Properties

Label 234.5.i.b.109.3
Level $234$
Weight $5$
Character 234.109
Analytic conductor $24.189$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,5,Mod(73,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.73"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 234.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,12,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1885713616\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 234x^{4} + 13689x^{2} + 60516 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.3
Root \(-2.19267i\) of defining polynomial
Character \(\chi\) \(=\) 234.109
Dual form 234.5.i.b.73.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 2.00000i) q^{2} -8.00000i q^{4} +(28.1144 - 28.1144i) q^{5} +(-49.0778 - 49.0778i) q^{7} +(-16.0000 - 16.0000i) q^{8} -112.458i q^{10} +(-125.843 - 125.843i) q^{11} +(76.8118 + 150.536i) q^{13} -196.311 q^{14} -64.0000 q^{16} +293.870i q^{17} +(-165.724 + 165.724i) q^{19} +(-224.916 - 224.916i) q^{20} -503.372 q^{22} -297.165i q^{23} -955.844i q^{25} +(454.695 + 147.448i) q^{26} +(-392.622 + 392.622i) q^{28} +1060.76 q^{29} +(-511.960 + 511.960i) q^{31} +(-128.000 + 128.000i) q^{32} +(587.740 + 587.740i) q^{34} -2759.59 q^{35} +(-292.878 - 292.878i) q^{37} +662.895i q^{38} -899.662 q^{40} +(804.161 - 804.161i) q^{41} -1005.69i q^{43} +(-1006.74 + 1006.74i) q^{44} +(-594.330 - 594.330i) q^{46} +(-1325.64 - 1325.64i) q^{47} +2416.26i q^{49} +(-1911.69 - 1911.69i) q^{50} +(1204.28 - 614.494i) q^{52} -574.799 q^{53} -7076.02 q^{55} +1570.49i q^{56} +(2121.52 - 2121.52i) q^{58} +(-2237.69 - 2237.69i) q^{59} -6068.83 q^{61} +2047.84i q^{62} +512.000i q^{64} +(6391.74 + 2072.70i) q^{65} +(3155.98 - 3155.98i) q^{67} +2350.96 q^{68} +(-5519.18 + 5519.18i) q^{70} +(1607.78 - 1607.78i) q^{71} +(22.6121 + 22.6121i) q^{73} -1171.51 q^{74} +(1325.79 + 1325.79i) q^{76} +12352.2i q^{77} +6576.52 q^{79} +(-1799.32 + 1799.32i) q^{80} -3216.64i q^{82} +(5691.45 - 5691.45i) q^{83} +(8261.99 + 8261.99i) q^{85} +(-2011.39 - 2011.39i) q^{86} +4026.98i q^{88} +(-4243.56 - 4243.56i) q^{89} +(3618.20 - 11157.7i) q^{91} -2377.32 q^{92} -5302.58 q^{94} +9318.47i q^{95} +(3532.64 - 3532.64i) q^{97} +(4832.51 + 4832.51i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 12 q^{2} - 18 q^{5} - 42 q^{7} - 96 q^{8} + 18 q^{11} + 90 q^{13} - 168 q^{14} - 384 q^{16} - 366 q^{19} + 144 q^{20} + 72 q^{22} - 12 q^{26} - 336 q^{28} + 6228 q^{29} + 402 q^{31} - 768 q^{32} + 1944 q^{34}+ \cdots + 17076 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 2.00000i 0.500000 0.500000i
\(3\) 0 0
\(4\) 8.00000i 0.500000i
\(5\) 28.1144 28.1144i 1.12458 1.12458i 0.133534 0.991044i \(-0.457368\pi\)
0.991044 0.133534i \(-0.0426324\pi\)
\(6\) 0 0
\(7\) −49.0778 49.0778i −1.00159 1.00159i −0.999999 0.00158846i \(-0.999494\pi\)
−0.00158846 0.999999i \(-0.500506\pi\)
\(8\) −16.0000 16.0000i −0.250000 0.250000i
\(9\) 0 0
\(10\) 112.458i 1.12458i
\(11\) −125.843 125.843i −1.04003 1.04003i −0.999165 0.0408609i \(-0.986990\pi\)
−0.0408609 0.999165i \(-0.513010\pi\)
\(12\) 0 0
\(13\) 76.8118 + 150.536i 0.454507 + 0.890743i
\(14\) −196.311 −1.00159
\(15\) 0 0
\(16\) −64.0000 −0.250000
\(17\) 293.870i 1.01685i 0.861106 + 0.508426i \(0.169772\pi\)
−0.861106 + 0.508426i \(0.830228\pi\)
\(18\) 0 0
\(19\) −165.724 + 165.724i −0.459069 + 0.459069i −0.898350 0.439281i \(-0.855233\pi\)
0.439281 + 0.898350i \(0.355233\pi\)
\(20\) −224.916 224.916i −0.562289 0.562289i
\(21\) 0 0
\(22\) −503.372 −1.04003
\(23\) 297.165i 0.561748i −0.959745 0.280874i \(-0.909376\pi\)
0.959745 0.280874i \(-0.0906244\pi\)
\(24\) 0 0
\(25\) 955.844i 1.52935i
\(26\) 454.695 + 147.448i 0.672625 + 0.218118i
