Properties

Label 234.8.a.o
Level $234$
Weight $8$
Character orbit 234.a
Self dual yes
Analytic conductor $73.098$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,8,Mod(1,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,24,0,192,-138] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.0980959633\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 643x + 6370 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8 q^{2} + 64 q^{4} + (\beta_1 - 46) q^{5} + (\beta_{2} - \beta_1 + 26) q^{7} + 512 q^{8} + (8 \beta_1 - 368) q^{10} + ( - 5 \beta_{2} - 15 \beta_1 - 1172) q^{11} - 2197 q^{13} + (8 \beta_{2} - 8 \beta_1 + 208) q^{14}+ \cdots + ( - 2240 \beta_{2} + 10304 \beta_1 - 2174360) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 24 q^{2} + 192 q^{4} - 138 q^{5} + 78 q^{7} + 1536 q^{8} - 1104 q^{10} - 3516 q^{11} - 6591 q^{13} + 624 q^{14} + 12288 q^{16} - 4128 q^{17} - 8862 q^{19} - 8832 q^{20} - 28128 q^{22} - 99780 q^{23}+ \cdots - 6523080 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 643x + 6370 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 12\nu - 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 12\nu^{2} + 168\nu - 5204 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 4 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} - 14\beta _1 + 5148 ) / 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−28.8895
13.2562
16.6333
8.00000 0 64.0000 −396.674 0 334.498 512.000 0 −3173.40
1.2 8.00000 0 64.0000 109.075 0 −997.288 512.000 0 872.600
1.3 8.00000 0 64.0000 149.600 0 740.791 512.000 0 1196.80
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.8.a.o yes 3
3.b odd 2 1 234.8.a.n 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.8.a.n 3 3.b odd 2 1
234.8.a.o yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} + 138T_{5}^{2} - 86292T_{5} + 6472760 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(234))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 138 T^{2} + \cdots + 6472760 \) Copy content Toggle raw display
$7$ \( T^{3} - 78 T^{2} + \cdots + 247120952 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 31374773248 \) Copy content Toggle raw display
$13$ \( (T + 2197)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 7940542814208 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 10727715751416 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 35856853293248 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 254844683706368 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 33209987379320 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 21\!\cdots\!72 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 52\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 61\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 21\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 41\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 21\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 12\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 55\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 62\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 16\!\cdots\!88 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 56\!\cdots\!40 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 30\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 14\!\cdots\!92 \) Copy content Toggle raw display
show more
show less