125461i
\(497\) 4.07717e8 + 7.06187e8i 0.148974 + 0.258031i
\(498\) 0 0
\(499\) 4.46390e9 1.60828 0.804142 0.594437i \(-0.202625\pi\)
0.804142 + 0.594437i \(0.202625\pi\)
\(500\) 6.62128e8 1.14684e9i 0.236890 0.410306i
\(501\) 0 0
\(502\) −7.45023e8 −0.262849
\(503\) −9.56502e8 + 1.65671e9i −0.335118 + 0.580442i −0.983508 0.180867i \(-0.942110\pi\)
0.648389 + 0.761309i \(0.275443\pi\)
\(504\) 0 0
\(505\) 1.79118e9 + 3.10241e9i 0.618898 + 1.07196i
\(506\) 2.79608e9 0.959450
\(507\) 0 0
\(508\) 2.55454e9 0.864548
\(509\) 1.30078e9 + 2.25303e9i 0.437213 + 0.757275i 0.997473 0.0710413i \(-0.0226322\pi\)
−0.560260 + 0.828317i \(0.689299\pi\)
\(510\) 0 0
\(511\) 4.11065e8 7.11986e8i 0.136282 0.236047i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −1.33228e9 + 2.30759e9i −0.432739 + 0.749526i
\(515\) 2.76374e9 0.891604
\(516\) 0 0
\(517\) −2.76886e9 4.79581e9i −0.881221 1.52632i
\(518\) −1.37703e9 2.38508e9i −0.435299 0.753961i
\(519\) 0 0
\(520\) −7.77179e7 1.18321e9i −0.0242387 0.369020i
\(521\) 7.28323e8 0.225627 0.112814 0.993616i \(-0.464014\pi\)
0.112814 + 0.993616i \(0.464014\pi\)
\(522\) 0 0
\(523\) −5.32945e8 9.23087e8i −0.162902 0.282154i 0.773006 0.634398i \(-0.218752\pi\)
−0.935908 + 0.352244i \(0.885419\pi\)
\(524\) −8.43184e8 + 1.46044e9i −0.256013 + 0.443428i
\(525\) 0 0
\(526\) 5.00491e8 8.66875e8i 0.149950 0.259721i
\(527\) 6.79715e8 1.17730e9i 0.202297 0.350389i
\(528\) 0 0
\(529\) 1.61018e8 2.78891e8i 0.0472910 0.0819104i
\(530\) 1.39837e9 + 2.42205e9i 0.407996 + 0.706670i
\(531\) 0 0
\(532\) −4.28025e9 −1.23248
\(533\) −2.98172e9 + 1.99293e9i −0.852947 + 0.570093i
\(534\) 0 0
\(535\) −3.12413e9 5.41116e9i −0.882046 1.52775i
\(536\) 1.51543e8 + 2.62481e8i 0.0425070 + 0.0736242i
\(537\) 0 0
\(538\) −2.40447e9 −0.665703
\(539\) −3.27407e9 + 5.67085e9i −0.900590 + 1.55987i
\(540\) 0 0
\(541\) −3.60800e9 −0.979663 −0.489831 0.871817i \(-0.662942\pi\)
−0.489831 + 0.871817i \(0.662942\pi\)
\(542\) −1.95122e9 + 3.37961e9i −0.526390 + 0.911735i
\(543\) 0 0
\(544\) 2.31725e8 + 4.01360e8i 0.0617130 + 0.106890i
\(545\) −4.10754e9 −1.08691
\(546\) 0 0
\(547\) 4.38462e9 1.14545 0.572726 0.819747i \(-0.305886\pi\)
0.572726 + 0.819747i \(0.305886\pi\)
\(548\) 1.37348e9 + 2.37894e9i 0.356526 + 0.617521i
\(549\) 0 0
\(550\) −1.85122e8 + 3.20641e8i −0.0474449 + 0.0821770i
\(551\) 2.85455e9 0.726953
\(552\) 0 0
\(553\) 3.82754e9 6.62949e9i 0.962458 1.66703i
\(554\) 2.93286e9 0.732836
\(555\) 0 0
\(556\) −1.30607e9 2.26218e9i −0.322259 0.558169i
\(557\) −3.21953e9 5.57639e9i −0.789405 1.36729i −0.926332 0.376708i \(-0.877056\pi\)
0.136927 0.990581i \(-0.456277\pi\)
\(558\) 0 0
\(559\) 4.24555e9 + 2.09294e9i 1.02800 + 0.506775i
\(560\) −1.63486e9 −0.393390
\(561\) 0 0
\(562\) 4.22228e6 + 7.31320e6i 0.00100339 + 0.00173792i
\(563\) −7.73951e8 + 1.34052e9i −0.182782 + 0.316588i −0.942827 0.333283i \(-0.891844\pi\)