\(27\) 0 0
\(28\) −392.622 + 392.622i −0.500794 + 0.500794i
\(29\) 1060.76 1.26131 0.630655 0.776064i \(-0.282787\pi\)
0.630655 + 0.776064i \(0.282787\pi\)
\(30\) 0 0
\(31\) −511.960 + 511.960i −0.532736 + 0.532736i −0.921386 0.388649i \(-0.872942\pi\)
0.388649 + 0.921386i \(0.372942\pi\)
\(32\) −128.000 + 128.000i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 587.740 + 587.740i 0.508426 + 0.508426i
\(35\) −2759.59 −2.25273
\(36\) 0 0
\(37\) −292.878 292.878i −0.213936 0.213936i 0.592001 0.805937i \(-0.298338\pi\)
−0.805937 + 0.592001i \(0.798338\pi\)
\(38\) 662.895i 0.459069i
\(39\) 0 0
\(40\) −899.662 −0.562289
\(41\) 804.161 804.161i 0.478383 0.478383i −0.426232 0.904614i \(-0.640159\pi\)
0.904614 + 0.426232i \(0.140159\pi\)
\(42\) 0 0
\(43\) 1005.69i 0.543913i −0.962310 0.271956i \(-0.912329\pi\)
0.962310 0.271956i \(-0.0876707\pi\)
\(44\) −1006.74 + 1006.74i −0.520013 + 0.520013i
\(45\) 0 0
\(46\) −594.330 594.330i −0.280874 0.280874i
\(47\) −1325.64 1325.64i −0.600111 0.600111i 0.340231 0.940342i \(-0.389495\pi\)
−0.940342 + 0.340231i \(0.889495\pi\)
\(48\) 0 0
\(49\) 2416.26i 1.00635i
\(50\) −1911.69 1911.69i −0.764675 0.764675i
\(51\) 0 0
\(52\) 1204.28 614.494i 0.445371 0.227254i
\(53\) −574.799 −0.204628 −0.102314 0.994752i \(-0.532625\pi\)
−0.102314 + 0.994752i \(0.532625\pi\)
\(54\) 0 0
\(55\) −7076.02 −2.33918
\(56\) 1570.49i 0.500794i
\(57\) 0 0
\(58\) 2121.52 2121.52i 0.630655 0.630655i
\(59\) −2237.69 2237.69i −0.642829 0.642829i 0.308421 0.951250i \(-0.400200\pi\)
−0.951250 + 0.308421i \(0.900200\pi\)
\(60\) 0 0
\(61\) −6068.83 −1.63097 −0.815484 0.578779i \(-0.803529\pi\)
−0.815484 + 0.578779i \(0.803529\pi\)
\(62\) 2047.84i 0.532736i
\(63\) 0 0
\(64\) 512.000i 0.125000i
\(65\) 6391.74 + 2072.70i 1.51284 + 0.490581i
\(66\) 0 0
\(67\) 3155.98 3155.98i 0.703046 0.703046i −0.262017 0.965063i \(-0.584388\pi\)
0.965063 + 0.262017i \(0.0843876\pi\)
\(68\) 2350.96 0.508426
\(69\) 0 0
\(70\) −5519.18 + 5519.18i −1.12636 + 1.12636i
\(71\) 1607.78 1607.78i 0.318940 0.318940i −0.529420 0.848360i \(-0.677590\pi\)
0.848360 + 0.529420i \(0.177590\pi\)
\(72\) 0 0
\(73\) 22.6121 + 22.6121i 0.00424321 + 0.00424321i 0.709225 0.704982i \(-0.249045\pi\)
−0.704982 + 0.709225i \(0.749045\pi\)
\(74\) −1171.51 −0.213936
\(75\) 0 0
\(76\) 1325.79 + 1325.79i 0.229534 + 0.229534i
\(77\) 12352.2i 2.08335i
\(78\) 0 0
\(79\) 6576.52 1.05376 0.526880 0.849940i \(-0.323362\pi\)
0.526880 + 0.849940i \(0.323362\pi\)
\(80\) −1799.32 + 1799.32i −0.281144 + 0.281144i
\(81\) 0 0
\(82\) 3216.64i 0.478383i
\(83\) 5691.45 5691.45i 0.826165 0.826165i −0.160819 0.986984i \(-0.551414\pi\)
0.986984 + 0.160819i \(0.0514136\pi\)
\(84\) 0 0
\(85\) 8261.99 + 8261.99i 1.14353 + 1.14353i
\(86\) −2011.39 2011.39i −0.271956 0.271956i
\(87\) 0 0
\(88\) 4026.98i 0.520013i
\(89\) −4243.56 4243.56i −0.535735 0.535735i 0.386538 0.922273i \(-0.373671\pi\)
−0.922273 + 0.386538i \(0.873671\pi\)
\(90\) 0 0
\(91\) 3618.20 11157.7i 0.436928 1.34739i
\(92\) −2377.32 −0.280874
\(93\) 0 0
\(94\) −5302.58 −0.600111
\(95\) 9318.47i 1.03252i
\(96\) 0 0
\(97\) 3532.64 3532.64i 0.375453 0.375453i −0.494006 0.869459i \(-0.664468\pi\)
0.869459 + 0.494006i \(0.164468\pi\)
\(98\) 4832.51 + 4832.51i 0.503177 + 0.503177i
\(99\) 0 0
\(100\) −7646.75 −0.764675
\(101\) 18045.3i 1.76897i −0.466567 0.884486i \(-0.654509\pi\)
0.466567 0.884486i \(-0.345491\pi\)
\(102\) 0 0
\(103\) 2128.08i 0.200592i 0.994958 + 0.100296i \(0.0319790\pi\)
−0.994958 + 0.100296i \(0.968021\pi\)
\(104\) 1179.58 3637.56i 0.109059 0.336313i
\(105\) 0 0
\(106\) −1149.60 + 1149.60i −0.102314 + 0.102314i
\(107\) 8838.57 0.771995 0.385997 0.922500i \(-0.373857\pi\)
0.385997 + 0.922500i \(0.373857\pi\)
