Properties

Label 234.8.h.c.55.2
Level $234$
Weight $8$
Character 234.55
Analytic conductor $73.098$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,8,Mod(55,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.55"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 234.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-32,0,-256,386] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.0980959633\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 14114 x^{6} + 42351 x^{5} + 205543918 x^{4} + 13390412127 x^{3} + \cdots + 28150431267204 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{3}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 55.2
Root \(-14.5673 + 8.41041i\) of defining polynomial
Character \(\chi\) \(=\) 234.55
Dual form 234.8.h.c.217.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} -76.2027 q^{5} +(237.214 - 410.867i) q^{7} +512.000 q^{8} +(304.811 + 527.947i) q^{10} +(469.485 + 813.173i) q^{11} +(-6440.26 + 4612.11i) q^{13} -3795.43 q^{14} +(-2048.00 - 3547.24i) q^{16} +(7532.39 - 13046.5i) q^{17} +(13871.3 - 24025.9i) q^{19} +(2438.48 - 4223.58i) q^{20} +(3755.88 - 6505.38i) q^{22} +(47390.7 + 82083.1i) q^{23} -72318.2 q^{25} +(57714.7 + 26171.0i) q^{26} +(15181.7 + 26295.5i) q^{28} +(25004.6 + 43309.3i) q^{29} -253650. q^{31} +(-16384.0 + 28377.9i) q^{32} -120518. q^{34} +(-18076.4 + 31309.2i) q^{35} +(-30321.3 - 52518.1i) q^{37} -221942. q^{38} -39015.8 q^{40} +(312111. + 540592. i) q^{41} +(287232. - 497500. i) q^{43} -60094.1 q^{44} +(379125. - 656664. i) q^{46} +467295. q^{47} +(299230. + 518282. i) q^{49} +(289273. + 501035. i) q^{50} +(-49540.5 - 504543. i) q^{52} +158317. q^{53} +(-35776.0 - 61965.9i) q^{55} +(121454. - 210364. i) q^{56} +(200037. - 346474. i) q^{58} +(128030. - 221754. i) q^{59} +(-190165. + 329375. i) q^{61} +(1.01460e6 + 1.75734e6i) q^{62} +262144. q^{64} +(490765. - 351455. i) q^{65} +(230735. + 399645. i) q^{67} +(482073. + 834975. i) q^{68} +289222. q^{70} +(2.55854e6 - 4.43152e6i) q^{71} -869122. q^{73} +(-242571. + 420145. i) q^{74} +(887766. + 1.53766e6i) q^{76} +445475. q^{77} +3.99615e6 q^{79} +(156063. + 270309. i) q^{80} +(2.49689e6 - 4.32474e6i) q^{82} +1.08553e6 q^{83} +(-573988. + 994177. i) q^{85} -4.59571e6 q^{86} +(240377. + 416344. i) q^{88} +(-4.21989e6 - 7.30906e6i) q^{89} +(367241. + 3.74015e6i) q^{91} -6.06601e6 q^{92} +(-1.86918e6 - 3.23752e6i) q^{94} +(-1.05703e6 + 1.83084e6i) q^{95} +(3.93058e6 - 6.80796e6i) q^{97} +(2.39384e6 - 4.14625e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{2} - 256 q^{4} + 386 q^{5} + 757 q^{7} + 4096 q^{8} - 1544 q^{10} - 4524 q^{11} + 13272 q^{13} - 12112 q^{14} - 16384 q^{16} + 12775 q^{17} + 38646 q^{19} - 12352 q^{20} - 36192 q^{22} - 24428 q^{23}+ \cdots + 4224696 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) −76.2027 −0.272631 −0.136315 0.990665i \(-0.543526\pi\)
−0.136315 + 0.990665i \(0.543526\pi\)
\(6\) 0 0
\(7\) 237.214 410.867i 0.261395 0.452750i −0.705218 0.708991i \(-0.749151\pi\)
0.966613 + 0.256241i \(0.0824840\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) 304.811 + 527.947i 0.0963896 + 0.166952i
\(11\) 469.485 + 813.173i 0.106353 + 0.184208i 0.914290 0.405060i \(-0.132749\pi\)
−0.807937 + 0.589268i \(0.799416\pi\)
\(12\) 0 0
\(13\) −6440.26 + 4612.11i −0.813021 + 0.582234i
\(14\) −3795.43 −0.369669
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) 7532.39 13046.5i 0.371845 0.644054i −0.618005 0.786175i \(-0.712059\pi\)
0.989849 + 0.142120i \(0.0453920\pi\)
\(18\) 0 0
\(19\) 13871.3 24025.9i 0.463961 0.803603i −0.535193 0.844730i \(-0.679761\pi\)
0.999154 + 0.0411263i \(0.0130946\pi\)
\(20\) 2438.48 4223.58i 0.0681577 0.118053i
\(21\) 0 0
\(22\) 3755.88 6505.38i 0.0752026 0.130255i
\(23\) 47390.7 + 82083.1i 0.812167 + 1.40671i 0.911344 + 0.411645i \(0.135046\pi\)
−0.0991769 + 0.995070i \(0.531621\pi\)
\(24\) 0 0
\(25\) −72318.2 −0.925672
\(26\) 57714.7 + 26171.0i 0.643990 + 0.292021i
\(27\) 0 0
\(28\) 15181.7 + 26295.5i 0.130698 + 0.226375i
\(29\) 25004.6 + 43309.3i 0.190383 + 0.329753i 0.945377 0.325979i \(-0.105694\pi\)
−0.754994 + 0.655731i \(0.772360\pi\)
\(30\) 0 0
\(31\) −253650. −1.52921 −0.764607 0.644497i \(-0.777067\pi\)
−0.764607 + 0.644497i \(0.777067\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −120518. −0.525868
\(35\) −18076.4 + 31309.2i −0.0712645 + 0.123434i
\(36\) 0 0
\(37\) −30321.3 52518.1i −0.0984107 0.170452i 0.812616 0.582799i \(-0.198043\pi\)
−0.911027 + 0.412347i \(0.864709\pi\)
\(38\) −221942. −0.656139
\(39\) 0 0
\(40\) −39015.8 −0.0963896
\(41\) 312111. + 540592.i 0.707238 + 1.22497i 0.965878 + 0.258998i \(0.0833924\pi\)
−0.258640 + 0.965974i \(0.583274\pi\)
\(42\) 0 0
\(43\) 287232. 497500.i 0.550926 0.954231i −0.447282 0.894393i \(-0.647608\pi\)
0.998208 0.0598386i \(-0.0190586\pi\)
\(44\) −60094.1 −0.106353
\(45\) 0 0
\(46\) 379125. 656664.i 0.574289 0.994698i
\(47\) 467295. 0.656521 0.328261 0.944587i \(-0.393538\pi\)
0.328261 + 0.944587i \(0.393538\pi\)
\(48\) 0 0
\(49\) 299230. + 518282.i 0.363345 + 0.629332i
\(50\) 289273. + 501035.i 0.327275 + 0.566856i
\(51\) 0 0
\(52\) −49540.5 504543.i −0.0488594 0.497607i
\(53\) 158317. 0.146070 0.0730350 0.997329i \(-0.476732\pi\)
0.0730350 + 0.997329i \(0.476732\pi\)
\(54\) 0 0
\(55\) −35776.0 61965.9i −0.0289950 0.0502208i
\(56\) 121454. 210364.i 0.0924172 0.160071i
\(57\) 0 0
\(58\) 200037. 346474.i 0.134621 0.233170i
\(59\) 128030. 221754.i 0.0811576 0.140569i −0.822590 0.568635i \(-0.807472\pi\)
0.903747 + 0.428066i \(0.140805\pi\)
\(60\) 0 0
\(61\) −190165. + 329375.i −0.107269 + 0.185796i −0.914663 0.404217i \(-0.867544\pi\)
0.807394 + 0.590013i \(0.200877\pi\)
\(62\) 1.01460e6 + 1.75734e6i 0.540659 + 0.936448i
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 490765. 351455.i 0.221655 0.158735i
\(66\) 0 0
\(67\) 230735. + 399645.i 0.0937243 + 0.162335i 0.909075 0.416631i \(-0.136789\pi\)
−0.815351 + 0.578967i \(0.803456\pi\)
\(68\) 482073. + 834975.i 0.185922 + 0.322027i
\(69\) 0 0
\(70\) 289222. 0.100783
\(71\) 2.55854e6 4.43152e6i 0.848375 1.46943i −0.0342824 0.999412i \(-0.510915\pi\)
