Properties

Label 234.6.a.j
Level $234$
Weight $6$
Character orbit 234.a
Self dual yes
Analytic conductor $37.530$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,6,Mod(1,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,32,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.5298138362\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{94}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 94 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{94}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + (\beta + 28) q^{5} + (7 \beta - 30) q^{7} - 64 q^{8} + ( - 4 \beta - 112) q^{10} + (25 \beta + 34) q^{11} + 169 q^{13} + ( - 28 \beta + 120) q^{14} + 256 q^{16} + (28 \beta + 748) q^{17}+ \cdots + (1680 \beta - 10068) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} + 56 q^{5} - 60 q^{7} - 128 q^{8} - 224 q^{10} + 68 q^{11} + 338 q^{13} + 240 q^{14} + 512 q^{16} + 1496 q^{17} - 540 q^{19} + 896 q^{20} - 272 q^{22} + 4536 q^{23} - 3930 q^{25}+ \cdots - 20136 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−9.69536
9.69536
−4.00000 0 16.0000 8.60928 0 −165.735 −64.0000 0 −34.4371
1.2 −4.00000 0 16.0000 47.3907 0 105.735 −64.0000 0 −189.563
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.6.a.j 2
3.b odd 2 1 234.6.a.k yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.6.a.j 2 1.a even 1 1 trivial
234.6.a.k yes 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(234))\):

\( T_{5}^{2} - 56T_{5} + 408 \) Copy content Toggle raw display
\( T_{7}^{2} + 60T_{7} - 17524 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 56T + 408 \) Copy content Toggle raw display
$7$ \( T^{2} + 60T - 17524 \) Copy content Toggle raw display
$11$ \( T^{2} - 68T - 233844 \) Copy content Toggle raw display
$13$ \( (T - 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 1496 T + 264720 \) Copy content Toggle raw display
$19$ \( T^{2} + 540T - 288436 \) Copy content Toggle raw display
$23$ \( T^{2} - 4536 T + 758160 \) Copy content Toggle raw display
$29$ \( T^{2} - 2904 T - 7042032 \) Copy content Toggle raw display
$31$ \( T^{2} + 6236 T + 9556108 \) Copy content Toggle raw display
$37$ \( T^{2} + 15516 T + 35545028 \) Copy content Toggle raw display
$41$ \( T^{2} - 8864 T - 83204280 \) Copy content Toggle raw display
$43$ \( T^{2} + 1200 T - 392365984 \) Copy content Toggle raw display
$47$ \( T^{2} - 14732 T + 40541100 \) Copy content Toggle raw display
$53$ \( T^{2} - 11264 T + 28397088 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1082835084 \) Copy content Toggle raw display
$61$ \( T^{2} - 11772 T - 698109820 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1002584908 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1518230388 \) Copy content Toggle raw display
$73$ \( T^{2} - 35404 T + 625060 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 4189595504 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 2693685996 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 7363927992 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 16086584860 \) Copy content Toggle raw display
show more
show less