\(108\) 0 0
\(109\) −2517.64 + 2517.64i −0.211905 + 0.211905i −0.805076 0.593171i \(-0.797876\pi\)
0.593171 + 0.805076i \(0.297876\pi\)
\(110\) −14152.0 + 14152.0i −1.16959 + 1.16959i
\(111\) 0 0
\(112\) 3140.98 + 3140.98i 0.250397 + 0.250397i
\(113\) −1933.19 −0.151397 −0.0756984 0.997131i \(-0.524119\pi\)
−0.0756984 + 0.997131i \(0.524119\pi\)
\(114\) 0 0
\(115\) −8354.62 8354.62i −0.631730 0.631730i
\(116\) 8486.09i 0.630655i
\(117\) 0 0
\(118\) −8950.76 −0.642829
\(119\) 14422.5 14422.5i 1.01847 1.01847i
\(120\) 0 0
\(121\) 17032.0i 1.16331i
\(122\) −12137.7 + 12137.7i −0.815484 + 0.815484i
\(123\) 0 0
\(124\) 4095.68 + 4095.68i 0.266368 + 0.266368i
\(125\) −9301.50 9301.50i −0.595296 0.595296i
\(126\) 0 0
\(127\) 7762.26i 0.481261i −0.970617 0.240630i \(-0.922646\pi\)
0.970617 0.240630i \(-0.0773542\pi\)
\(128\) 1024.00 + 1024.00i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 16928.9 8638.08i 1.00171 0.511129i
\(131\) −10467.8 −0.609974 −0.304987 0.952357i \(-0.598652\pi\)
−0.304987 + 0.952357i \(0.598652\pi\)
\(132\) 0 0
\(133\) 16266.7 0.919595
\(134\) 12623.9i 0.703046i
\(135\) 0 0
\(136\) 4701.92 4701.92i 0.254213 0.254213i
\(137\) 10192.9 + 10192.9i 0.543072 + 0.543072i 0.924428 0.381356i \(-0.124543\pi\)
−0.381356 + 0.924428i \(0.624543\pi\)
\(138\) 0 0
\(139\) 29697.1 1.53704 0.768519 0.639827i \(-0.220994\pi\)
0.768519 + 0.639827i \(0.220994\pi\)
\(140\) 22076.7i 1.12636i
\(141\) 0 0
\(142\) 6431.11i 0.318940i
\(143\) 9277.63 28610.1i 0.453696 1.39910i
\(144\) 0 0
\(145\) 29822.7 29822.7i 1.41844 1.41844i
\(146\) 90.4483 0.00424321
\(147\) 0 0
\(148\) −2343.02 + 2343.02i −0.106968 + 0.106968i
\(149\) 22208.2 22208.2i 1.00033 1.00033i 0.000326486 1.00000i \(-0.499896\pi\)
1.00000 0.000326486i \(-0.000103924\pi\)
\(150\) 0 0
\(151\) −27423.8 27423.8i −1.20274 1.20274i −0.973328 0.229417i \(-0.926318\pi\)
−0.229417 0.973328i \(-0.573682\pi\)
\(152\) 5303.16 0.229534
\(153\) 0 0
\(154\) 24704.4 + 24704.4i 1.04168 + 1.04168i
\(155\) 28786.9i 1.19821i
\(156\) 0 0
\(157\) 3402.51 0.138038 0.0690192 0.997615i \(-0.478013\pi\)
0.0690192 + 0.997615i \(0.478013\pi\)
\(158\) 13153.0 13153.0i 0.526880 0.526880i
\(159\) 0 0
\(160\) 7197.30i 0.281144i
\(161\) −14584.2 + 14584.2i −0.562640 + 0.562640i
\(162\) 0 0
\(163\) 19832.3 + 19832.3i 0.746445 + 0.746445i 0.973810 0.227365i \(-0.0730110\pi\)
−0.227365 + 0.973810i \(0.573011\pi\)
\(164\) −6433.29 6433.29i −0.239191 0.239191i
\(165\) 0 0
\(166\) 22765.8i 0.826165i
\(167\) 6728.75 + 6728.75i 0.241269 + 0.241269i 0.817375 0.576106i \(-0.195428\pi\)
−0.576106 + 0.817375i \(0.695428\pi\)
\(168\) 0 0
\(169\) −16760.9 + 23125.8i −0.586846 + 0.809699i
\(170\) 33048.0 1.14353
\(171\) 0 0
\(172\) −8045.56 −0.271956
\(173\) 32296.9i 1.07912i 0.841948 + 0.539558i \(0.181409\pi\)
−0.841948 + 0.539558i \(0.818591\pi\)
\(174\) 0 0
\(175\) −46910.7 + 46910.7i −1.53178 + 1.53178i
\(176\) 8053.96 + 8053.96i 0.260006 + 0.260006i
\(177\) 0 0
\(178\) −16974.2 −0.535735
\(179\) 41174.2i 1.28505i 0.766266 + 0.642524i \(0.222113\pi\)
−0.766266 + 0.642524i \(0.777887\pi\)
\(180\) 0 0
\(181\) 31653.5i 0.966196i 0.875566 + 0.483098i \(0.160489\pi\)
−0.875566 + 0.483098i \(0.839511\pi\)
\(182\) −15079.0 29551.8i −0.455229 0.892157i
\(183\) 0 0
\(184\) −4754.64 + 4754.64i −0.140437 + 0.140437i
\(185\) −16468.2 −0.481175
\(186\) 0 0
\(187\) 36981.5 36981.5i 1.05755 1.05755i
\(188\) −10605.2 + 10605.2i −0.300055 + 0.300055i
\(189\) 0 0
\(190\) 18636.9 + 18636.9i 0.516258 + 0.516258i
\(191\) 15395.5 0.422013 0.211007 0.977485i \(-0.432326\pi\)
0.211007 + 0.977485i \(0.432326\pi\)
\(192\) 0 0
\(193\) −32248.9 32248.9i −0.865765 0.865765i 0.126235 0.992000i \(-0.459711\pi\)