0.882658 0.470017i \(-0.155752\pi\)
\(72\) 0 0
\(73\) −869122. −0.261487 −0.130744 0.991416i \(-0.541737\pi\)
−0.130744 + 0.991416i \(0.541737\pi\)
\(74\) −242571. + 420145.i −0.0695869 + 0.120528i
\(75\) 0 0
\(76\) 887766. + 1.53766e6i 0.231980 + 0.401802i
\(77\) 445475. 0.111200
\(78\) 0 0
\(79\) 3.99615e6 0.911899 0.455949 0.890006i \(-0.349300\pi\)
0.455949 + 0.890006i \(0.349300\pi\)
\(80\) 156063. + 270309.i 0.0340789 + 0.0590263i
\(81\) 0 0
\(82\) 2.49689e6 4.32474e6i 0.500093 0.866186i
\(83\) 1.08553e6 0.208386 0.104193 0.994557i \(-0.466774\pi\)
0.104193 + 0.994557i \(0.466774\pi\)
\(84\) 0 0
\(85\) −573988. + 994177.i −0.101376 + 0.175589i
\(86\) −4.59571e6 −0.779127
\(87\) 0 0
\(88\) 240377. + 416344.i 0.0376013 + 0.0651274i
\(89\) −4.21989e6 7.30906e6i −0.634506 1.09900i −0.986620 0.163040i \(-0.947870\pi\)
0.352113 0.935957i \(-0.385463\pi\)
\(90\) 0 0
\(91\) 367241. + 3.74015e6i 0.0510865 + 0.520289i
\(92\) −6.06601e6 −0.812167
\(93\) 0 0
\(94\) −1.86918e6 3.23752e6i −0.232115 0.402035i
\(95\) −1.05703e6 + 1.83084e6i −0.126490 + 0.219087i
\(96\) 0 0
\(97\) 3.93058e6 6.80796e6i 0.437276 0.757384i −0.560203 0.828356i \(-0.689277\pi\)
0.997478 + 0.0709720i \(0.0226101\pi\)
\(98\) 2.39384e6 4.14625e6i 0.256924 0.445005i
\(99\) 0 0
\(100\) 2.31418e6 4.00828e6i 0.231418 0.400828i
\(101\) 2.83434e6 + 4.90922e6i 0.273733 + 0.474120i 0.969815 0.243843i \(-0.0784082\pi\)
−0.696082 + 0.717963i \(0.745075\pi\)
\(102\) 0 0
\(103\) 1.55693e7 1.40391 0.701955 0.712221i \(-0.252311\pi\)
0.701955 + 0.712221i \(0.252311\pi\)
\(104\) −3.29741e6 + 2.36140e6i −0.287446 + 0.205851i
\(105\) 0 0
\(106\) −633267. 1.09685e6i −0.0516436 0.0894493i
\(107\) −8.33480e6 1.44363e7i −0.657737 1.13923i −0.981200 0.192992i \(-0.938181\pi\)
0.323464 0.946241i \(-0.395153\pi\)
\(108\) 0 0
\(109\) −9.78699e6 −0.723863 −0.361931 0.932205i \(-0.617883\pi\)
−0.361931 + 0.932205i \(0.617883\pi\)
\(110\) −286208. + 495727.i −0.0205025 + 0.0355115i
\(111\) 0 0
\(112\) −1.94326e6 −0.130698
\(113\) 1.19975e7 2.07802e7i 0.782196 1.35480i −0.148464 0.988918i \(-0.547433\pi\)
0.930660 0.365885i \(-0.119234\pi\)
\(114\) 0 0
\(115\) −3.61130e6 6.25495e6i −0.221422 0.383514i
\(116\) −3.20059e6 −0.190383
\(117\) 0 0
\(118\) −2.04848e6 −0.114774
\(119\) −3.57358e6 6.18963e6i −0.194397 0.336706i
\(120\) 0 0
\(121\) 9.30275e6 1.61128e7i 0.477378 0.826843i
\(122\) 3.04264e6 0.151702
\(123\) 0 0
\(124\) 8.11679e6 1.40587e7i 0.382303 0.662169i
\(125\) 1.14642e7 0.524998
\(126\) 0 0
\(127\) −1.75182e7 3.03424e7i −0.758887 1.31443i −0.943419 0.331604i \(-0.892410\pi\)
0.184532 0.982826i \(-0.440923\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −4.39801e6 1.99430e6i −0.175572 0.0796139i
\(131\) 3.05996e7 1.18923 0.594616 0.804010i \(-0.297304\pi\)
0.594616 + 0.804010i \(0.297304\pi\)
\(132\) 0 0
\(133\) −6.58097e6 1.13986e7i −0.242554 0.420116i
\(134\) 1.84588e6 3.19716e6i 0.0662731 0.114788i
\(135\) 0 0
\(136\) 3.85659e6 6.67980e6i 0.131467 0.227708i
\(137\) −5.06984e6 + 8.78123e6i −0.168451 + 0.291765i −0.937875 0.346973i \(-0.887210\pi\)
0.769425 + 0.638738i \(0.220543\pi\)
\(138\) 0 0
\(139\) 1.98072e7 3.43071e7i 0.625564 1.08351i −0.362867 0.931841i \(-0.618202\pi\)
0.988431 0.151668i \(-0.0484646\pi\)
\(140\) −1.15689e6 2.00379e6i −0.0356322 0.0617168i
\(141\) 0 0
\(142\) −4.09366e7 −1.19978
\(143\) −6.77405e6 3.07173e6i −0.193719 0.0878429i
\(144\) 0 0
\(145\) −1.90542e6 3.30028e6i −0.0519042 0.0899008i
\(146\) 3.47649e6 + 6.02146e6i 0.0924498 + 0.160128i
\(147\) 0 0
\(148\) 3.88113e6 0.0984107
\(149\) −1.46075e7 + 2.53009e7i −0.361762 + 0.626590i −0.988251 0.152840i \(-0.951158\pi\)
0.626489 + 0.779430i \(0.284491\pi\)
\(150\) 0 0
\(151\) 2.94795e7 0.696788 0.348394 0.937348i \(-0.386727\pi\)
0.348394 + 0.937348i \(0.386727\pi\)
\(152\) 7.10213e6 1.23012e7i 0.164035 0.284117i
\(153\) 0 0
\(154\) −1.78190e6 3.08634e6i −0.0393152 0.0680960i
\(155\) 1.93288e7 0.416911
\(156\) 0 0
\(157\) −3.91044e7 −0.806449 −0.403224 0.915101i \(-0.632111\pi\)
−0.403224 + 0.915101i \(0.632111\pi\)
\(158\) −1.59846e7 2.76861e7i −0.322405 0.558422i
\(159\) 0 0
\(160\) 1.24850e6 2.16247e6i 0.0240974 0.0417379i
\(161\) 4.49670e7 0.849187
\(162\) 0 0
\(163\) 3.28012e7 5.68133e7i 0.593243 1.02753i −0.400549 0.916275i \(-0.631181\pi\)
0.993792 0.111252i \(-0.0354862\pi\)
\(164\) −3.99502e7 −0.707238
\(165\) 0 0
\(166\) −4.34212e6 7.52077e6i −0.0736756 0.127610i
\(167\) −1.69481e7 2.93549e7i −0.281587 0.487723i 0.690189 0.723629i \(-0.257527\pi\)
−0.971776 + 0.235906i \(0.924194\pi\)
\(168\) 0 0
\(169\) 2.02055e7 5.94064e7i 0.322007 0.946737i
\(170\) 9.18381e6 0.143368
\(171\) 0 0
\(172\) 1.83828e7 + 3.18400e7i 0.275463 + 0.477116i
\(173\) 3.20569e6 5.55242e6i 0.0470718 0.0815307i −0.841530 0.540211i \(-0.818344\pi\)
0.888601 + 0.458680i \(0.151678\pi\)
\(174\) 0 0
\(175\) −1.71549e7 + 2.97132e7i −0.241967 + 0.419098i
\(176\) 1.92301e6 3.33076e6i 0.0265881 0.0460520i
\(177\) 0 0
\(178\) −3.37591e7 + 5.84725e7i −0.448664 + 0.777108i
\(179\) 1.58099e7 + 2.73836e7i 0.206036 + 0.356865i 0.950462 0.310840i \(-0.100610\pi\)
−0.744426 + 0.667705i \(0.767277\pi\)
\(180\) 0 0
\(181\) 1.13389e8 1.42134 0.710669 0.703527i \(-0.248392\pi\)
0.710669 + 0.703527i \(0.248392\pi\)
\(182\) 2.44436e7 1.75049e7i 0.300549 0.215234i
\(183\) 0 0
\(184\) 2.42640e7 + 4.20265e7i 0.287144 + 0.497349i
\(185\) 2.31057e6 + 4.00202e6i 0.0268298 + 0.0464706i
\(186\) 0 0
\(187\) 1.41454e7 0.158187
\(188\) −1.49534e7 + 2.59001e7i −0.164130 + 0.284282i
\(189\) 0 0
\(190\) 1.69125e7 0.178884
\(191\) −1.21920e7 + 2.11172e7i −0.126607 + 0.219291i −0.922360 0.386331i \(-0.873742\pi\)
0.795753 + 0.605622i \(0.207076\pi\)
\(192\) 0 0
\(193\) −2.27014e6 3.93201e6i −0.0227302 0.0393698i 0.854437 0.519556i \(-0.173903\pi\)
−0.877167 + 0.480186i \(0.840569\pi\)
\(194\) −6.28892e7 −0.618401
\(195\) 0 0
\(196\) −3.83015e7 −0.363345
\(197\) −1.62344e6 2.81188e6i −0.0151288 0.0262038i 0.858362 0.513045i \(-0.171482\pi\)
−0.873491 + 0.486841i \(0.838149\pi\)
\(198\) 0 0
\(199\) −2.67507e7 + 4.63336e7i −0.240630 + 0.416784i −0.960894 0.276917i \(-0.910687\pi\)