0.760045 + 0.649871i \(0.225177\pi\)
\(564\) 0 0
\(565\) 5.85373e8 1.01390e9i 0.136541 0.236496i
\(566\) −2.44154e9 + 4.22887e9i −0.565986 + 0.980317i
\(567\) 0 0
\(568\) −1.52909e8 + 2.64846e8i −0.0350117 + 0.0606420i
\(569\) −1.33315e8 2.30909e8i −0.0303380 0.0525469i 0.850458 0.526043i \(-0.176325\pi\)
−0.880796 + 0.473496i \(0.842992\pi\)
\(570\) 0 0
\(571\) 2.24474e9 0.504591 0.252296 0.967650i \(-0.418814\pi\)
0.252296 + 0.967650i \(0.418814\pi\)
\(572\) −2.09167e8 3.18445e9i −0.0467313 0.711456i
\(573\) 0 0
\(574\) 2.47239e9 + 4.28230e9i 0.545663 + 0.945117i
\(575\) −2.04105e8 3.53520e8i −0.0447730 0.0775491i
\(576\) 0 0
\(577\) 8.35240e9 1.81007 0.905036 0.425335i \(-0.139844\pi\)
0.905036 + 0.425335i \(0.139844\pi\)
\(578\) 8.41214e8 1.45703e9i 0.181200 0.313848i
\(579\) 0 0
\(580\) 1.09031e9 0.232034
\(581\) −4.39507e9 + 7.61249e9i −0.929714 + 1.61031i
\(582\) 0 0
\(583\) 3.76352e9 + 6.51861e9i 0.786600 + 1.36243i
\(584\) 3.08329e8 0.0640573
\(585\) 0 0
\(586\) 3.98589e9 0.818245
\(587\) 1.28658e9 + 2.22843e9i 0.262546 + 0.454742i 0.966918 0.255089i \(-0.0821046\pi\)
−0.704372 + 0.709831i \(0.748771\pi\)
\(588\) 0 0
\(589\) −2.35433e9 + 4.07781e9i −0.474748 + 0.822288i
\(590\) −1.71601e9 −0.343983
\(591\) 0 0
\(592\) 5.16435e8 8.94491e8i 0.102303 0.177194i
\(593\) 5.94741e9 1.17121 0.585607 0.810595i \(-0.300856\pi\)
0.585607 + 0.810595i \(0.300856\pi\)
\(594\) 0 0
\(595\) −2.82257e9 4.88884e9i −0.549333 0.951472i
\(596\) −6.09606e8 1.05587e9i −0.117947 0.204290i
\(597\) 0 0
\(598\) 3.15591e9 + 1.55577e9i 0.603490 + 0.297504i
\(599\) 5.25374e9 0.998792 0.499396 0.866374i \(-0.333555\pi\)
0.499396 + 0.866374i \(0.333555\pi\)
\(600\) 0 0
\(601\) 3.66219e9 + 6.34309e9i 0.688145 + 1.19190i 0.972437 + 0.233164i \(0.0749079\pi\)
−0.284293 + 0.958737i \(0.591759\pi\)
\(602\) 3.26309e9 5.65183e9i 0.609594 1.05585i
\(603\) 0 0
\(604\) 1.05320e9 1.82419e9i 0.194482 0.336853i
\(605\) −2.94386e9 + 5.09892e9i −0.540472 + 0.936126i
\(606\) 0 0
\(607\) −2.86675e9 + 4.96536e9i −0.520271 + 0.901136i 0.479451 + 0.877568i \(0.340836\pi\)
−0.999722 + 0.0235672i \(0.992498\pi\)
\(608\) −8.02625e8 1.39019e9i −0.144827 0.250848i
\(609\) 0 0
\(610\) −1.74283e8 −0.0310885
\(611\) −4.56742e8 6.95363e9i −0.0810078 1.23330i
\(612\) 0 0
\(613\) −9.33205e8 1.61636e9i −0.163631 0.283417i 0.772537 0.634969i \(-0.218987\pi\)
−0.936168 + 0.351552i \(0.885654\pi\)
\(614\) −1.98951e9 3.44593e9i −0.346862 0.600783i
\(615\) 0 0
\(616\) −4.40001e9 −0.758440
\(617\) 2.88453e9 4.99615e9i 0.494398 0.856322i −0.505581 0.862779i \(-0.668722\pi\)
0.999979 + 0.00645676i \(0.00205527\pi\)
\(618\) 0 0
\(619\) 9.91957e9 1.68103 0.840515 0.541788i \(-0.182252\pi\)
0.840515 + 0.541788i \(0.182252\pi\)
\(620\) −8.99247e8 + 1.55754e9i −0.151533 + 0.262463i
\(621\) 0 0
\(622\) −4.21116e9 7.29394e9i −0.701674 1.21534i