−0.992000 + 0.126235i \(0.959711\pi\)
\(194\) 14130.6i 0.375453i
\(195\) 0 0
\(196\) 19330.0 0.503177
\(197\) 28366.7 28366.7i 0.730930 0.730930i −0.239874 0.970804i \(-0.577106\pi\)
0.970804 + 0.239874i \(0.0771062\pi\)
\(198\) 0 0
\(199\) 41308.6i 1.04312i 0.853214 + 0.521560i \(0.174650\pi\)
−0.853214 + 0.521560i \(0.825350\pi\)
\(200\) −15293.5 + 15293.5i −0.382338 + 0.382338i
\(201\) 0 0
\(202\) −36090.6 36090.6i −0.884486 0.884486i
\(203\) −52059.8 52059.8i −1.26331 1.26331i
\(204\) 0 0
\(205\) 45217.1i 1.07596i
\(206\) 4256.16 + 4256.16i 0.100296 + 0.100296i
\(207\) 0 0
\(208\) −4915.95 9634.28i −0.113627 0.222686i
\(209\) 41710.4 0.954886
\(210\) 0 0
\(211\) 53697.8 1.20612 0.603062 0.797695i \(-0.293947\pi\)
0.603062 + 0.797695i \(0.293947\pi\)
\(212\) 4598.39i 0.102314i
\(213\) 0 0
\(214\) 17677.1 17677.1i 0.385997 0.385997i
\(215\) −28274.6 28274.6i −0.611672 0.611672i
\(216\) 0 0
\(217\) 50251.7 1.06716
\(218\) 10070.6i 0.211905i
\(219\) 0 0
\(220\) 56608.1i 1.16959i
\(221\) −44237.9 + 22572.7i −0.905753 + 0.462167i
\(222\) 0 0
\(223\) −39762.2 + 39762.2i −0.799578 + 0.799578i −0.983029 0.183451i \(-0.941273\pi\)
0.183451 + 0.983029i \(0.441273\pi\)
\(224\) 12563.9 0.250397
\(225\) 0 0
\(226\) −3866.37 + 3866.37i −0.0756984 + 0.0756984i
\(227\) 13759.5 13759.5i 0.267025 0.267025i −0.560876 0.827900i \(-0.689535\pi\)
0.827900 + 0.560876i \(0.189535\pi\)
\(228\) 0 0
\(229\) −26261.1 26261.1i −0.500774 0.500774i 0.410905 0.911678i \(-0.365213\pi\)
−0.911678 + 0.410905i \(0.865213\pi\)
\(230\) −33418.5 −0.631730
\(231\) 0 0
\(232\) −16972.2 16972.2i −0.315327 0.315327i
\(233\) 41383.8i 0.762287i 0.924516 + 0.381144i \(0.124470\pi\)
−0.924516 + 0.381144i \(0.875530\pi\)
\(234\) 0 0
\(235\) −74539.5 −1.34974
\(236\) −17901.5 + 17901.5i −0.321415 + 0.321415i
\(237\) 0 0
\(238\) 57689.9i 1.01847i
\(239\) −1600.45 + 1600.45i −0.0280187 + 0.0280187i −0.720977 0.692959i \(-0.756307\pi\)
0.692959 + 0.720977i \(0.256307\pi\)
\(240\) 0 0
\(241\) −33028.9 33028.9i −0.568669 0.568669i 0.363086 0.931755i \(-0.381723\pi\)
−0.931755 + 0.363086i \(0.881723\pi\)
\(242\) 34064.0 + 34064.0i 0.581654 + 0.581654i
\(243\) 0 0
\(244\) 48550.7i 0.815484i
\(245\) 67931.7 + 67931.7i 1.13172 + 1.13172i
\(246\) 0 0
\(247\) −37676.9 12217.8i −0.617562 0.200262i
\(248\) 16382.7 0.266368
\(249\) 0 0
\(250\) −37206.0 −0.595296
\(251\) 16019.3i 0.254271i −0.991885 0.127135i \(-0.959422\pi\)
0.991885 0.127135i \(-0.0405783\pi\)
\(252\) 0 0
\(253\) −37396.1 + 37396.1i −0.584233 + 0.584233i
\(254\) −15524.5 15524.5i −0.240630 0.240630i
\(255\) 0 0
\(256\) 4096.00 0.0625000
\(257\) 51851.4i 0.785044i −0.919743 0.392522i \(-0.871603\pi\)
0.919743 0.392522i \(-0.128397\pi\)
\(258\) 0 0
\(259\) 28747.6i 0.428550i
\(260\) 16581.6 51133.9i 0.245290 0.756419i
\(261\) 0 0
\(262\) −20935.5 + 20935.5i −0.304987 + 0.304987i
\(263\) −112584. −1.62767 −0.813833 0.581099i \(-0.802623\pi\)
−0.813833 + 0.581099i \(0.802623\pi\)
\(264\) 0 0
\(265\) −16160.2 + 16160.2i −0.230120 + 0.230120i
\(266\) 32533.4 32533.4i 0.459797 0.459797i
\(267\) 0 0
\(268\) −25247.8 25247.8i −0.351523 0.351523i
\(269\) −12549.4 −0.173428 −0.0867139 0.996233i \(-0.527637\pi\)
−0.0867139 + 0.996233i \(0.527637\pi\)
\(270\) 0 0
\(271\) 71858.5 + 71858.5i 0.978452 + 0.978452i 0.999773 0.0213209i \(-0.00678717\pi\)
−0.0213209 + 0.999773i \(0.506787\pi\)
\(272\) 18807.7i 0.254213i
\(273\) 0 0
\(274\) 40771.6 0.543072
\(275\) −120286. + 120286.i −1.59056 + 1.59056i
\(276\) 0 0
\(277\) 14392.6i 0.187577i −0.995592 0.0937884i \(-0.970102\pi\)
0.995592 0.0937884i \(-0.0298977\pi\)
\(278\) 59394.2 59394.2i 0.768519 0.768519i
\(279\) 0 0