0.720264 + 0.693700i \(0.244021\pi\)
\(200\) −3.70269e7 −0.327275
\(201\) 0 0
\(202\) 2.26747e7 3.92738e7i 0.193559 0.335253i
\(203\) 2.37258e7 0.199061
\(204\) 0 0
\(205\) −2.37837e7 4.11946e7i −0.192815 0.333965i
\(206\) −6.22773e7 1.07867e8i −0.496357 0.859716i
\(207\) 0 0
\(208\) 2.95499e7 + 1.33996e7i 0.227685 + 0.103245i
\(209\) 2.60496e7 0.197373
\(210\) 0 0
\(211\) 9.14497e7 + 1.58396e8i 0.670183 + 1.16079i 0.977852 + 0.209298i \(0.0671179\pi\)
−0.307669 + 0.951494i \(0.599549\pi\)
\(212\) −5.06614e6 + 8.77480e6i −0.0365175 + 0.0632502i
\(213\) 0 0
\(214\) −6.66784e7 + 1.15490e8i −0.465090 + 0.805559i
\(215\) −2.18878e7 + 3.79108e7i −0.150199 + 0.260153i
\(216\) 0 0
\(217\) −6.01693e7 + 1.04216e8i −0.399729 + 0.692352i
\(218\) 3.91479e7 + 6.78062e7i 0.255924 + 0.443274i
\(219\) 0 0
\(220\) 4.57933e6 0.0289950
\(221\) 1.16612e7 + 1.18763e8i 0.0726725 + 0.740130i
\(222\) 0 0
\(223\) 1.08702e8 + 1.88277e8i 0.656401 + 1.13692i 0.981541 + 0.191254i \(0.0612555\pi\)
−0.325139 + 0.945666i \(0.605411\pi\)
\(224\) 7.77304e6 + 1.34633e7i 0.0462086 + 0.0800357i
\(225\) 0 0
\(226\) −1.91960e8 −1.10619
\(227\) 3.78670e7 6.55876e7i 0.214867 0.372161i −0.738364 0.674402i \(-0.764401\pi\)
0.953232 + 0.302241i \(0.0977347\pi\)
\(228\) 0 0
\(229\) −4.82050e7 −0.265258 −0.132629 0.991166i \(-0.542342\pi\)
−0.132629 + 0.991166i \(0.542342\pi\)
\(230\) −2.88904e7 + 5.00396e7i −0.156569 + 0.271185i
\(231\) 0 0
\(232\) 1.28024e7 + 2.21744e7i 0.0673105 + 0.116585i
\(233\) 1.71291e8 0.887131 0.443565 0.896242i \(-0.353713\pi\)
0.443565 + 0.896242i \(0.353713\pi\)
\(234\) 0 0
\(235\) −3.56091e7 −0.178988
\(236\) 8.19391e6 + 1.41923e7i 0.0405788 + 0.0702845i
\(237\) 0 0
\(238\) −2.85887e7 + 4.95170e7i −0.137459 + 0.238087i
\(239\) −1.06547e7 −0.0504835 −0.0252417 0.999681i \(-0.508036\pi\)
−0.0252417 + 0.999681i \(0.508036\pi\)
\(240\) 0 0
\(241\) 7.07100e7 1.22473e8i 0.325403 0.563614i −0.656191 0.754595i \(-0.727833\pi\)
0.981594 + 0.190981i \(0.0611668\pi\)
\(242\) −1.48844e8 −0.675115
\(243\) 0 0
\(244\) −1.21705e7 2.10800e7i −0.0536347 0.0928980i
\(245\) −2.28021e7 3.94944e7i −0.0990590 0.171575i
\(246\) 0 0
\(247\) 2.14748e7 + 2.18709e8i 0.0906754 + 0.923480i
\(248\) −1.29869e8 −0.540659
\(249\) 0 0
\(250\) −4.58567e7 7.94261e7i −0.185615 0.321494i
\(251\) 2.17755e8 3.77162e8i 0.869180 1.50546i 0.00634424 0.999980i \(-0.497981\pi\)
0.862836 0.505484i \(-0.168686\pi\)
\(252\) 0 0
\(253\) −4.44985e7 + 7.70736e7i −0.172752 + 0.299215i
\(254\) −1.40146e8 + 2.42740e8i −0.536614 + 0.929443i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) 2.46043e8 + 4.26159e8i 0.904159 + 1.56605i 0.822042 + 0.569427i \(0.192835\pi\)
0.0821171 + 0.996623i \(0.473832\pi\)
\(258\) 0 0
\(259\) −2.87706e7 −0.102896
\(260\) 3.77512e6 + 3.84475e7i 0.0133206 + 0.135663i
\(261\) 0 0
\(262\) −1.22398e8 2.12000e8i −0.420457 0.728253i
\(263\) 1.25783e8 + 2.17862e8i 0.426360 + 0.738478i 0.996546 0.0830380i \(-0.0264623\pi\)
−0.570186 + 0.821515i \(0.693129\pi\)
\(264\) 0 0
\(265\) −1.20642e7 −0.0398232
\(266\) −5.26477e7 + 9.11886e7i −0.171512 + 0.297067i
\(267\) 0 0
\(268\) −2.95341e7 −0.0937243
\(269\) −8.56627e7 + 1.48372e8i −0.268323 + 0.464750i −0.968429 0.249289i \(-0.919803\pi\)
0.700106 + 0.714039i \(0.253136\pi\)
\(270\) 0 0
\(271\) −3.33116e7 5.76975e7i −0.101673 0.176102i 0.810701 0.585460i \(-0.199086\pi\)
−0.912374 + 0.409358i \(0.865753\pi\)
\(272\) −6.17054e7 −0.185922
\(273\) 0 0
\(274\) 8.11175e7 0.238225
\(275\) −3.39523e7 5.88072e7i −0.0984476 0.170516i
\(276\) 0 0
\(277\) −2.12210e8 + 3.67559e8i −0.599912 + 1.03908i 0.392921 + 0.919572i \(0.371464\pi\)
−0.992833 + 0.119506i \(0.961869\pi\)
\(278\) −3.16916e8 −0.884682
\(279\) 0 0
\(280\) −9.25510e6 + 1.60303e7i −0.0251958 + 0.0436404i
\(281\) 8.26544e7 0.222226 0.111113 0.993808i \(-0.464559\pi\)
0.111113 + 0.993808i \(0.464559\pi\)
\(282\) 0 0
\(283\) −2.13992e7 3.70646e7i −0.0561236 0.0972090i 0.836599 0.547816i \(-0.184541\pi\)
−0.892722 + 0.450607i \(0.851207\pi\)
\(284\) 1.63747e8 + 2.83617e8i 0.424188 + 0.734714i
\(285\) 0 0
\(286\) 5.81463e6 + 5.92189e7i 0.0146974 + 0.149685i
\(287\) 2.96149e8 0.739475
\(288\) 0 0
\(289\) 9.16955e7 + 1.58821e8i 0.223463 + 0.387049i
\(290\) −1.52434e7 + 2.64023e7i −0.0367018 + 0.0635694i
\(291\) 0 0
\(292\) 2.78119e7 4.81716e7i 0.0653719 0.113227i
\(293\) 1.08892e7 1.88607e7i 0.0252907 0.0438047i −0.853103 0.521742i \(-0.825282\pi\)
0.878394 + 0.477938i \(0.158616\pi\)
\(294\) 0 0
\(295\) −9.75621e6 + 1.68983e7i −0.0221261 + 0.0383235i
\(296\) −1.55245e7 2.68893e7i −0.0347934 0.0602640i
\(297\) 0 0
\(298\) 2.33719e8 0.511609
\(299\) −6.83784e8 3.10066e8i −1.47935 0.670818i
\(300\) 0 0
\(301\) −1.36271e8 2.36028e8i −0.288019 0.498863i
\(302\) −1.17918e8 2.04240e8i −0.246352 0.426694i
\(303\) 0 0
\(304\) −1.13634e8 −0.231980
\(305\) 1.44911e7 2.50992e7i 0.0292449 0.0506537i
\(306\) 0 0
\(307\) 7.22793e7 0.142570 0.0712852 0.997456i \(-0.477290\pi\)
0.0712852 + 0.997456i \(0.477290\pi\)
\(308\) −1.42552e7 + 2.46907e7i −0.0278001 + 0.0481511i
\(309\) 0 0
\(310\) −7.73151e7 1.33914e8i −0.147400 0.255305i
\(311\) −3.38264e8 −0.637668 −0.318834 0.947811i \(-0.603291\pi\)
−0.318834 + 0.947811i \(0.603291\pi\)
\(312\) 0 0
\(313\) −3.69419e8 −0.680948 −0.340474 0.940254i \(-0.610588\pi\)
−0.340474 + 0.940254i \(0.610588\pi\)
\(314\) 1.56418e8 + 2.70923e8i 0.285123 + 0.493847i
\(315\) 0 0
\(316\) −1.27877e8 + 2.21489e8i −0.227975 + 0.394864i
\(317\) 1.00099e9 1.76491 0.882455 0.470397i \(-0.155889\pi\)
0.882455 + 0.470397i \(0.155889\pi\)
\(318\) 0 0
\(319\) −2.34786e7 + 4.06662e7i −0.0404954 + 0.0701400i
\(320\) −1.99761e7 −0.0340789
\(321\) 0 0
\(322\) −1.79868e8 3.11541e8i −0.300233 0.520019i
\(323\) −2.08969e8 3.61945e8i −0.345043 0.597631i
\(324\) 0 0
\(325\) 4.65748e8 3.33539e8i 0.752591 0.538958i
\(326\) −5.24819e8 −0.838973
\(327\) 0 0
\(328\) 1.59801e8 + 2.76783e8i 0.250046 + 0.433093i
\(329\) 1.10849e8 1.91996e8i 0.171612 0.297240i
\(330\) 0 0
\(331\) −3.63874e8 + 6.30248e8i −0.551510 + 0.955243i 0.446656 + 0.894706i \(0.352615\pi\)
−0.998166 + 0.0605370i \(0.980719\pi\)