\(623\) 1.62329e10 2.68961
\(624\) 0 0
\(625\) −6.62385e9 −1.08525
\(626\) 8.78753e8 + 1.52205e9i 0.143172 + 0.247980i
\(627\) 0 0
\(628\) 2.93891e9 5.09034e9i 0.473508 0.820140i
\(629\) 3.56647e9 0.571428
\(630\) 0 0
\(631\) 3.92902e9 6.80526e9i 0.622560 1.07831i −0.366447 0.930439i \(-0.619426\pi\)
0.989007 0.147867i \(-0.0472408\pi\)
\(632\) 2.87093e9 0.452390
\(633\) 0 0
\(634\) 3.80256e9 + 6.58623e9i 0.592603 + 1.02642i
\(635\) −5.83482e9 1.01062e10i −0.904314 1.56632i
\(636\) 0 0
\(637\) −6.85075e9 + 4.57891e9i −1.05015 + 0.701898i
\(638\) 2.93441e9 0.447352
\(639\) 0 0
\(640\) −3.06567e8 5.30989e8i −0.0462269 0.0800674i
\(641\) 4.40339e8 7.62689e8i 0.0660365 0.114379i −0.831117 0.556098i \(-0.812298\pi\)
0.897153 + 0.441719i \(0.145631\pi\)
\(642\) 0 0
\(643\) 5.32881e9 9.22976e9i 0.790481 1.36915i −0.135188 0.990820i \(-0.543164\pi\)
0.925669 0.378333i \(-0.123503\pi\)
\(644\) 2.42560e9 4.20126e9i 0.357864 0.619839i
\(645\) 0 0
\(646\) 2.77144e9 4.80028e9i 0.404475 0.700572i
\(647\) 2.08426e9 + 3.61004e9i 0.302543 + 0.524020i 0.976711 0.214558i \(-0.0688311\pi\)
−0.674168 + 0.738578i \(0.735498\pi\)
\(648\) 0 0
\(649\) −4.61840e9 −0.663185
\(650\) −3.87355e8 + 2.58901e8i −0.0553239 + 0.0369774i
\(651\) 0 0
\(652\) 9.01488e8 + 1.56142e9i 0.127378 + 0.220625i
\(653\) −6.66949e9 1.15519e10i −0.937338 1.62352i −0.770411 0.637548i \(-0.779949\pi\)
−0.166928 0.985969i \(-0.553385\pi\)
\(654\) 0 0
\(655\) 7.70366e9 1.07116
\(656\) −9.27234e8 + 1.60602e9i −0.128241 + 0.222120i
\(657\) 0 0
\(658\) −9.60796e9 −1.31474
\(659\) 4.89479e9 8.47803e9i 0.666247 1.15397i −0.312699 0.949852i \(-0.601233\pi\)
0.978946 0.204121i \(-0.0654337\pi\)
\(660\) 0 0
\(661\) −1.53489e9 2.65851e9i −0.206715 0.358041i 0.743963 0.668221i \(-0.232944\pi\)
−0.950678 + 0.310180i \(0.899611\pi\)
\(662\) −8.77922e9 −1.17612
\(663\) 0 0
\(664\) −3.29662e9 −0.436999
\(665\) 9.77652e9 + 1.69334e10i 1.28917 + 2.23290i
\(666\) 0 0
\(667\) −1.61766e9 + 2.80186e9i −0.211079 + 0.365600i
\(668\) 2.47280e9 0.320975
\(669\) 0 0
\(670\) 6.92280e8 1.19906e9i 0.0889242 0.154021i
\(671\) −4.69057e8 −0.0599373
\(672\) 0 0
\(673\) 2.02392e9 + 3.50552e9i 0.255941 + 0.443303i 0.965151 0.261695i \(-0.0842814\pi\)
−0.709210 + 0.704998i \(0.750948\pi\)
\(674\) −1.68708e9 2.92212e9i −0.212240 0.367610i
\(675\) 0 0
\(676\) 1.53578e9 3.71064e9i 0.191212 0.461993i
\(677\) −5.88970e9 −0.729513 −0.364756 0.931103i \(-0.618848\pi\)
−0.364756 + 0.931103i \(0.618848\pi\)
\(678\) 0 0
\(679\) 1.07866e10 + 1.86829e10i 1.32233 + 2.29035i
\(680\) 1.05857e9 1.83349e9i 0.129103 0.223613i
\(681\) 0 0
\(682\) −2.42020e9 + 4.19191e9i −0.292150 + 0.506019i
\(683\) 7.98001e9 1.38218e10i 0.958365 1.65994i 0.231891 0.972742i \(-0.425509\pi\)
0.726473 0.687194i \(-0.241158\pi\)
\(684\) 0 0
\(685\) 6.27434e9 1.08675e10i 0.745849 1.29185i
