Newspace parameters
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.x (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(37.5298138362\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
71.1 | −3.86370 | + | 1.03528i | 0 | 13.8564 | − | 8.00000i | −58.2528 | − | 58.2528i | 0 | −16.8114 | + | 62.7411i | −45.2548 | + | 45.2548i | 0 | 285.379 | + | 164.764i | ||||||
71.2 | −3.86370 | + | 1.03528i | 0 | 13.8564 | − | 8.00000i | 7.19815 | + | 7.19815i | 0 | −30.0642 | + | 112.201i | −45.2548 | + | 45.2548i | 0 | −35.2636 | − | 20.3594i | ||||||
71.3 | −3.86370 | + | 1.03528i | 0 | 13.8564 | − | 8.00000i | 17.6983 | + | 17.6983i | 0 | −2.91811 | + | 10.8905i | −45.2548 | + | 45.2548i | 0 | −86.7036 | − | 50.0583i | ||||||
71.4 | −3.86370 | + | 1.03528i | 0 | 13.8564 | − | 8.00000i | −38.0836 | − | 38.0836i | 0 | 49.7363 | − | 185.618i | −45.2548 | + | 45.2548i | 0 | 186.571 | + | 107.717i | ||||||
71.5 | −3.86370 | + | 1.03528i | 0 | 13.8564 | − | 8.00000i | 68.1819 | + | 68.1819i | 0 | 54.3113 | − | 202.693i | −45.2548 | + | 45.2548i | 0 | −334.022 | − | 192.847i | ||||||
71.6 | 3.86370 | − | 1.03528i | 0 | 13.8564 | − | 8.00000i | −68.1819 | − | 68.1819i | 0 | 54.3113 | − | 202.693i | 45.2548 | − | 45.2548i | 0 | −334.022 | − | 192.847i | ||||||
71.7 | 3.86370 | − | 1.03528i | 0 | 13.8564 | − | 8.00000i | 38.0836 | + | 38.0836i | 0 | 49.7363 | − | 185.618i | 45.2548 | − | 45.2548i | 0 | 186.571 | + | 107.717i | ||||||
71.8 | 3.86370 | − | 1.03528i | 0 | 13.8564 | − | 8.00000i | −17.6983 | − | 17.6983i | 0 | −2.91811 | + | 10.8905i | 45.2548 | − | 45.2548i | 0 | −86.7036 | − | 50.0583i | ||||||
71.9 | 3.86370 | − | 1.03528i | 0 | 13.8564 | − | 8.00000i | −7.19815 | − | 7.19815i | 0 | −30.0642 | + | 112.201i | 45.2548 | − | 45.2548i | 0 | −35.2636 | − | 20.3594i | ||||||
71.10 | 3.86370 | − | 1.03528i | 0 | 13.8564 | − | 8.00000i | 58.2528 | + | 58.2528i | 0 | −16.8114 | + | 62.7411i | 45.2548 | − | 45.2548i | 0 | 285.379 | + | 164.764i | ||||||
89.1 | −3.86370 | − | 1.03528i | 0 | 13.8564 | + | 8.00000i | −58.2528 | + | 58.2528i | 0 | −16.8114 | − | 62.7411i | −45.2548 | − | 45.2548i | 0 | 285.379 | − | 164.764i | ||||||
89.2 | −3.86370 | − | 1.03528i | 0 | 13.8564 | + | 8.00000i | 7.19815 | − | 7.19815i | 0 | −30.0642 | − | 112.201i | −45.2548 | − | 45.2548i | 0 | −35.2636 | + | 20.3594i | ||||||
89.3 | −3.86370 | − | 1.03528i | 0 | 13.8564 | + | 8.00000i | 17.6983 | − | 17.6983i | 0 | −2.91811 | − | 10.8905i | −45.2548 | − | 45.2548i | 0 | −86.7036 | + | 50.0583i | ||||||
89.4 | −3.86370 | − | 1.03528i | 0 | 13.8564 | + | 8.00000i | −38.0836 | + | 38.0836i | 0 | 49.7363 | + | 185.618i | −45.2548 | − | 45.2548i | 0 | 186.571 | − | 107.717i | ||||||
89.5 | −3.86370 | − | 1.03528i | 0 | 13.8564 | + | 8.00000i | 68.1819 | − | 68.1819i | 0 | 54.3113 | + | 202.693i | −45.2548 | − | 45.2548i | 0 | −334.022 | + | 192.847i | ||||||
89.6 | 3.86370 | + | 1.03528i | 0 | 13.8564 | + | 8.00000i | −68.1819 | + | 68.1819i | 0 | 54.3113 | + | 202.693i | 45.2548 | + | 45.2548i | 0 | −334.022 | + | 192.847i | ||||||
89.7 | 3.86370 | + | 1.03528i | 0 | 13.8564 | + | 8.00000i | 38.0836 | − | 38.0836i | 0 | 49.7363 | + | 185.618i | 45.2548 | + | 45.2548i | 0 | 186.571 | − | 107.717i | ||||||
89.8 | 3.86370 | + | 1.03528i | 0 | 13.8564 | + | 8.00000i | −17.6983 | + | 17.6983i | 0 | −2.91811 | − | 10.8905i | 45.2548 | + | 45.2548i | 0 | −86.7036 | + | 50.0583i | ||||||
89.9 | 3.86370 | + | 1.03528i | 0 | 13.8564 | + | 8.00000i | −7.19815 | + | 7.19815i | 0 | −30.0642 | − | 112.201i | 45.2548 | + | 45.2548i | 0 | −35.2636 | + | 20.3594i | ||||||
89.10 | 3.86370 | + | 1.03528i | 0 | 13.8564 | + | 8.00000i | 58.2528 | − | 58.2528i | 0 | −16.8114 | − | 62.7411i | 45.2548 | + | 45.2548i | 0 | 285.379 | − | 164.764i | ||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.f | odd | 12 | 1 | inner |
39.k | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 234.6.x.a | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 234.6.x.a | ✓ | 40 |
13.f | odd | 12 | 1 | inner | 234.6.x.a | ✓ | 40 |
39.k | even | 12 | 1 | inner | 234.6.x.a | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
234.6.x.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
234.6.x.a | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
234.6.x.a | ✓ | 40 | 13.f | odd | 12 | 1 | inner |
234.6.x.a | ✓ | 40 | 39.k | even | 12 | 1 | inner |