\(332\) −3.47370e7 + 6.01662e7i −0.0520965 + 0.0902338i
\(333\) 0 0
\(334\) −1.35585e8 + 2.34839e8i −0.199112 + 0.344872i
\(335\) −1.75826e7 3.04540e7i −0.0255521 0.0442576i
\(336\) 0 0
\(337\) −7.69155e8 −1.09474 −0.547368 0.836892i \(-0.684370\pi\)
−0.547368 + 0.836892i \(0.684370\pi\)
\(338\) −4.92401e8 + 9.76379e7i −0.693602 + 0.137534i
\(339\) 0 0
\(340\) −3.67353e7 6.36273e7i −0.0506882 0.0877945i
\(341\) −1.19085e8 2.06261e8i −0.162636 0.281693i
\(342\) 0 0
\(343\) 6.74639e8 0.902698
\(344\) 1.47063e8 2.54720e8i 0.194782 0.337372i
\(345\) 0 0
\(346\) −5.12911e7 −0.0665695
\(347\) 1.28485e8 2.22543e8i 0.165082 0.285931i −0.771602 0.636105i \(-0.780544\pi\)
0.936684 + 0.350175i \(0.113878\pi\)
\(348\) 0 0
\(349\) −1.92351e8 3.33161e8i −0.242217 0.419532i 0.719128 0.694877i \(-0.244541\pi\)
−0.961345 + 0.275345i \(0.911208\pi\)
\(350\) 2.74479e8 0.342192
\(351\) 0 0
\(352\) −3.07682e7 −0.0376013
\(353\) −2.99006e8 5.17894e8i −0.361800 0.626656i 0.626457 0.779456i \(-0.284504\pi\)
−0.988257 + 0.152800i \(0.951171\pi\)
\(354\) 0 0
\(355\) −1.94968e8 + 3.37694e8i −0.231293 + 0.400612i
\(356\) 5.40146e8 0.634506
\(357\) 0 0
\(358\) 1.26479e8 2.19069e8i 0.145690 0.252342i
\(359\) −3.63568e8 −0.414720 −0.207360 0.978265i \(-0.566487\pi\)
−0.207360 + 0.978265i \(0.566487\pi\)
\(360\) 0 0
\(361\) 6.21073e7 + 1.07573e8i 0.0694812 + 0.120345i
\(362\) −4.53557e8 7.85584e8i −0.502519 0.870388i
\(363\) 0 0
\(364\) −2.19052e8 9.93303e7i −0.238063 0.107951i
\(365\) 6.62294e7 0.0712896
\(366\) 0 0
\(367\) 6.16051e8 + 1.06703e9i 0.650557 + 1.12680i 0.982988 + 0.183670i \(0.0587979\pi\)
−0.332431 + 0.943128i \(0.607869\pi\)
\(368\) 1.94112e8 3.36212e8i 0.203042 0.351679i
\(369\) 0 0
\(370\) 1.84845e7 3.20161e7i 0.0189715 0.0328596i
\(371\) 3.75550e7 6.50472e7i 0.0381820 0.0661332i
\(372\) 0 0
\(373\) 6.75250e8 1.16957e9i 0.673727 1.16693i −0.303113 0.952955i \(-0.598026\pi\)
0.976839 0.213974i \(-0.0686408\pi\)
\(374\) −5.65816e7 9.80022e7i −0.0559274 0.0968691i
\(375\) 0 0
\(376\) 2.39255e8 0.232115
\(377\) −3.60784e8 1.63599e8i −0.346778 0.157249i
\(378\) 0 0
\(379\) 4.14522e7 + 7.17973e7i 0.0391120 + 0.0677440i 0.884919 0.465745i \(-0.154214\pi\)
−0.845807 + 0.533489i \(0.820880\pi\)
\(380\) −6.76501e7 1.17173e8i −0.0632450 0.109544i
\(381\) 0 0
\(382\) 1.95073e8 0.179050
\(383\) −7.16379e8 + 1.24081e9i −0.651549 + 1.12852i 0.331198 + 0.943561i \(0.392547\pi\)
−0.982747 + 0.184955i \(0.940786\pi\)
\(384\) 0 0
\(385\) −3.39464e7 −0.0303166
\(386\) −1.81612e7 + 3.14560e7i −0.0160727 + 0.0278387i
\(387\) 0 0
\(388\) 2.51557e8 + 4.35709e8i 0.218638 + 0.378692i
\(389\) 1.19888e9 1.03265 0.516325 0.856393i \(-0.327300\pi\)
0.516325 + 0.856393i \(0.327300\pi\)
\(390\) 0 0
\(391\) 1.42786e9 1.20800
\(392\) 1.53206e8 + 2.65360e8i 0.128462 + 0.222502i
\(393\) 0 0
\(394\) −1.29875e7 + 2.24950e7i −0.0106977 + 0.0185289i
\(395\) −3.04517e8 −0.248612
\(396\) 0 0
\(397\) 8.95994e8 1.55191e9i 0.718684 1.24480i −0.242837 0.970067i \(-0.578078\pi\)
0.961521 0.274731i \(-0.0885888\pi\)
\(398\) 4.28012e8 0.340302
\(399\) 0 0
\(400\) 1.48108e8 + 2.56530e8i 0.115709 + 0.200414i
\(401\) 5.78662e8 + 1.00227e9i 0.448146 + 0.776212i 0.998265 0.0588740i \(-0.0187510\pi\)
−0.550119 + 0.835086i \(0.685418\pi\)
\(402\) 0 0
\(403\) 1.63357e9 1.16986e9i 1.24328 0.890360i
\(404\) −3.62796e8 −0.273733
\(405\) 0 0
\(406\) −9.49034e7 1.64377e8i −0.0703786 0.121899i
\(407\) 2.84708e7 4.93130e7i 0.0209324 0.0362561i
\(408\) 0 0
\(409\) 6.29621e8 1.09054e9i 0.455038 0.788149i −0.543652 0.839311i \(-0.682959\pi\)
0.998690 + 0.0511614i \(0.0162923\pi\)
\(410\) −1.90270e8 + 3.29556e8i −0.136341 + 0.236149i
\(411\) 0 0
\(412\) −4.98218e8 + 8.62939e8i −0.350977 + 0.607911i
\(413\) −6.07410e7 1.05207e8i −0.0424284 0.0734882i
\(414\) 0 0
\(415\) −8.27203e7 −0.0568125
\(416\) −2.53647e7 2.58326e8i −0.0172744 0.175931i
\(417\) 0 0
\(418\) −1.04198e8 1.80477e8i −0.0697821 0.120866i
\(419\) −6.83207e8 1.18335e9i −0.453736 0.785894i 0.544878 0.838515i \(-0.316576\pi\)
−0.998615 + 0.0526211i \(0.983242\pi\)
\(420\) 0 0
\(421\) −1.46622e9 −0.957661 −0.478831 0.877907i \(-0.658939\pi\)
−0.478831 + 0.877907i \(0.658939\pi\)
\(422\) 7.31598e8 1.26716e9i 0.473891 0.820804i
\(423\) 0 0
\(424\) 8.10582e7 0.0516436
\(425\) −5.44729e8 + 9.43498e8i −0.344206 + 0.596183i
\(426\) 0 0
\(427\) 9.02196e7 + 1.56265e8i 0.0560794 + 0.0971324i
\(428\) 1.06685e9 0.657737
\(429\) 0 0
\(430\) 3.50205e8 0.212414
\(431\) 9.00866e8 + 1.56035e9i 0.541988 + 0.938751i 0.998790 + 0.0491826i \(0.0156616\pi\)
−0.456802 + 0.889569i \(0.651005\pi\)
\(432\) 0 0
\(433\) −5.38563e6 + 9.32818e6i −0.00318808 + 0.00552191i −0.867615 0.497237i \(-0.834348\pi\)
0.864427 + 0.502758i \(0.167681\pi\)
\(434\) 9.62709e8 0.565303
\(435\) 0 0
\(436\) 3.13184e8 5.42450e8i 0.180966 0.313442i
\(437\) 2.62949e9 1.50725
\(438\) 0 0
\(439\) −1.72073e9 2.98040e9i −0.970706 1.68131i −0.693434 0.720520i \(-0.743903\pi\)
−0.277271 0.960792i \(-0.589430\pi\)
\(440\) −1.83173e7 3.17266e7i −0.0102513 0.0177557i
\(441\) 0 0
\(442\) 7.76169e8 5.55843e8i 0.427542 0.306178i
\(443\) −1.39496e9 −0.762343 −0.381171 0.924504i \(-0.624479\pi\)
−0.381171 + 0.924504i \(0.624479\pi\)
\(444\) 0 0
\(445\) 3.21567e8 + 5.56970e8i 0.172986 + 0.299621i
\(446\) 8.69614e8 1.50622e9i 0.464146 0.803924i
\(447\) 0 0
\(448\) 6.21843e7 1.07706e8i 0.0326744 0.0565938i
\(449\) −1.08348e9 + 1.87664e9i −0.564883 + 0.978406i 0.432178 + 0.901788i \(0.357745\pi\)
−0.997061 + 0.0766173i \(0.975588\pi\)
\(450\) 0 0
\(451\) −2.93063e8 + 5.07600e8i −0.150433 + 0.260558i
\(452\) 7.67839e8 + 1.32994e9i 0.391098 + 0.677401i
\(453\) 0 0
\(454\) −6.05872e8 −0.303868
\(455\) −2.79847e7 2.85010e8i −0.0139278 0.141847i
\(456\) 0 0
\(457\) −1.88352e9 3.26236e9i −0.923133 1.59891i −0.794536 0.607216i \(-0.792286\pi\)
−0.128597 0.991697i \(-0.541047\pi\)
\(458\) 1.92820e8 + 3.33974e8i 0.0937827 + 0.162436i
\(459\) 0 0
\(460\) 4.62246e8 0.221422
\(461\) 2.32221e8 4.02219e8i 0.110395 0.191209i −0.805535 0.592549i \(-0.798122\pi\)
0.915930 + 0.401339i \(0.131455\pi\)
\(462\) 0 0
\(463\) −2.90068e9 −1.35821 −0.679104 0.734042i \(-0.737631\pi\)