\(686\) 1.18330e9 + 2.04953e9i 0.139946 + 0.242393i
\(687\) 0 0
\(688\) 2.44755e9 0.286531
\(689\) 6.20817e8 + 9.45157e9i 0.0723096 + 1.10087i
\(690\) 0 0
\(691\) 3.48893e9 + 6.04300e9i 0.402271 + 0.696754i 0.994000 0.109383i \(-0.0348876\pi\)
−0.591729 + 0.806137i \(0.701554\pi\)
\(692\) 8.36485e6 + 1.44883e7i 0.000959592 + 0.00166206i
\(693\) 0 0
\(694\) 4.57811e9 0.519909
\(695\) −5.96639e9 + 1.03341e10i −0.674163 + 1.16768i
\(696\) 0 0
\(697\) −6.40343e9 −0.716305
\(698\) 4.38113e9 7.58834e9i 0.487632 0.844603i
\(699\) 0 0
\(700\) 3.21188e8 + 5.56313e8i 0.0353928 + 0.0613022i
\(701\) −1.42783e10 −1.56554 −0.782770 0.622311i \(-0.786194\pi\)
−0.782770 + 0.622311i \(0.786194\pi\)
\(702\) 0 0
\(703\) −1.23532e10 −1.34102
\(704\) −8.25082e8 1.42908e9i −0.0891236 0.154367i
\(705\) 0 0
\(706\) −1.10940e9 + 1.92154e9i −0.118652 + 0.205510i
\(707\) 1.67279e10 1.78022
\(708\) 0 0
\(709\) 1.90818e8 3.30507e8i 0.0201075 0.0348272i −0.855797 0.517313i \(-0.826932\pi\)
0.875904 + 0.482485i \(0.160266\pi\)
\(710\) 1.39703e9 0.146488
\(711\) 0 0
\(712\) 3.04397e9 + 5.27231e9i 0.316053 + 0.547420i
\(713\) −2.66837e9 4.62175e9i −0.275697 0.477522i
\(714\) 0 0
\(715\) −1.21205e10 + 8.10109e9i −1.24008 + 0.828843i
\(716\) 2.80474e8 0.0285560
\(717\) 0 0
\(718\) 1.44607e9 + 2.50466e9i 0.145799 + 0.252530i
\(719\) 6.43024e9 1.11375e10i 0.645173 1.11747i −0.339089 0.940754i \(-0.610119\pi\)
0.984262 0.176718i \(-0.0565479\pi\)
\(720\) 0 0
\(721\) 6.45267e9 1.11764e10i 0.641159 1.11052i
\(722\) −6.02394e9 + 1.04338e10i −0.595663 + 1.03172i
\(723\) 0 0
\(724\) 8.65408e8 1.49893e9i 0.0847493 0.146790i
\(725\) −2.14203e8 3.71011e8i −0.0208758 0.0361579i
\(726\) 0 0
\(727\) −3.31616e9 −0.320085 −0.160043 0.987110i \(-0.551163\pi\)
−0.160043 + 0.987110i \(0.551163\pi\)
\(728\) −4.96626e9 2.44822e9i −0.477056 0.235175i
\(729\) 0 0
\(730\) −7.04253e8 1.21980e9i −0.0670037 0.116054i
\(731\) 4.22566e9 + 7.31907e9i 0.400114 + 0.693019i
\(732\) 0 0
\(733\) −3.96951e9 −0.372282 −0.186141 0.982523i \(-0.559598\pi\)
−0.186141 + 0.982523i \(0.559598\pi\)
\(734\) 2.37652e9 4.11625e9i 0.221822 0.384207i
\(735\) 0 0
\(736\) 1.81937e9 0.168209
\(737\) 1.86318e9 3.22712e9i 0.171442 0.296947i
\(738\) 0 0
\(739\) −6.72157e9 1.16421e10i −0.612654 1.06115i −0.990791 0.135398i \(-0.956769\pi\)
0.378138 0.925749i \(-0.376565\pi\)
\(740\) −4.71835e9 −0.428035
\(741\) 0 0
\(742\) 1.30594e10 1.17357
\(743\) 3.25521e9 + 5.63819e9i 0.291151 + 0.504288i 0.974082 0.226194i \(-0.0726284\pi\)
−0.682931 + 0.730483i \(0.739295\pi\)
\(744\) 0 0
\(745\) −2.78480e9 + 4.82341e9i −0.246744 + 0.427374i
\(746\) −3.98612e9 −0.351531
\(747\) 0 0
\(748\) 2.84899e9 4.93459e9i 0.248906 0.431117i
\(749\) −2.91764e10 −2.53714
\(750\) 0 0
\(751\) −1.90147e9 3.29345e9i −0.163814 0.283734i 0.772420 0.635113i \(-0.219046\pi\)
−0.936233 + 0.351379i \(0.885713\pi\)