\(280\) 44153.4 + 44153.4i 0.563181 + 0.563181i
\(281\) 80935.8 + 80935.8i 1.02501 + 1.02501i 0.999679 + 0.0253301i \(0.00806367\pi\)
0.0253301 + 0.999679i \(0.491936\pi\)
\(282\) 0 0
\(283\) 103285.i 1.28963i −0.764339 0.644814i \(-0.776935\pi\)
0.764339 0.644814i \(-0.223065\pi\)
\(284\) −12862.2 12862.2i −0.159470 0.159470i
\(285\) 0 0
\(286\) −38664.9 75775.5i −0.472699 0.926396i
\(287\) −78932.9 −0.958284
\(288\) 0 0
\(289\) −2838.60 −0.0339866
\(290\) 119291.i 1.41844i
\(291\) 0 0
\(292\) 180.897 180.897i 0.00212161 0.00212161i
\(293\) −112492. 112492.i −1.31035 1.31035i −0.921156 0.389193i \(-0.872754\pi\)
−0.389193 0.921156i \(-0.627246\pi\)
\(294\) 0 0
\(295\) −125823. −1.44582
\(296\) 9372.09i 0.106968i
\(297\) 0 0
\(298\) 88833.0i 1.00033i
\(299\) 44733.9 22825.8i 0.500373 0.255319i
\(300\) 0 0
\(301\) −49357.3 + 49357.3i −0.544776 + 0.544776i
\(302\) −109695. −1.20274
\(303\) 0 0
\(304\) 10606.3 10606.3i 0.114767 0.114767i
\(305\) −170622. + 170622.i −1.83415 + 1.83415i
\(306\) 0 0
\(307\) 65869.5 + 65869.5i 0.698888 + 0.698888i 0.964171 0.265283i \(-0.0854653\pi\)
−0.265283 + 0.964171i \(0.585465\pi\)
\(308\) 98817.6 1.04168
\(309\) 0 0
\(310\) 57573.9 + 57573.9i 0.599104 + 0.599104i
\(311\) 32921.8i 0.340379i −0.985411 0.170190i \(-0.945562\pi\)
0.985411 0.170190i \(-0.0544380\pi\)
\(312\) 0 0
\(313\) −67694.8 −0.690982 −0.345491 0.938422i \(-0.612288\pi\)
−0.345491 + 0.938422i \(0.612288\pi\)
\(314\) 6805.02 6805.02i 0.0690192 0.0690192i
\(315\) 0 0
\(316\) 52612.1i 0.526880i
\(317\) 87722.3 87722.3i 0.872954 0.872954i −0.119839 0.992793i \(-0.538238\pi\)
0.992793 + 0.119839i \(0.0382380\pi\)
\(318\) 0 0
\(319\) −133489. 133489.i −1.31179 1.31179i
\(320\) 14394.6 + 14394.6i 0.140572 + 0.140572i
\(321\) 0 0
\(322\) 58336.8i 0.562640i
\(323\) −48701.3 48701.3i −0.466805 0.466805i
\(324\) 0 0
\(325\) 143889. 73420.1i 1.36226 0.695101i
\(326\) 79329.2 0.746445
\(327\) 0 0
\(328\) −25733.2 −0.239191
\(329\) 130119.i 1.20213i
\(330\) 0 0
\(331\) −46314.1 + 46314.1i −0.422725 + 0.422725i −0.886141 0.463416i \(-0.846624\pi\)
0.463416 + 0.886141i \(0.346624\pi\)
\(332\) −45531.6 45531.6i −0.413082 0.413082i
\(333\) 0 0
\(334\) 26915.0 0.241269
\(335\) 177457.i 1.58126i
\(336\) 0 0
\(337\) 174379.i 1.53545i 0.640782 + 0.767723i \(0.278610\pi\)
−0.640782 + 0.767723i \(0.721390\pi\)
\(338\) 12729.8 + 79773.4i 0.111426 + 0.698272i
\(339\) 0 0
\(340\) 66095.9 66095.9i 0.571764 0.571764i
\(341\) 128853. 1.10812
\(342\) 0 0
\(343\) 748.709 748.709i 0.00636392 0.00636392i
\(344\) −16091.1 + 16091.1i −0.135978 + 0.135978i
\(345\) 0 0
\(346\) 64593.7 + 64593.7i 0.539558 + 0.539558i
\(347\) 55837.1 0.463729 0.231864 0.972748i \(-0.425517\pi\)
0.231864 + 0.972748i \(0.425517\pi\)
\(348\) 0 0
\(349\) −30432.8 30432.8i −0.249857 0.249857i 0.571055 0.820912i \(-0.306534\pi\)
−0.820912 + 0.571055i \(0.806534\pi\)
\(350\) 187643.i 1.53178i
\(351\) 0 0
\(352\) 32215.8 0.260006
\(353\) 159731. 159731.i 1.28186 1.28186i 0.342246 0.939610i \(-0.388812\pi\)
0.939610 0.342246i \(-0.111188\pi\)
\(354\) 0 0
\(355\) 90403.6i 0.717347i
\(356\) −33948.4 + 33948.4i −0.267867 + 0.267867i
\(357\) 0 0
\(358\) 82348.4 + 82348.4i 0.642524 + 0.642524i
\(359\) 86021.7 + 86021.7i 0.667451 + 0.667451i 0.957125 0.289674i \(-0.0935470\pi\)
−0.289674 + 0.957125i \(0.593547\pi\)
\(360\) 0 0
\(361\) 75392.2i 0.578512i
\(362\) 63307.1 + 63307.1i 0.483098 + 0.483098i
\(363\) 0 0
\(364\) −89261.6 28945.6i −0.673693 0.218464i
\(365\) 1271.45 0.00954364
\(366\) 0 0
\(367\) −77247.7 −0.573527 −0.286763 0.958001i \(-0.592579\pi\)
−0.286763 + 0.958001i \(0.592579\pi\)
\(368\) 19018.6i 0.140437i
\(369\) 0 0
\(370\) −32936.4 + 32936.4i −0.240587 + 0.240587i