−0.679104 + 0.734042i \(0.737631\pi\)
\(464\) 1.02419e8 1.77395e8i 0.0475957 0.0824382i
\(465\) 0 0
\(466\) −6.85162e8 1.18674e9i −0.313648 0.543254i
\(467\) 3.23507e9 1.46986 0.734928 0.678145i \(-0.237216\pi\)
0.734928 + 0.678145i \(0.237216\pi\)
\(468\) 0 0
\(469\) 2.18935e8 0.0979964
\(470\) 1.42437e8 + 2.46707e8i 0.0632818 + 0.109607i
\(471\) 0 0
\(472\) 6.55513e7 1.13538e8i 0.0286935 0.0496987i
\(473\) 5.39405e8 0.234369
\(474\) 0 0
\(475\) −1.00315e9 + 1.73751e9i −0.429475 + 0.743873i
\(476\) 4.57419e8 0.194397
\(477\) 0 0
\(478\) 4.26189e7 + 7.38181e7i 0.0178486 + 0.0309147i
\(479\) −1.29597e9 2.24469e9i −0.538793 0.933217i −0.998969 0.0453897i \(-0.985547\pi\)
0.460176 0.887828i \(-0.347786\pi\)
\(480\) 0 0
\(481\) 4.37496e8 + 1.98385e8i 0.179253 + 0.0812833i
\(482\) −1.13136e9 −0.460189
\(483\) 0 0
\(484\) 5.95376e8 + 1.03122e9i 0.238689 + 0.413422i
\(485\) −2.99520e8 + 5.18785e8i −0.119215 + 0.206486i
\(486\) 0 0
\(487\) 1.71186e9 2.96502e9i 0.671609 1.16326i −0.305839 0.952083i \(-0.598937\pi\)
0.977448 0.211177i \(-0.0677297\pi\)
\(488\) −9.73644e7 + 1.68640e8i −0.0379254 + 0.0656888i
\(489\) 0 0
\(490\) −1.82417e8 + 3.15956e8i −0.0700453 + 0.121322i
\(491\) −4.65512e8 8.06291e8i −0.177479 0.307402i 0.763538 0.645763i \(-0.223461\pi\)
−0.941016 + 0.338361i \(0.890127\pi\)
\(492\) 0 0
\(493\) 7.53379e8 0.283171
\(494\) 1.42936e9 1.02362e9i 0.533455 0.382027i
\(495\) 0 0
\(496\) 5.19474e8 + 8.99756e8i 0.191152 + 0.331085i
\(497\) −1.21385e9 2.10244e9i −0.443523 0.768204i
\(498\) 0 0
\(499\) 1.19017e9 0.428802 0.214401 0.976746i \(-0.431220\pi\)
0.214401 + 0.976746i \(0.431220\pi\)
\(500\) −3.66853e8 + 6.35409e8i −0.131249 + 0.227331i
\(501\) 0 0
\(502\) −3.48408e9 −1.22921
\(503\) −6.54277e8 + 1.13324e9i −0.229231 + 0.397040i −0.957581 0.288166i \(-0.906955\pi\)
0.728349 + 0.685206i \(0.240288\pi\)
\(504\) 0 0
\(505\) −2.15984e8 3.74096e8i −0.0746281 0.129260i
\(506\) 7.11976e8 0.244308
\(507\) 0 0
\(508\) 2.24233e9 0.758887
\(509\) −1.42276e9 2.46429e9i −0.478210 0.828285i 0.521478 0.853265i \(-0.325381\pi\)
−0.999688 + 0.0249803i \(0.992048\pi\)
\(510\) 0 0
\(511\) −2.06168e8 + 3.57094e8i −0.0683516 + 0.118388i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 1.96834e9 3.40927e9i 0.639337 1.10736i
\(515\) −1.18642e9 −0.382749
\(516\) 0 0
\(517\) 2.19388e8 + 3.79992e8i 0.0698227 + 0.120936i
\(518\) 1.15083e8 + 1.99329e8i 0.0363794 + 0.0630109i
\(519\) 0 0
\(520\) 2.51272e8 1.79945e8i 0.0783668 0.0561213i
\(521\) −4.10103e9 −1.27046 −0.635229 0.772324i \(-0.719094\pi\)
−0.635229 + 0.772324i \(0.719094\pi\)
\(522\) 0 0
\(523\) 2.74278e9 + 4.75064e9i 0.838370 + 1.45210i 0.891257 + 0.453498i \(0.149824\pi\)
−0.0528876 + 0.998600i \(0.516842\pi\)
\(524\) −9.79188e8 + 1.69600e9i −0.297308 + 0.514952i
\(525\) 0 0
\(526\) 1.00626e9 1.74290e9i 0.301482 0.522182i
\(527\) −1.91059e9 + 3.30924e9i −0.568630 + 0.984896i
\(528\) 0 0
\(529\) −2.78934e9 + 4.83128e9i −0.819231 + 1.41895i
\(530\) 4.82566e7 + 8.35829e7i 0.0140796 + 0.0243866i
\(531\) 0 0
\(532\) 8.42364e8 0.242554
\(533\) −4.50335e9 2.04207e9i −1.28822 0.584150i
\(534\) 0 0
\(535\) 6.35134e8 + 1.10008e9i 0.179319 + 0.310590i
\(536\) 1.18137e8 + 2.04618e8i 0.0331366 + 0.0573942i
\(537\) 0 0
\(538\) 1.37060e9 0.379467
\(539\) −2.80968e8 + 4.86652e8i −0.0772853 + 0.133862i
\(540\) 0 0
\(541\) −2.20052e9 −0.597496 −0.298748 0.954332i \(-0.596569\pi\)
−0.298748 + 0.954332i \(0.596569\pi\)
\(542\) −2.66493e8 + 4.61580e8i −0.0718933 + 0.124523i
\(543\) 0 0
\(544\) 2.46821e8 + 4.27507e8i 0.0657335 + 0.113854i
\(545\) 7.45794e8 0.197347
\(546\) 0 0
\(547\) −2.77848e9 −0.725858 −0.362929 0.931817i \(-0.618223\pi\)
−0.362929 + 0.931817i \(0.618223\pi\)
\(548\) −3.24470e8 5.61999e8i −0.0842253 0.145883i
\(549\) 0 0
\(550\) −2.71619e8 + 4.70457e8i −0.0696130 + 0.120573i
\(551\) 1.38739e9 0.353320
\(552\) 0 0
\(553\) 9.47944e8 1.64189e9i 0.238366 0.412862i
\(554\) 3.39537e9 0.848404
\(555\) 0 0
\(556\) 1.26766e9 + 2.19566e9i 0.312782 + 0.541755i
\(557\) −3.77413e9 6.53699e9i −0.925388 1.60282i −0.790935 0.611900i \(-0.790406\pi\)
−0.134453 0.990920i \(-0.542928\pi\)
\(558\) 0 0
\(559\) 4.44675e8 + 4.52878e9i 0.107672 + 1.09658i
\(560\) 1.48082e8 0.0356322
\(561\) 0 0
\(562\) −3.30618e8 5.72647e8i −0.0785686 0.136085i
\(563\) −3.84314e8 + 6.65652e8i −0.0907626 + 0.157205i −0.907832 0.419334i \(-0.862264\pi\)
0.817070 + 0.576539i \(0.195597\pi\)
\(564\) 0 0
\(565\) −9.14240e8 + 1.58351e9i −0.213251 + 0.369361i
\(566\) −1.71194e8 + 2.96516e8i −0.0396854 + 0.0687371i
\(567\) 0 0
\(568\) 1.30997e9 2.26894e9i 0.299946 0.519522i
\(569\) −1.20637e9 2.08949e9i −0.274527 0.475496i 0.695488 0.718537i \(-0.255188\pi\)
−0.970016 + 0.243042i \(0.921855\pi\)
\(570\) 0 0
\(571\) −7.10355e9 −1.59680 −0.798398 0.602131i \(-0.794319\pi\)
−0.798398 + 0.602131i \(0.794319\pi\)
\(572\) 3.87022e8 2.77161e8i 0.0864669 0.0619221i
\(573\) 0 0
\(574\) −1.18460e9 2.05178e9i −0.261444 0.452834i
\(575\) −3.42721e9 5.93610e9i −0.751801 1.30216i
\(576\) 0 0
\(577\) 5.26146e9 1.14023 0.570113 0.821566i \(-0.306899\pi\)
0.570113 + 0.821566i \(0.306899\pi\)
\(578\) 7.33564e8 1.27057e9i 0.158012 0.273685i
\(579\) 0 0
\(580\) 2.43894e8 0.0519042
\(581\) 2.57503e8 4.46009e8i 0.0544712 0.0943468i
\(582\) 0 0
\(583\) 7.43274e7 + 1.28739e8i 0.0155349 + 0.0269073i
\(584\) −4.44991e8 −0.0924498
\(585\) 0 0
\(586\) −1.74227e8 −0.0357664
\(587\) 4.86843e9 + 8.43236e9i 0.993471 + 1.72074i 0.595535 + 0.803329i \(0.296940\pi\)
0.397936 + 0.917413i \(0.369727\pi\)
\(588\) 0 0
\(589\) −3.51846e9 + 6.09415e9i −0.709495 + 1.22888i
\(590\) 1.56099e8 0.0312910
\(591\) 0 0
\(592\) −1.24196e8 + 2.15114e8i −0.0246027 + 0.0426131i
\(593\) 5.73551e9 1.12949 0.564743 0.825267i \(-0.308975\pi\)
0.564743 + 0.825267i \(0.308975\pi\)
\(594\) 0 0
\(595\) 2.72317e8 + 4.71666e8i 0.0529986 + 0.0917963i
\(596\) −9.34878e8 1.61926e9i −0.180881 0.313295i
\(597\) 0 0
\(598\) 5.86939e8 + 5.97766e9i 0.112238 + 1.14308i
\(599\) 5.85413e9 1.11293 0.556466 0.830871i \(-0.312157\pi\)
0.556466 + 0.830871i \(0.312157\pi\)
\(600\) 0 0