\(752\) −1.80167e9 3.12058e9i −0.154494 0.267592i
\(753\) 0 0
\(754\) 3.31205e9 + 1.63275e9i 0.281382 + 0.138714i
\(755\) −9.62242e9 −0.813711
\(756\) 0 0
\(757\) −5.22825e9 9.05559e9i −0.438047 0.758719i 0.559492 0.828836i \(-0.310996\pi\)
−0.997539 + 0.0701166i \(0.977663\pi\)
\(758\) −6.97516e9 + 1.20813e10i −0.581717 + 1.00756i
\(759\) 0 0
\(760\) −3.66655e9 + 6.35065e9i −0.302977 + 0.524772i
\(761\) 1.16308e9 2.01451e9i 0.0956673 0.165701i −0.814220 0.580557i \(-0.802835\pi\)
0.909887 + 0.414856i \(0.136168\pi\)
\(762\) 0 0
\(763\) −9.59012e9 + 1.66106e10i −0.781606 + 1.35378i
\(764\) 3.08766e9 + 5.34799e9i 0.250497 + 0.433874i
\(765\) 0 0
\(766\) 8.98002e9 0.721900
\(767\) −5.21275e9 2.56974e9i −0.417141 0.205639i
\(768\) 0 0
\(769\) −2.45269e9 4.24819e9i −0.194492 0.336869i 0.752242 0.658887i \(-0.228972\pi\)
−0.946734 + 0.322017i \(0.895639\pi\)
\(770\) 1.00501e10 + 1.74072e10i 0.793325 + 1.37408i
\(771\) 0 0
\(772\) 1.34898e9 0.105523
\(773\) −2.33679e9 + 4.04744e9i −0.181967 + 0.315176i −0.942550 0.334065i \(-0.891580\pi\)
0.760584 + 0.649240i \(0.224913\pi\)
\(774\) 0 0
\(775\) 7.06669e8 0.0545331
\(776\) −4.04537e9 + 7.00678e9i −0.310772 + 0.538273i
\(777\) 0 0
\(778\) −5.46147e9 9.45954e9i −0.415796 0.720181i
\(779\) 2.21795e10 1.68101
\(780\) 0 0
\(781\) 3.75993e9 0.282423
\(782\) 3.14112e9 + 5.44059e9i 0.234888 + 0.406839i
\(783\) 0 0
\(784\) −2.13040e9 + 3.68995e9i −0.157890 + 0.273473i
\(785\) −2.68510e10 −1.98115
\(786\) 0 0
\(787\) 2.51214e9 4.35115e9i 0.183710 0.318195i −0.759431 0.650588i \(-0.774523\pi\)
0.943141 + 0.332393i \(0.107856\pi\)
\(788\) 1.03574e10 0.754068
\(789\) 0 0
\(790\) −6.55749e9 1.13579e10i −0.473198 0.819603i
\(791\) −2.73341e9 4.73440e9i −0.196375 0.340132i
\(792\) 0 0
\(793\) −5.29421e8 2.60990e8i −0.0377003 0.0185852i
\(794\) 2.19181e9 0.155393
\(795\) 0 0
\(796\) 6.95264e9 + 1.20423e10i 0.488600 + 0.846281i
\(797\) 6.10661e9 1.05770e10i 0.427264 0.740042i −0.569365 0.822085i \(-0.692811\pi\)
0.996629 + 0.0820424i \(0.0261443\pi\)
\(798\) 0 0
\(799\) 6.22111e9 1.07753e10i 0.431473 0.747334i
\(800\) −1.20457e8 + 2.08638e8i −0.00831796 + 0.0144071i
\(801\) 0 0
\(802\) −3.50123e9 + 6.06430e9i −0.239668 + 0.415117i
\(803\) −1.89540e9 3.28293e9i −0.129180 0.223747i
\(804\) 0 0
\(805\) −2.21612e10 −1.49730
\(806\) −5.06409e9 + 3.38474e9i −0.340666 + 0.227695i
\(807\) 0 0
\(808\) 3.13678e9 + 5.43306e9i 0.209191 + 0.362330i
\(809\) 4.86777e9 + 8.43123e9i 0.323229 + 0.559849i 0.981152 0.193236i \(-0.0618983\pi\)
−0.657923 + 0.753085i \(0.728565\pi\)
\(810\) 0 0
\(811\) −1.50013e10 −0.987542 −0.493771 0.869592i \(-0.664382\pi\)
−0.493771 + 0.869592i \(0.664382\pi\)
\(812\) 2.54561e9 4.40912e9i 0.166857 0.289005i
\(813\) 0 0
\(814\) −1.26988e10 −0.825234
\(815\) 4.11818e9 7.13289e9i 0.266473 0.461545i
\(816\) 0 0
\(817\) −1.46364e10 2.53510e10i −0.938982 1.62637i
