Properties

Label 234.6.a.n
Level $234$
Weight $6$
Character orbit 234.a
Self dual yes
Analytic conductor $37.530$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,6,Mod(1,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-12,0,48,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.5298138362\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.71772.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 47x + 87 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + ( - \beta_{2} + 2) q^{5} + (\beta_{2} - \beta_1 + 86) q^{7} - 64 q^{8} + (4 \beta_{2} - 8) q^{10} + (5 \beta_1 - 260) q^{11} - 169 q^{13} + ( - 4 \beta_{2} + 4 \beta_1 - 344) q^{14}+ \cdots + ( - 632 \beta_{2} + 1208 \beta_1 - 10004) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} + 48 q^{4} + 6 q^{5} + 258 q^{7} - 192 q^{8} - 24 q^{10} - 780 q^{11} - 507 q^{13} - 1032 q^{14} + 768 q^{16} - 1104 q^{17} + 102 q^{19} + 96 q^{20} + 3120 q^{22} - 2292 q^{23} + 1893 q^{25}+ \cdots - 30012 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 47x + 87 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 12\nu - 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3\nu^{2} - 95 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 4 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 95 ) / 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.20254
6.27873
1.92381
−4.00000 0 16.0000 −58.6296 0 237.060 −64.0000 0 234.518
1.2 −4.00000 0 16.0000 −21.2672 0 37.9225 −64.0000 0 85.0690
1.3 −4.00000 0 16.0000 85.8969 0 −16.9826 −64.0000 0 −343.587
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.6.a.n 3
3.b odd 2 1 234.6.a.o yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.6.a.n 3 1.a even 1 1 trivial
234.6.a.o yes 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(234))\):

\( T_{5}^{3} - 6T_{5}^{2} - 5616T_{5} - 107104 \) Copy content Toggle raw display
\( T_{7}^{3} - 258T_{7}^{2} + 4320T_{7} + 152672 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 6 T^{2} + \cdots - 107104 \) Copy content Toggle raw display
$7$ \( T^{3} - 258 T^{2} + \cdots + 152672 \) Copy content Toggle raw display
$11$ \( T^{3} + 780 T^{2} + \cdots - 11336000 \) Copy content Toggle raw display
$13$ \( (T + 169)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 6486884352 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 4963216896 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 10513255168 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 43629713408 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 62764703840 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 647661056040 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 247008483936 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 1298456642048 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 478681441664 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 910291046400 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 1256264875456 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 46608208137640 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 749558895488 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 191839693350400 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 89184834068024 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 125132608751552 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 42636035188800 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 131136837607584 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 15\!\cdots\!08 \) Copy content Toggle raw display
show more
show less