\(601\) 4.46705e9 + 7.73716e9i 0.839383 + 1.45385i 0.890411 + 0.455156i \(0.150417\pi\)
−0.0510287 + 0.998697i \(0.516250\pi\)
\(602\) −1.09017e9 + 1.88823e9i −0.203660 + 0.352750i
\(603\) 0 0
\(604\) −9.43344e8 + 1.63392e9i −0.174197 + 0.301718i
\(605\) −7.08894e8 + 1.22784e9i −0.130148 + 0.225423i
\(606\) 0 0
\(607\) 6.59439e8 1.14218e9i 0.119678 0.207288i −0.799962 0.600050i \(-0.795147\pi\)
0.919640 + 0.392762i \(0.128480\pi\)
\(608\) 4.54536e8 + 7.87280e8i 0.0820174 + 0.142058i
\(609\) 0 0
\(610\) −2.31857e8 −0.0413586
\(611\) −3.00950e9 + 2.15521e9i −0.533766 + 0.382249i
\(612\) 0 0
\(613\) −2.71562e9 4.70358e9i −0.476164 0.824740i 0.523463 0.852048i \(-0.324640\pi\)
−0.999627 + 0.0273080i \(0.991307\pi\)
\(614\) −2.89117e8 5.00766e8i −0.0504063 0.0873062i
\(615\) 0 0
\(616\) 2.28083e8 0.0393152
\(617\) −4.03201e9 + 6.98365e9i −0.691073 + 1.19697i 0.280414 + 0.959879i \(0.409528\pi\)
−0.971487 + 0.237094i \(0.923805\pi\)
\(618\) 0 0
\(619\) −9.26368e9 −1.56988 −0.784940 0.619572i \(-0.787306\pi\)
−0.784940 + 0.619572i \(0.787306\pi\)
\(620\) −6.18521e8 + 1.07131e9i −0.104228 + 0.180528i
\(621\) 0 0
\(622\) 1.35306e9 + 2.34356e9i 0.225450 + 0.390490i
\(623\) −4.00407e9 −0.663428
\(624\) 0 0
\(625\) 4.77626e9 0.782542
\(626\) 1.47768e9 + 2.55941e9i 0.240751 + 0.416994i
\(627\) 0 0
\(628\) 1.25134e9 2.16739e9i 0.201612 0.349203i
\(629\) −9.13569e8 −0.146374
\(630\) 0 0
\(631\) −2.00624e9 + 3.47491e9i −0.317893 + 0.550606i −0.980048 0.198760i \(-0.936308\pi\)
0.662156 + 0.749366i \(0.269642\pi\)
\(632\) 2.04603e9 0.322405
\(633\) 0 0
\(634\) −4.00396e9 6.93506e9i −0.623990 1.08078i
\(635\) 1.33493e9 + 2.31217e9i 0.206896 + 0.358354i
\(636\) 0 0
\(637\) −4.31749e9 1.95779e9i −0.661825 0.300108i
\(638\) 3.75658e8 0.0572691
\(639\) 0 0
\(640\) 7.99043e7 + 1.38398e8i 0.0120487 + 0.0208690i
\(641\) 2.37881e9 4.12023e9i 0.356745 0.617900i −0.630670 0.776051i \(-0.717220\pi\)
0.987415 + 0.158151i \(0.0505533\pi\)
\(642\) 0 0
\(643\) 4.29324e9 7.43611e9i 0.636864 1.10308i −0.349253 0.937028i \(-0.613565\pi\)
0.986117 0.166052i \(-0.0531020\pi\)
\(644\) −1.43894e9 + 2.49232e9i −0.212297 + 0.367709i
\(645\) 0 0
\(646\) −1.67175e9 + 2.89556e9i −0.243982 + 0.422589i
\(647\) 2.18039e9 + 3.77654e9i 0.316496 + 0.548187i 0.979754 0.200203i \(-0.0641602\pi\)
−0.663258 + 0.748391i \(0.730827\pi\)
\(648\) 0 0
\(649\) 2.40433e8 0.0345252
\(650\) −4.17382e9 1.89264e9i −0.596124 0.270316i
\(651\) 0 0
\(652\) 2.09928e9 + 3.63605e9i 0.296622 + 0.513764i
\(653\) 2.68949e9 + 4.65834e9i 0.377985 + 0.654688i 0.990769 0.135562i \(-0.0432839\pi\)
−0.612784 + 0.790250i \(0.709951\pi\)
\(654\) 0 0
\(655\) −2.33177e9 −0.324221
\(656\) 1.27841e9 2.21427e9i 0.176810 0.306243i
\(657\) 0 0
\(658\) −1.77359e9 −0.242695
\(659\) −2.78007e9 + 4.81522e9i −0.378405 + 0.655417i −0.990830 0.135112i \(-0.956861\pi\)
0.612425 + 0.790528i \(0.290194\pi\)
\(660\) 0 0
\(661\) 2.91890e9 + 5.05568e9i 0.393110 + 0.680886i 0.992858 0.119303i \(-0.0380660\pi\)
−0.599748 + 0.800189i \(0.704733\pi\)
\(662\) 5.82198e9 0.779952
\(663\) 0 0
\(664\) 5.55792e8 0.0736756
\(665\) 5.01487e8 + 8.68601e8i 0.0661278 + 0.114537i
\(666\) 0 0
\(667\) −2.36997e9 + 4.10492e9i −0.309245 + 0.535629i
\(668\) 2.16935e9 0.281587
\(669\) 0 0
\(670\) −1.40661e8 + 2.43632e8i −0.0180681 + 0.0312949i
\(671\) −3.57118e8 −0.0456335
\(672\) 0 0
\(673\) 1.56288e8 + 2.70700e8i 0.0197640 + 0.0342322i 0.875738 0.482786i \(-0.160375\pi\)
−0.855974 + 0.517018i \(0.827042\pi\)
\(674\) 3.07662e9 + 5.32886e9i 0.387048 + 0.670386i
\(675\) 0 0
\(676\) 2.64606e9 + 3.02090e9i 0.329448 + 0.376117i
\(677\) 9.46393e9 1.17223 0.586113 0.810229i \(-0.300657\pi\)
0.586113 + 0.810229i \(0.300657\pi\)
\(678\) 0 0
\(679\) −1.86478e9 3.22989e9i −0.228604 0.395953i
\(680\) −2.93882e8 + 5.09019e8i −0.0358420 + 0.0620801i
\(681\) 0 0
\(682\) −9.52678e8 + 1.65009e9i −0.115001 + 0.199187i
\(683\) −7.62828e9 + 1.32126e10i −0.916124 + 1.58677i −0.110876 + 0.993834i \(0.535366\pi\)
−0.805248 + 0.592939i \(0.797968\pi\)
\(684\) 0 0
\(685\) 3.86336e8 6.69153e8i 0.0459248 0.0795442i
\(686\) −2.69856e9 4.67404e9i −0.319152 0.552787i
\(687\) 0 0
\(688\) −2.35300e9 −0.275463
\(689\) −1.01960e9 + 7.30174e8i −0.118758 + 0.0850470i
\(690\) 0 0
\(691\) 1.44704e8 + 2.50634e8i 0.0166842 + 0.0288980i 0.874247 0.485481i \(-0.161356\pi\)
−0.857563 + 0.514379i \(0.828022\pi\)
\(692\) 2.05164e8 + 3.55355e8i 0.0235359 + 0.0407653i
\(693\) 0 0
\(694\) −2.05576e9 −0.233461
\(695\) −1.50936e9 + 2.61429e9i −0.170548 + 0.295398i
\(696\) 0 0
\(697\) 9.40377e9 1.05193
\(698\) −1.53880e9 + 2.66529e9i −0.171273 + 0.296654i
\(699\) 0 0
\(700\) −1.09791e9 1.90164e9i −0.120983 0.209549i
\(701\) 1.67473e10 1.83625 0.918125 0.396291i \(-0.129703\pi\)
0.918125 + 0.396291i \(0.129703\pi\)
\(702\) 0 0
\(703\) −1.68239e9 −0.182635
\(704\) 1.23073e8 + 2.13168e8i 0.0132941 + 0.0230260i
\(705\) 0 0
\(706\) −2.39205e9 + 4.14315e9i −0.255831 + 0.443113i
\(707\) 2.68939e9 0.286210
\(708\) 0 0
\(709\) 3.83389e9 6.64049e9i 0.403996 0.699742i −0.590208 0.807251i \(-0.700954\pi\)
0.994204 + 0.107509i \(0.0342875\pi\)
\(710\) 3.11948e9 0.327098
\(711\) 0 0
\(712\) −2.16058e9 3.74224e9i −0.224332 0.388554i
\(713\) −1.20206e10 2.08203e10i −1.24198 2.15117i
\(714\) 0 0
\(715\) 5.16201e8 + 2.34074e8i 0.0528138 + 0.0239487i
\(716\) −2.02367e9 −0.206036
\(717\) 0 0
\(718\) 1.45427e9 + 2.51887e9i 0.146626 + 0.253963i
\(719\) −7.06141e9 + 1.22307e10i −0.708501 + 1.22716i 0.256912 + 0.966435i \(0.417295\pi\)
−0.965413 + 0.260725i \(0.916039\pi\)
\(720\) 0 0
\(721\) 3.69327e9 6.39692e9i 0.366976 0.635620i
\(722\) 4.96859e8 8.60584e8i 0.0491307 0.0850968i
\(723\) 0 0
\(724\) −3.62846e9 + 6.28467e9i −0.355334 + 0.615457i
\(725\) −1.80829e9 3.13205e9i −0.176232 0.305243i
\(726\) 0 0
\(727\) −1.28421e9 −0.123956 −0.0619778 0.998078i \(-0.519741\pi\)
−0.0619778 + 0.998078i \(0.519741\pi\)
\(728\) 1.88027e8 + 1.91496e9i 0.0180618 + 0.183950i
\(729\) 0 0
\(730\) −2.64918e8 4.58851e8i −0.0252047 0.0436558i
\(731\) −4.32709e9 7.49473e9i −0.409718 0.709652i
\(732\) 0 0
\(733\) −9.85736e9 −0.924478 −0.462239 0.886755i \(-0.652954\pi\)
−0.462239 + 0.886755i \(0.652954\pi\)