\(818\) 1.48040e8 0.00945678
\(819\) 0 0
\(820\) 8.47158e9 0.536557
\(821\) −3.31998e9 5.75037e9i −0.209380 0.362656i 0.742140 0.670245i \(-0.233811\pi\)
−0.951519 + 0.307589i \(0.900478\pi\)
\(822\) 0 0
\(823\) 1.55815e9 2.69879e9i 0.0974336 0.168760i −0.813188 0.582001i \(-0.802270\pi\)
0.910622 + 0.413241i \(0.135603\pi\)
\(824\) 4.83997e9 0.301368
\(825\) 0 0
\(826\) −4.00646e9 + 6.93939e9i −0.247361 + 0.428441i
\(827\) −4.14743e9 −0.254982 −0.127491 0.991840i \(-0.540692\pi\)
−0.127491 + 0.991840i \(0.540692\pi\)
\(828\) 0 0
\(829\) 3.42521e9 + 5.93264e9i 0.208808 + 0.361665i 0.951339 0.308146i \(-0.0997084\pi\)
−0.742532 + 0.669811i \(0.766375\pi\)
\(830\) 7.52981e9 + 1.30420e10i 0.457099 + 0.791719i
\(831\) 0 0
\(832\) −1.36103e8 2.07208e9i −0.00819285 0.124731i
\(833\) −1.47124e10 −0.881914
\(834\) 0 0
\(835\) −5.64812e9 9.78283e9i −0.335738 0.581516i
\(836\) −9.86802e9 + 1.70919e10i −0.584128 + 1.01174i
\(837\) 0 0
\(838\) −6.96731e9 + 1.20677e10i −0.408989 + 0.708389i
\(839\) −1.69365e10 + 2.93348e10i −0.990048 + 1.71481i −0.373145 + 0.927773i \(0.621721\pi\)
−0.616903 + 0.787039i \(0.711613\pi\)
\(840\) 0 0
\(841\) 6.92725e9 1.19983e10i 0.401582 0.695561i
\(842\) 4.26858e8 + 7.39340e8i 0.0246429 + 0.0426827i
\(843\) 0 0
\(844\) −1.30277e10 −0.745881
\(845\) −1.81878e10 + 2.39965e9i −1.03701 + 0.136820i
\(846\) 0 0
\(847\) 1.37464e10 + 2.38095e10i 0.777316 + 1.34635i
\(848\) 2.44888e9 + 4.24158e9i 0.137905 + 0.238859i
\(849\) 0 0
\(850\) −8.31869e8 −0.0464610
\(851\) 7.00047e9 1.21252e10i 0.389380 0.674426i
\(852\) 0 0
\(853\) 2.53792e10 1.40009 0.700046 0.714098i \(-0.253163\pi\)
0.700046 + 0.714098i \(0.253163\pi\)
\(854\) −4.06907e8 + 7.04784e8i −0.0223560 + 0.0387216i
\(855\) 0 0
\(856\) −5.47110e9 9.47622e9i −0.298137 0.516389i
\(857\) 1.15439e10 0.626496 0.313248 0.949671i \(-0.398583\pi\)
0.313248 + 0.949671i \(0.398583\pi\)
\(858\) 0 0
\(859\) −2.20284e10 −1.18579 −0.592893 0.805281i \(-0.702014\pi\)
−0.592893 + 0.805281i \(0.702014\pi\)
\(860\) −5.59045e9 9.68294e9i −0.299711 0.519114i
\(861\) 0 0
\(862\) −4.13739e9 + 7.16617e9i −0.220014 + 0.381076i
\(863\) 1.33248e10 0.705707 0.352853 0.935679i \(-0.385211\pi\)
0.352853 + 0.935679i \(0.385211\pi\)
\(864\) 0 0
\(865\) 3.82123e7 6.61856e7i 0.00200746 0.00347702i
\(866\) 9.94515e9 0.520354
\(867\) 0 0
\(868\) 4.19905e9 + 7.27296e9i 0.217937 + 0.377479i
\(869\) −1.76486e10 3.05683e10i −0.912307 1.58016i
\(870\) 0 0
\(871\) 3.89856e9 2.60572e9i 0.199913 0.133618i
\(872\) −7.19328e9 −0.367383
\(873\) 0 0
\(874\) −1.08799e10 1.88445e10i −0.551232 0.954762i
\(875\) −1.41240e10 + 2.44635e10i −0.712739 + 1.23450i
\(876\) 0 0
\(877\) −1.09078e10 + 1.88929e10i −0.546059 + 0.945802i 0.452480 + 0.891774i \(0.350539\pi\)
−0.998539 + 0.0540276i \(0.982794\pi\)
\(878\) 8.86716e9 1.53584e10i 0.442134 0.765798i