\(371\) 28209.8 + 28209.8i 0.204952 + 0.204952i
\(372\) 0 0
\(373\) 213860. 1.53713 0.768566 0.639771i \(-0.220971\pi\)
0.768566 + 0.639771i \(0.220971\pi\)
\(374\) 147926.i 1.05755i
\(375\) 0 0
\(376\) 42420.6i 0.300055i
\(377\) 81478.9 + 159682.i 0.573274 + 1.12350i
\(378\) 0 0
\(379\) 181098. 181098.i 1.26077 1.26077i 0.310047 0.950721i \(-0.399655\pi\)
0.950721 0.310047i \(-0.100345\pi\)
\(380\) 74547.7 0.516258
\(381\) 0 0
\(382\) 30790.9 30790.9i 0.211007 0.211007i
\(383\) −202157. + 202157.i −1.37813 + 1.37813i −0.530366 + 0.847769i \(0.677946\pi\)
−0.847769 + 0.530366i \(0.822054\pi\)
\(384\) 0 0
\(385\) 347275. + 347275.i 2.34289 + 2.34289i
\(386\) −128996. −0.865765
\(387\) 0 0
\(388\) −28261.1 28261.1i −0.187727 0.187727i
\(389\) 16045.1i 0.106033i 0.998594 + 0.0530167i \(0.0168836\pi\)
−0.998594 + 0.0530167i \(0.983116\pi\)
\(390\) 0 0
\(391\) 87327.8 0.571215
\(392\) 38660.1 38660.1i 0.251588 0.251588i
\(393\) 0 0
\(394\) 113467.i 0.730930i
\(395\) 184895. 184895.i 1.18504 1.18504i
\(396\) 0 0
\(397\) 25762.9 + 25762.9i 0.163461 + 0.163461i 0.784098 0.620637i \(-0.213126\pi\)
−0.620637 + 0.784098i \(0.713126\pi\)
\(398\) 82617.3 + 82617.3i 0.521560 + 0.521560i
\(399\) 0 0
\(400\) 61174.0i 0.382338i
\(401\) −91271.3 91271.3i −0.567604 0.567604i 0.363853 0.931457i \(-0.381461\pi\)
−0.931457 + 0.363853i \(0.881461\pi\)
\(402\) 0 0
\(403\) −116393. 37743.6i −0.716664 0.232399i
\(404\) −144362. −0.884486
\(405\) 0 0
\(406\) −208239. −1.26331
\(407\) 73713.3i 0.444997i
\(408\) 0 0
\(409\) 4746.04 4746.04i 0.0283716 0.0283716i −0.692779 0.721150i \(-0.743614\pi\)
0.721150 + 0.692779i \(0.243614\pi\)
\(410\) −90434.2 90434.2i −0.537978 0.537978i
\(411\) 0 0
\(412\) 17024.7 0.100296
\(413\) 219642.i 1.28770i
\(414\) 0 0
\(415\) 320024.i 1.85817i
\(416\) −29100.5 9436.65i −0.168156 0.0545294i
\(417\) 0 0
\(418\) 83420.8 83420.8i 0.477443 0.477443i
\(419\) −82509.8 −0.469978 −0.234989 0.971998i \(-0.575505\pi\)
−0.234989 + 0.971998i \(0.575505\pi\)
\(420\) 0 0
\(421\) 159452. 159452.i 0.899636 0.899636i −0.0957676 0.995404i \(-0.530531\pi\)
0.995404 + 0.0957676i \(0.0305306\pi\)
\(422\) 107396. 107396.i 0.603062 0.603062i
\(423\) 0 0
\(424\) 9196.78 + 9196.78i 0.0511569 + 0.0511569i
\(425\) 280894. 1.55512
\(426\) 0 0
\(427\) 297845. + 297845.i 1.63356 + 1.63356i
\(428\) 70708.5i 0.385997i
\(429\) 0 0
\(430\) −113098. −0.611672
\(431\) 191869. 191869.i 1.03288 1.03288i 0.0334379 0.999441i \(-0.489354\pi\)
0.999441 0.0334379i \(-0.0106456\pi\)
\(432\) 0 0
\(433\) 167200.i 0.891783i 0.895087 + 0.445892i \(0.147113\pi\)
−0.895087 + 0.445892i \(0.852887\pi\)
\(434\) 100503. 100503.i 0.533582 0.533582i
\(435\) 0 0
\(436\) 20141.1 + 20141.1i 0.105952 + 0.105952i
\(437\) 49247.3 + 49247.3i 0.257881 + 0.257881i
\(438\) 0 0
\(439\) 223012.i 1.15717i −0.815621 0.578587i \(-0.803604\pi\)
0.815621 0.578587i \(-0.196396\pi\)
\(440\) 113216. + 113216.i 0.584795 + 0.584795i
\(441\) 0 0
\(442\) −43330.4 + 133621.i −0.221793 + 0.683960i
\(443\) 17437.9 0.0888559 0.0444280 0.999013i \(-0.485853\pi\)
0.0444280 + 0.999013i \(0.485853\pi\)
\(444\) 0 0
\(445\) −238610. −1.20495
\(446\) 159049.i 0.799578i
\(447\) 0 0
\(448\) 25127.8 25127.8i 0.125198 0.125198i
\(449\) 102553. + 102553.i 0.508694 + 0.508694i 0.914126 0.405431i \(-0.132879\pi\)
−0.405431 + 0.914126i \(0.632879\pi\)
\(450\) 0 0
\(451\) −202396. −0.995060
\(452\) 15465.5i 0.0756984i
\(453\) 0 0
\(454\) 55038.0i 0.267025i
\(455\) −211969. 415416.i −1.02388 2.00660i
\(456\) 0 0
\(457\) 212786. 212786.i 1.01885 1.01885i 0.0190328 0.999819i \(-0.493941\pi\)
0.999819 0.0190328i \(-0.00605869\pi\)
\(458\) −105044. −0.500774
\(459\) 0 0
\(460\) −66837.0 + 66837.0i −0.315865 + 0.315865i