\(734\) 4.92841e9 8.53625e9i 0.460013 0.796767i
\(735\) 0 0
\(736\) −3.10580e9 −0.287144
\(737\) −2.16654e8 + 3.75255e8i −0.0199356 + 0.0345295i
\(738\) 0 0
\(739\) −5.09322e9 8.82171e9i −0.464234 0.804076i 0.534933 0.844895i \(-0.320337\pi\)
−0.999167 + 0.0408181i \(0.987004\pi\)
\(740\) −2.95752e8 −0.0268298
\(741\) 0 0
\(742\) −6.00880e8 −0.0539976
\(743\) 1.03270e10 + 1.78869e10i 0.923663 + 1.59983i 0.793697 + 0.608313i \(0.208154\pi\)
0.129966 + 0.991518i \(0.458513\pi\)
\(744\) 0 0
\(745\) 1.11313e9 1.92799e9i 0.0986275 0.170828i
\(746\) −1.08040e10 −0.952793
\(747\) 0 0
\(748\) −4.52653e8 + 7.84017e8i −0.0395466 + 0.0684968i
\(749\) −7.90854e9 −0.687717
\(750\) 0 0
\(751\) 1.16401e8 + 2.01613e8i 0.0100281 + 0.0173692i 0.870996 0.491290i \(-0.163475\pi\)
−0.860968 + 0.508659i \(0.830141\pi\)
\(752\) −9.57020e8 1.65761e9i −0.0820651 0.142141i
\(753\) 0 0
\(754\) 3.09685e8 + 3.15398e9i 0.0263100 + 0.267953i
\(755\) −2.24641e9 −0.189966
\(756\) 0 0
\(757\) 5.05884e9 + 8.76216e9i 0.423853 + 0.734135i 0.996313 0.0857982i \(-0.0273440\pi\)
−0.572460 + 0.819933i \(0.694011\pi\)
\(758\) 3.31617e8 5.74378e8i 0.0276564 0.0479022i
\(759\) 0 0
\(760\) −5.41201e8 + 9.37388e8i −0.0447210 + 0.0774590i
\(761\) 3.28760e9 5.69429e9i 0.270416 0.468375i −0.698552 0.715559i \(-0.746172\pi\)
0.968968 + 0.247184i \(0.0795054\pi\)
\(762\) 0 0
\(763\) −2.32161e9 + 4.02115e9i −0.189214 + 0.327729i
\(764\) −7.80290e8 1.35150e9i −0.0633037 0.109645i
\(765\) 0 0
\(766\) 1.14621e10 0.921430
\(767\) 1.98208e8 + 2.01864e9i 0.0158613 + 0.161538i
\(768\) 0 0
\(769\) 4.72051e9 + 8.17617e9i 0.374323 + 0.648347i 0.990226 0.139476i \(-0.0445417\pi\)
−0.615902 + 0.787823i \(0.711208\pi\)
\(770\) 1.35785e8 + 2.35187e8i 0.0107185 + 0.0185651i
\(771\) 0 0
\(772\) 2.90578e8 0.0227302
\(773\) 1.04407e10 1.80837e10i 0.813017 1.40819i −0.0977268 0.995213i \(-0.531157\pi\)
0.910743 0.412973i \(-0.135510\pi\)
\(774\) 0 0
\(775\) 1.83435e10 1.41555
\(776\) 2.01246e9 3.48568e9i 0.154600 0.267776i
\(777\) 0 0
\(778\) −4.79553e9 8.30610e9i −0.365097 0.632366i
\(779\) 1.73176e10 1.31252
\(780\) 0 0
\(781\) 4.80479e9 0.360907
\(782\) −5.71144e9 9.89251e9i −0.427093 0.739746i
\(783\) 0 0
\(784\) 1.22565e9 2.12288e9i 0.0908362 0.157333i
\(785\) 2.97986e9 0.219863
\(786\) 0 0
\(787\) 9.17201e9 1.58864e10i 0.670738 1.16175i −0.306957 0.951723i \(-0.599311\pi\)
0.977695 0.210029i \(-0.0673558\pi\)
\(788\) 2.07800e8 0.0151288
\(789\) 0 0
\(790\) 1.21807e9 + 2.10976e9i 0.0878975 + 0.152243i
\(791\) −5.69195e9 9.85875e9i −0.408925 0.708278i
\(792\) 0 0
\(793\) −2.94402e8 2.99832e9i −0.0209645 0.213512i
\(794\) −1.43359e10 −1.01637
\(795\) 0 0
\(796\) −1.71205e9 2.96535e9i −0.120315 0.208392i
\(797\) 4.35075e9 7.53572e9i 0.304411 0.527255i −0.672719 0.739898i \(-0.734874\pi\)
0.977130 + 0.212643i \(0.0682071\pi\)
\(798\) 0 0
\(799\) 3.51985e9 6.09656e9i 0.244124 0.422835i
\(800\) 1.18486e9 2.05224e9i 0.0818187 0.141714i
\(801\) 0 0
\(802\) 4.62930e9 8.01818e9i 0.316887 0.548865i
\(803\) −4.08040e8 7.06747e8i −0.0278099 0.0481681i
\(804\) 0 0
\(805\) −3.42661e9 −0.231515
\(806\) −1.46393e10 6.63827e9i −0.984799 0.446562i
\(807\) 0 0
\(808\) 1.45118e9 + 2.51352e9i 0.0967793 + 0.167627i
\(809\) −2.27116e9 3.93376e9i −0.150809 0.261209i 0.780716 0.624886i \(-0.214855\pi\)
−0.931525 + 0.363677i \(0.881521\pi\)
\(810\) 0 0
\(811\) 1.79325e10 1.18051 0.590253 0.807219i \(-0.299028\pi\)
0.590253 + 0.807219i \(0.299028\pi\)
\(812\) −7.59227e8 + 1.31502e9i −0.0497652 + 0.0861958i
\(813\) 0 0
\(814\) −4.55534e8 −0.0296029
\(815\) −2.49954e9 + 4.32933e9i −0.161736 + 0.280136i
\(816\) 0 0
\(817\) −7.96859e9 1.38020e10i −0.511216 0.885451i
\(818\) −1.00739e10 −0.643521
\(819\) 0 0
\(820\) 3.04431e9 0.192815
\(821\) −9.03896e9 1.56559e10i −0.570056 0.987366i −0.996560 0.0828798i \(-0.973588\pi\)
0.426504 0.904486i \(-0.359745\pi\)
\(822\) 0 0
\(823\) −6.89144e9 + 1.19363e10i −0.430934 + 0.746399i −0.996954 0.0779924i \(-0.975149\pi\)
0.566020 + 0.824391i \(0.308482\pi\)
\(824\) 7.97149e9 0.496357
\(825\) 0 0
\(826\) −4.85928e8 + 8.41652e8i −0.0300014 + 0.0519640i
\(827\) −3.70262e9 −0.227636 −0.113818 0.993502i \(-0.536308\pi\)
−0.113818 + 0.993502i \(0.536308\pi\)
\(828\) 0 0
\(829\) −5.58069e9 9.66604e9i −0.340210 0.589261i 0.644261 0.764805i \(-0.277165\pi\)
−0.984472 + 0.175544i \(0.943832\pi\)
\(830\) 3.30881e8 + 5.73103e8i 0.0200862 + 0.0347904i
\(831\) 0 0
\(832\) −1.68828e9 + 1.20904e9i −0.101628 + 0.0727793i
\(833\) 9.01568e9 0.540432
\(834\) 0 0
\(835\) 1.29149e9 + 2.23692e9i 0.0767693 + 0.132968i
\(836\) −8.33587e8 + 1.44381e9i −0.0493434 + 0.0854652i
\(837\) 0 0
\(838\) −5.46566e9 + 9.46680e9i −0.320840 + 0.555711i
\(839\) 1.40162e10 2.42768e10i 0.819339 1.41914i −0.0868313 0.996223i \(-0.527674\pi\)
0.906170 0.422913i \(-0.138993\pi\)
\(840\) 0 0
\(841\) 7.37447e9 1.27730e10i 0.427509 0.740467i
\(842\) 5.86488e9 + 1.01583e10i 0.338584 + 0.586445i
\(843\) 0 0
\(844\) −1.17056e10 −0.670183
\(845\) −1.53971e9 + 4.52692e9i −0.0877891 + 0.258110i
\(846\) 0 0
\(847\) −4.41349e9 7.64440e9i −0.249569 0.432266i
\(848\) −3.24233e8 5.61587e8i −0.0182588 0.0316251i
\(849\) 0 0
\(850\) 8.71566e9 0.486781
\(851\) 2.87390e9 4.97773e9i 0.159852 0.276872i
\(852\) 0 0
\(853\) 2.14218e10 1.18177 0.590887 0.806754i \(-0.298778\pi\)
0.590887 + 0.806754i \(0.298778\pi\)
\(854\) 7.21757e8 1.25012e9i 0.0396541 0.0686830i
\(855\) 0 0
\(856\) −4.26742e9 7.39138e9i −0.232545 0.402780i
\(857\) −1.22735e10 −0.666093 −0.333047 0.942910i \(-0.608077\pi\)
−0.333047 + 0.942910i \(0.608077\pi\)
\(858\) 0 0
\(859\) 5.90261e9 0.317737 0.158869 0.987300i \(-0.449215\pi\)
0.158869 + 0.987300i \(0.449215\pi\)
\(860\) −1.40082e9 2.42629e9i −0.0750997 0.130076i
\(861\) 0 0
\(862\) 7.20693e9 1.24828e10i 0.383244 0.663797i
\(863\) 1.69052e10 0.895329 0.447664 0.894202i \(-0.352256\pi\)
0.447664 + 0.894202i \(0.352256\pi\)
\(864\) 0 0
\(865\) −2.44282e8 + 4.23109e8i −0.0128332 + 0.0222278i
\(866\) 8.61700e7 0.00450862
\(867\) 0 0
\(868\) −3.85084e9 6.66985e9i −0.199865 0.346176i
\(869\) 1.87613e9 + 3.24956e9i 0.0969827 + 0.167979i