\(879\) 0 0
\(880\) −3.76914e9 + 6.52834e9i −0.186446 + 0.322934i
\(881\) 1.42858e10 + 2.47438e10i 0.703865 + 1.21913i 0.967100 + 0.254398i \(0.0818772\pi\)
−0.263235 + 0.964732i \(0.584789\pi\)
\(882\) 0 0
\(883\) 1.94977e10 0.953061 0.476531 0.879158i \(-0.341894\pi\)
0.476531 + 0.879158i \(0.341894\pi\)
\(884\) 5.96130e9 3.98442e9i 0.290240 0.193991i
\(885\) 0 0
\(886\) −1.11856e9 1.93740e9i −0.0540308 0.0935840i
\(887\) −1.16099e10 2.01090e10i −0.558595 0.967514i −0.997614 0.0690368i \(-0.978007\pi\)
0.439019 0.898478i \(-0.355326\pi\)
\(888\) 0 0
\(889\) −5.44915e10 −2.60119
\(890\) 1.39054e10 2.40849e10i 0.661180 1.14520i
\(891\) 0 0
\(892\) 2.22976e9 0.105192
\(893\) −2.15480e10 + 3.73223e10i −1.01258 + 1.75383i
\(894\) 0 0
\(895\) −6.40630e8 1.10960e9i −0.0298694 0.0517354i
\(896\) −2.86304e9 −0.132968
\(897\) 0 0
\(898\) 1.46325e10 0.674298
\(899\) −2.80039e9 4.85041e9i −0.128546 0.222649i
\(900\) 0 0
\(901\) −8.45591e9 + 1.46461e10i −0.385144 + 0.667089i
\(902\) 2.28001e10 1.03446
\(903\) 0 0
\(904\) 1.02513e9 1.77557e9i 0.0461517 0.0799371i
\(905\) −7.90671e9 −0.354590
\(906\) 0 0
\(907\) −2.86411e8 4.96078e8i −0.0127457 0.0220762i 0.859582 0.510997i \(-0.170724\pi\)
−0.872328 + 0.488921i \(0.837391\pi\)
\(908\) 3.08393e9 + 5.34152e9i 0.136711 + 0.236791i
\(909\) 0 0
\(910\) 1.65782e9 + 2.52394e10i 0.0729278 + 1.11028i
\(911\) 1.07211e10 0.469815 0.234907 0.972018i \(-0.424521\pi\)
0.234907 + 0.972018i \(0.424521\pi\)
\(912\) 0 0
\(913\) 2.02654e10 + 3.51008e10i 0.881269 + 1.52640i
\(914\) 2.89405e9 5.01265e9i 0.125370 0.217148i
\(915\) 0 0
\(916\) −6.09748e9 + 1.05611e10i −0.262130 + 0.454022i
\(917\) 1.79862e10 3.11530e10i 0.770276 1.33416i
\(918\) 0 0
\(919\) −1.79597e10 + 3.11071e10i −0.763299 + 1.32207i 0.177842 + 0.984059i \(0.443089\pi\)
−0.941141 + 0.338014i \(0.890245\pi\)
\(920\) −4.15563e9 7.19776e9i −0.175946 0.304747i
\(921\) 0 0
\(922\) −2.77388e9 −0.116554
\(923\) 4.24380e9 + 2.09207e9i 0.177643 + 0.0875731i
\(924\) 0 0
\(925\) 9.26973e8 + 1.60556e9i 0.0385098 + 0.0667009i
\(926\) 1.29874e10 + 2.24948e10i 0.537506 + 0.930988i
\(927\) 0 0
\(928\) 1.90939e9 0.0784289
\(929\) 1.22473e10 2.12129e10i 0.501168 0.868049i −0.498831 0.866699i \(-0.666237\pi\)
0.999999 0.00134967i \(-0.000429614\pi\)
\(930\) 0 0
\(931\) 5.09593e10 2.06966
\(932\) −1.55143e9 + 2.68716e9i −0.0627736 + 0.108727i
\(933\) 0 0
\(934\) −3.93820e9 6.82116e9i −0.158155 0.273933i
\(935\) −2.60295e10 −1.04142
\(936\) 0 0
\(937\) 1.00234e9 0.0398041 0.0199021 0.999802i \(-0.493665\pi\)
0.0199021 + 0.999802i \(0.493665\pi\)
\(938\) −3.23261e9 5.59905e9i −0.127892 0.221516i
\(939\) 0 0
\(940\) −8.23037e9 + 1.42554e10i −0.323200 + 0.559800i
\(941\) 1.00328e10 0.392515 0.196258 0.980552i \(-0.437121\pi\)
0.196258 + 0.980552i \(0.437121\pi\)
\(942\) 0 0
\(943\) −1.25690e10 + 2.17702e10i −0.488102 + 0.845418i