\(461\) −163359. + 163359.i −0.768674 + 0.768674i −0.977873 0.209199i \(-0.932914\pi\)
0.209199 + 0.977873i \(0.432914\pi\)
\(462\) 0 0
\(463\) −12062.7 12062.7i −0.0562705 0.0562705i 0.678412 0.734682i \(-0.262669\pi\)
−0.734682 + 0.678412i \(0.762669\pi\)
\(464\) −67888.7 −0.315327
\(465\) 0 0
\(466\) 82767.6 + 82767.6i 0.381144 + 0.381144i
\(467\) 405742.i 1.86044i −0.367001 0.930221i \(-0.619615\pi\)
0.367001 0.930221i \(-0.380385\pi\)
\(468\) 0 0
\(469\) −309776. −1.40832
\(470\) −149079. + 149079.i −0.674871 + 0.674871i
\(471\) 0 0
\(472\) 71606.1i 0.321415i
\(473\) −126560. + 126560.i −0.565683 + 0.565683i
\(474\) 0 0
\(475\) 158406. + 158406.i 0.702077 + 0.702077i
\(476\) −115380. 115380.i −0.509233 0.509233i
\(477\) 0 0
\(478\) 6401.82i 0.0280187i
\(479\) −68415.5 68415.5i −0.298183 0.298183i 0.542119 0.840302i \(-0.317622\pi\)
−0.840302 + 0.542119i \(0.817622\pi\)
\(480\) 0 0
\(481\) 21592.1 66585.0i 0.0933263 0.287797i
\(482\) −132115. −0.568669
\(483\) 0 0
\(484\) 136256. 0.581654
\(485\) 198636.i 0.844453i
\(486\) 0 0
\(487\) −6839.49 + 6839.49i −0.0288380 + 0.0288380i −0.721379 0.692541i \(-0.756491\pi\)
0.692541 + 0.721379i \(0.256491\pi\)
\(488\) 97101.3 + 97101.3i 0.407742 + 0.407742i
\(489\) 0 0
\(490\) 271727. 1.13172
\(491\) 317438.i 1.31673i 0.752701 + 0.658363i \(0.228751\pi\)
−0.752701 + 0.658363i \(0.771249\pi\)
\(492\) 0 0
\(493\) 311726.i 1.28256i
\(494\) −99789.3 + 50918.1i −0.408912 + 0.208650i
\(495\) 0 0
\(496\) 32765.4 32765.4i 0.133184 0.133184i
\(497\) −157812. −0.638893
\(498\) 0 0
\(499\) −169318. + 169318.i −0.679989 + 0.679989i −0.959998 0.280008i \(-0.909663\pi\)
0.280008 + 0.959998i \(0.409663\pi\)
\(500\) −74412.0 + 74412.0i −0.297648 + 0.297648i
\(501\) 0 0
\(502\) −32038.6 32038.6i −0.127135 0.127135i
\(503\) −53395.1 −0.211040 −0.105520 0.994417i \(-0.533651\pi\)
−0.105520 + 0.994417i \(0.533651\pi\)
\(504\) 0 0
\(505\) −507333. 507333.i −1.98935 1.98935i
\(506\) 149585.i 0.584233i
\(507\) 0 0
\(508\) −62098.1 −0.240630
\(509\) 191977. 191977.i 0.740992 0.740992i −0.231777 0.972769i \(-0.574454\pi\)
0.972769 + 0.231777i \(0.0744539\pi\)
\(510\) 0 0
\(511\) 2219.50i 0.00849989i
\(512\) 8192.00 8192.00i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −103703. 103703.i −0.392522 0.392522i
\(515\) 59829.8 + 59829.8i 0.225581 + 0.225581i
\(516\) 0 0
\(517\) 333646.i 1.24826i
\(518\) 57495.2 + 57495.2i 0.214275 + 0.214275i
\(519\) 0 0
\(520\) −69104.6 135431.i −0.255565 0.500855i
\(521\) 96837.2 0.356752 0.178376 0.983962i \(-0.442916\pi\)
0.178376 + 0.983962i \(0.442916\pi\)
\(522\) 0 0
\(523\) 99463.6 0.363631 0.181815 0.983333i \(-0.441803\pi\)
0.181815 + 0.983333i \(0.441803\pi\)
\(524\) 83742.1i 0.304987i
\(525\) 0 0
\(526\) −225168. + 225168.i −0.813833 + 0.813833i
\(527\) −150450. 150450.i −0.541714 0.541714i
\(528\) 0 0
\(529\) 191534. 0.684439
\(530\) 64640.6i 0.230120i
\(531\) 0 0
\(532\) 130134.i 0.459797i
\(533\) 182824. + 59285.8i 0.643544 + 0.208687i
\(534\) 0 0
\(535\) 248491. 248491.i 0.868168 0.868168i
\(536\) −100991. −0.351523
\(537\) 0 0
\(538\) −25098.8 + 25098.8i −0.0867139 + 0.0867139i
\(539\) 304069. 304069.i 1.04663 1.04663i
\(540\) 0 0
\(541\) −78592.6 78592.6i −0.268526 0.268526i 0.559980 0.828506i \(-0.310809\pi\)
−0.828506 + 0.559980i \(0.810809\pi\)
\(542\) 287434. 0.978452
\(543\) 0 0
\(544\) −37615.4 37615.4i −0.127106 0.127106i
\(545\) 141564.i 0.476607i
\(546\) 0 0
\(547\) −557039. −1.86171 −0.930853 0.365394i \(-0.880934\pi\)
−0.930853 + 0.365394i \(0.880934\pi\)
\(548\) 81543.3 81543.3i 0.271536 0.271536i
\(549\) 0 0
\(550\) 481146.i 1.59056i
\(551\) −175793. + 175793.i −0.579027 + 0.579027i
\(552\) 0 0