\(870\) 0 0
\(871\) −3.32920e9 1.50965e9i −0.170717 0.0774126i
\(872\) −5.01094e9 −0.255924
\(873\) 0 0
\(874\) −1.05180e10 1.82176e10i −0.532895 0.923001i
\(875\) 2.71947e9 4.71025e9i 0.137232 0.237693i
\(876\) 0 0
\(877\) 9.59918e9 1.66263e10i 0.480547 0.832331i −0.519204 0.854650i \(-0.673772\pi\)
0.999751 + 0.0223189i \(0.00710490\pi\)
\(878\) −1.37659e10 + 2.38432e10i −0.686393 + 1.18887i
\(879\) 0 0
\(880\) −1.46539e8 + 2.53812e8i −0.00724875 + 0.0125552i
\(881\) −9.77828e9 1.69365e10i −0.481778 0.834464i 0.518003 0.855379i \(-0.326675\pi\)
−0.999781 + 0.0209149i \(0.993342\pi\)
\(882\) 0 0
\(883\) −2.35704e10 −1.15214 −0.576069 0.817401i \(-0.695414\pi\)
−0.576069 + 0.817401i \(0.695414\pi\)
\(884\) −6.95567e9 3.15409e9i −0.338654 0.153564i
\(885\) 0 0
\(886\) 5.57986e9 + 9.66460e9i 0.269529 + 0.466838i
\(887\) 1.57524e10 + 2.72840e10i 0.757906 + 1.31273i 0.943917 + 0.330183i \(0.107111\pi\)
−0.186011 + 0.982548i \(0.559556\pi\)
\(888\) 0 0
\(889\) −1.66223e10 −0.793478
\(890\) 2.57253e9 4.45576e9i 0.122320 0.211864i
\(891\) 0 0
\(892\) −1.39138e10 −0.656401
\(893\) 6.48201e9 1.12272e10i 0.304600 0.527583i
\(894\) 0 0
\(895\) −1.20476e9 2.08670e9i −0.0561719 0.0972925i
\(896\) −9.94949e8 −0.0462086
\(897\) 0 0
\(898\) 1.73357e10 0.798865
\(899\) −6.34242e9 1.09854e10i −0.291136 0.504262i
\(900\) 0 0
\(901\) 1.19250e9 2.06548e9i 0.0543154 0.0940770i
\(902\) 4.68901e9 0.212745
\(903\) 0 0
\(904\) 6.14271e9 1.06395e10i 0.276548 0.478995i
\(905\) −8.64057e9 −0.387501
\(906\) 0 0
\(907\) −9.02228e9 1.56270e10i −0.401505 0.695427i 0.592403 0.805642i \(-0.298179\pi\)
−0.993908 + 0.110215i \(0.964846\pi\)
\(908\) 2.42349e9 + 4.19761e9i 0.107434 + 0.186081i
\(909\) 0 0
\(910\) −1.86267e9 + 1.33392e9i −0.0819389 + 0.0586794i
\(911\) −9.87521e9 −0.432745 −0.216373 0.976311i \(-0.569423\pi\)
−0.216373 + 0.976311i \(0.569423\pi\)
\(912\) 0 0
\(913\) 5.09641e8 + 8.82724e8i 0.0221624 + 0.0383864i
\(914\) −1.50682e10 + 2.60989e10i −0.652754 + 1.13060i
\(915\) 0 0
\(916\) 1.54256e9 2.67179e9i 0.0663144 0.114860i
\(917\) 7.25867e9 1.25724e10i 0.310860 0.538425i
\(918\) 0 0
\(919\) −8.87371e9 + 1.53697e10i −0.377139 + 0.653223i −0.990645 0.136467i \(-0.956425\pi\)
0.613506 + 0.789690i \(0.289759\pi\)
\(920\) −1.84898e9 3.20253e9i −0.0782845 0.135593i
\(921\) 0 0
\(922\) −3.71554e9 −0.156122
\(923\) 3.96098e9 + 4.03404e10i 0.165805 + 1.68863i
\(924\) 0 0
\(925\) 2.19278e9 + 3.79801e9i 0.0910960 + 0.157783i
\(926\) 1.16027e10 + 2.00965e10i 0.480199 + 0.831729i
\(927\) 0 0
\(928\) −1.63870e9 −0.0673105
\(929\) 4.97128e9 8.61051e9i 0.203429 0.352350i −0.746202 0.665720i \(-0.768125\pi\)
0.949631 + 0.313370i \(0.101458\pi\)
\(930\) 0 0
\(931\) 1.66029e10 0.674311
\(932\) −5.48130e9 + 9.49388e9i −0.221783 + 0.384139i
\(933\) 0 0
\(934\) −1.29403e10 2.24132e10i −0.519672 0.900099i
\(935\) −1.07792e9 −0.0431265
\(936\) 0 0
\(937\) −2.07532e10 −0.824133 −0.412067 0.911154i \(-0.635193\pi\)
−0.412067 + 0.911154i \(0.635193\pi\)
\(938\) −8.75740e8 1.51683e9i −0.0346470 0.0600103i
\(939\) 0 0
\(940\) 1.13949e9 1.97366e9i 0.0447470 0.0775041i
\(941\) 3.69570e10 1.44588 0.722942 0.690909i \(-0.242790\pi\)
0.722942 + 0.690909i \(0.242790\pi\)
\(942\) 0 0
\(943\) −2.95823e10 + 5.12381e10i −1.14879 + 1.98976i
\(944\) −1.04882e9 −0.0405788
\(945\) 0 0
\(946\) −2.15762e9 3.73711e9i −0.0828621 0.143521i
\(947\) 2.82048e9 + 4.88521e9i 0.107919 + 0.186921i 0.914927 0.403619i \(-0.132248\pi\)
−0.807008 + 0.590540i \(0.798915\pi\)
\(948\) 0 0
\(949\) 5.59738e9 4.00848e9i 0.212595 0.152247i
\(950\) 1.60504e10 0.607370
\(951\) 0 0
\(952\) −1.82968e9 3.16909e9i −0.0687297 0.119043i
\(953\) 8.70405e9 1.50759e10i 0.325759 0.564231i −0.655907 0.754842i \(-0.727714\pi\)
0.981666 + 0.190611i \(0.0610469\pi\)
\(954\) 0 0
\(955\) 9.29065e8 1.60919e9i 0.0345171 0.0597854i
\(956\) 3.40951e8 5.90545e8i 0.0126209 0.0218600i
\(957\) 0 0
\(958\) −1.03678e10 + 1.79576e10i −0.380984 + 0.659884i
\(959\) 2.40528e9 + 4.16607e9i 0.0880644 + 0.152532i
\(960\) 0 0
\(961\) 3.68255e10 1.33849
\(962\) −3.75533e8 3.82460e9i −0.0135999 0.138508i
\(963\) 0 0
\(964\) 4.52544e9 + 7.83829e9i 0.162701 + 0.281807i
\(965\) 1.72991e8 + 2.99629e8i 0.00619695 + 0.0107334i
\(966\) 0 0
\(967\) 3.44861e8 0.0122646 0.00613228 0.999981i \(-0.498048\pi\)
0.00613228 + 0.999981i \(0.498048\pi\)
\(968\) 4.76301e9 8.24977e9i 0.168779 0.292333i
\(969\) 0 0
\(970\) 4.79233e9 0.168595
\(971\) −5.91506e9 + 1.02452e10i −0.207344 + 0.359131i −0.950877 0.309569i \(-0.899815\pi\)
0.743533 + 0.668699i \(0.233149\pi\)
\(972\) 0 0
\(973\) −9.39712e9 1.62763e10i −0.327039 0.566449i
\(974\) −2.73897e10 −0.949798
\(975\) 0 0
\(976\) 1.55783e9 0.0536347
\(977\) 2.35225e10 + 4.07422e10i 0.806961 + 1.39770i 0.914959 + 0.403547i \(0.132223\pi\)
−0.107998 + 0.994151i \(0.534444\pi\)
\(978\) 0 0
\(979\) 3.96235e9 6.86300e9i 0.134963 0.233762i
\(980\) 2.91867e9 0.0990590
\(981\) 0 0
\(982\) −3.72410e9 + 6.45033e9i −0.125496 + 0.217366i
\(983\) −6.84160e9 −0.229731 −0.114866 0.993381i \(-0.536644\pi\)
−0.114866 + 0.993381i \(0.536644\pi\)
\(984\) 0 0
\(985\) 1.23710e8 + 2.14273e8i 0.00412458 + 0.00714398i
\(986\) −3.01352e9 5.21956e9i −0.100116 0.173406i
\(987\) 0 0
\(988\) −1.28093e10 5.80844e9i −0.422547 0.191606i
\(989\) 5.44485e10 1.78978
\(990\) 0 0
\(991\) 1.06550e10 + 1.84550e10i 0.347774 + 0.602362i 0.985854 0.167608i \(-0.0536044\pi\)
−0.638080 + 0.769970i \(0.720271\pi\)
\(992\) 4.15579e9 7.19805e9i 0.135165 0.234112i
\(993\) 0 0
\(994\) −9.71076e9 + 1.68195e10i −0.313618 + 0.543202i
\(995\) 2.03848e9 3.53075e9i 0.0656032 0.113628i
\(996\) 0 0
\(997\) −5.83424e9 + 1.01052e10i −0.186445 + 0.322932i −0.944063 0.329766i \(-0.893030\pi\)
0.757617 + 0.652699i \(0.226363\pi\)
\(998\) −4.76068e9 8.24574e9i −0.151605 0.262587i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.8.h.c.55.2 8
3.2 odd 2 78.8.e.a.55.3 8
13.9 even 3 inner 234.8.h.c.217.2 8
39.35 odd 6 78.8.e.a.61.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.8.e.a.55.3 8 3.2 odd 2
78.8.e.a.61.3 yes 8 39.35 odd 6
234.8.h.c.55.2 8 1.1 even 1 trivial
234.8.h.c.217.2 8 13.9 even 3 inner