\(944\) −3.00514e9 −0.116269
\(945\) 0 0
\(946\) −1.50459e10 2.60603e10i −0.577830 1.00083i
\(947\) −8.33758e9 1.44411e10i −0.319018 0.552555i 0.661265 0.750152i \(-0.270020\pi\)
−0.980283 + 0.197597i \(0.936686\pi\)
\(948\) 0 0
\(949\) −3.12659e8 4.76004e9i −0.0118751 0.180792i
\(950\) 2.88134e9 0.109034
\(951\) 0 0
\(952\) −4.94299e9 8.56151e9i −0.185678 0.321604i
\(953\) −1.47576e10 + 2.55609e10i −0.552321 + 0.956647i 0.445786 + 0.895140i \(0.352924\pi\)
−0.998107 + 0.0615077i \(0.980409\pi\)
\(954\) 0 0
\(955\) 1.41051e10 2.44307e10i 0.524038 0.907661i
\(956\) −3.12746e9 + 5.41693e9i −0.115768 + 0.200517i
\(957\) 0 0
\(958\) 1.55281e10 2.68955e10i 0.570610 0.988325i
\(959\) −2.92981e10 5.07459e10i −1.07269 1.85796i
\(960\) 0 0
\(961\) −1.82740e10 −0.664204
\(962\) −1.43330e10 7.06577e9i −0.519069 0.255886i
\(963\) 0 0
\(964\) 9.00812e9 + 1.56025e10i 0.323866 + 0.560952i
\(965\) −3.08121e9 5.33680e9i −0.110376 0.191177i
\(966\) 0 0
\(967\) 1.18090e9 0.0419973 0.0209987 0.999780i \(-0.493315\pi\)
0.0209987 + 0.999780i \(0.493315\pi\)
\(968\) −5.15540e9 + 8.92942e9i −0.182683 + 0.316417i
\(969\) 0 0
\(970\) 3.69601e10 1.30026
\(971\) −2.01714e10 + 3.49378e10i −0.707079 + 1.22470i 0.258857 + 0.965916i \(0.416654\pi\)
−0.965936 + 0.258781i \(0.916679\pi\)
\(972\) 0 0
\(973\) 2.78601e10 + 4.82552e10i 0.969591 + 1.67938i
\(974\) 9.24541e9 0.320605
\(975\) 0 0
\(976\) −3.05210e8 −0.0105081
\(977\) −7.68842e9 1.33167e10i −0.263758 0.456843i 0.703479 0.710716i \(-0.251629\pi\)
−0.967238 + 0.253873i \(0.918295\pi\)
\(978\) 0 0
\(979\) 3.74246e10 6.48213e10i 1.27473 2.20790i
\(980\) 1.94641e10 0.660608
\(981\) 0 0
\(982\) −1.02399e10 + 1.77360e10i −0.345068 + 0.597675i
\(983\) 8.11574e9 0.272515 0.136258 0.990673i \(-0.456493\pi\)
0.136258 + 0.990673i \(0.456493\pi\)
\(984\) 0 0
\(985\) −2.36574e10 4.09758e10i −0.788751 1.36616i
\(986\) 3.29653e9 + 5.70976e9i 0.109519 + 0.189692i
\(987\) 0 0
\(988\) −2.06481e10 + 1.38008e10i −0.681131 + 0.455255i
\(989\) 3.31775e10 1.09058
\(990\) 0 0
\(991\) −2.50954e10 4.34665e10i −0.819100 1.41872i −0.906346 0.422536i \(-0.861140\pi\)
0.0872467 0.996187i \(-0.472193\pi\)
\(992\) −1.57479e9 + 2.72762e9i −0.0512192 + 0.0887143i
\(993\) 0 0
\(994\) 3.26174e9 5.64949e9i 0.105341 0.182456i
\(995\) 3.17610e10 5.50117e10i 1.02215 1.77041i
\(996\) 0 0
\(997\) −1.22870e10 + 2.12817e10i −0.392657 + 0.680102i −0.992799 0.119792i \(-0.961777\pi\)
0.600142 + 0.799893i \(0.295111\pi\)
\(998\) −1.78556e10 3.09268e10i −0.568614 0.984869i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.8.h.c.55.3 8
3.2 odd 2 78.8.e.a.55.2 8
13.9 even 3 inner 234.8.h.c.217.3 8
39.35 odd 6 78.8.e.a.61.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.8.e.a.55.2 8 3.2 odd 2
78.8.e.a.61.2 yes 8 39.35 odd 6
234.8.h.c.55.3 8 1.1 even 1 trivial
234.8.h.c.217.3 8 13.9 even 3 inner