\(553\) −322761. 322761.i −1.05543 1.05543i
\(554\) −28785.2 28785.2i −0.0937884 0.0937884i
\(555\) 0 0
\(556\) 237577.i 0.768519i
\(557\) 276263. + 276263.i 0.890455 + 0.890455i 0.994566 0.104111i \(-0.0331997\pi\)
−0.104111 + 0.994566i \(0.533200\pi\)
\(558\) 0 0
\(559\) 151393. 77249.2i 0.484487 0.247212i
\(560\) 176614. 0.563181
\(561\) 0 0
\(562\) 323743. 1.02501
\(563\) 147215.i 0.464446i −0.972663 0.232223i \(-0.925400\pi\)
0.972663 0.232223i \(-0.0746000\pi\)
\(564\) 0 0
\(565\) −54350.5 + 54350.5i −0.170258 + 0.170258i
\(566\) −206570. 206570.i −0.644814 0.644814i
\(567\) 0 0
\(568\) −51448.9 −0.159470
\(569\) 537852.i 1.66126i −0.556824 0.830631i \(-0.687980\pi\)
0.556824 0.830631i \(-0.312020\pi\)
\(570\) 0 0
\(571\) 484104.i 1.48480i 0.669959 + 0.742398i \(0.266312\pi\)
−0.669959 + 0.742398i \(0.733688\pi\)
\(572\) −228881. 74221.1i −0.699548 0.226848i
\(573\) 0 0
\(574\) −157866. + 157866.i −0.479142 + 0.479142i
\(575\) −284043. −0.859110
\(576\) 0 0
\(577\) 2587.79 2587.79i 0.00777280 0.00777280i −0.703210 0.710982i \(-0.748250\pi\)
0.710982 + 0.703210i \(0.248250\pi\)
\(578\) −5677.20 + 5677.20i −0.0169933 + 0.0169933i
\(579\) 0 0
\(580\) −238582. 238582.i −0.709220 0.709220i
\(581\) −558647. −1.65495
\(582\) 0 0
\(583\) 72334.5 + 72334.5i 0.212818 + 0.212818i
\(584\) 723.586i 0.00212161i
\(585\) 0 0
\(586\) −449969. −1.31035
\(587\) −164714. + 164714.i −0.478029 + 0.478029i −0.904501 0.426472i \(-0.859756\pi\)
0.426472 + 0.904501i \(0.359756\pi\)
\(588\) 0 0
\(589\) 169688.i 0.489125i
\(590\) −251646. + 251646.i −0.722912 + 0.722912i
\(591\) 0 0
\(592\) 18744.2 + 18744.2i 0.0534839 + 0.0534839i
\(593\) −155468. 155468.i −0.442110 0.442110i 0.450611 0.892721i \(-0.351206\pi\)
−0.892721 + 0.450611i \(0.851206\pi\)
\(594\) 0 0
\(595\) 810960.i 2.29069i
\(596\) −177666. 177666.i −0.500163 0.500163i
\(597\) 0 0
\(598\) 43816.2 135119.i 0.122527 0.377846i
\(599\) −254077. −0.708127 −0.354063 0.935221i \(-0.615200\pi\)
−0.354063 + 0.935221i \(0.615200\pi\)
\(600\) 0 0
\(601\) 233247. 0.645755 0.322877 0.946441i \(-0.395350\pi\)
0.322877 + 0.946441i \(0.395350\pi\)
\(602\) 197429.i 0.544776i
\(603\) 0 0
\(604\) −219390. + 219390.i −0.601372 + 0.601372i
\(605\) 478845. + 478845.i 1.30823 + 1.30823i
\(606\) 0 0
\(607\) −406297. −1.10272 −0.551361 0.834267i \(-0.685891\pi\)
−0.551361 + 0.834267i \(0.685891\pi\)
\(608\) 42425.3i 0.114767i
\(609\) 0 0
\(610\) 682487.i 1.83415i
\(611\) 97731.5 301382.i 0.261790 0.807299i
\(612\) 0 0
\(613\) 414689. 414689.i 1.10357 1.10357i 0.109599 0.993976i \(-0.465043\pi\)
0.993976 0.109599i \(-0.0349566\pi\)
\(614\) 263478. 0.698888
\(615\) 0 0
\(616\) 197635. 197635.i 0.520838 0.520838i
\(617\) 22163.9 22163.9i 0.0582204 0.0582204i −0.677397 0.735618i \(-0.736892\pi\)
0.735618 + 0.677397i \(0.236892\pi\)
\(618\) 0 0
\(619\) 197408. + 197408.i 0.515209 + 0.515209i 0.916118 0.400909i \(-0.131306\pi\)
−0.400909 + 0.916118i \(0.631306\pi\)
\(620\) 230295. 0.599104
\(621\) 0 0
\(622\) −65843.7 65843.7i −0.170190 0.170190i
\(623\) 416529.i 1.07317i
\(624\) 0 0
\(625\) 74389.6 0.190437
\(626\) −135390. + 135390.i −0.345491 + 0.345491i
\(627\) 0 0
\(628\) 27220.1i 0.0690192i
\(629\) 86068.1 86068.1i 0.217541 0.217541i
\(630\) 0 0
\(631\) 462597. + 462597.i 1.16183 + 1.16183i 0.984074 + 0.177761i \(0.0568854\pi\)
0.177761 + 0.984074i \(0.443115\pi\)
\(632\) −105224. 105224.i −0.263440 0.263440i
\(633\) 0 0
\(634\) 350889.i 0.872954i
\(635\) −218232. 218232.i −0.541215 0.541215i
\(636\) 0 0
\(637\) −363732. + 185597.i −0.896403 + 0.457395i
\(638\) −533958. −1.31179
\(639\) 0 0
\(640\) 57578.4 0.140572
\(641\) 72292.1i 0.175944i −0.996123 0.0879721i \(-0.971961\pi\)
0.996123 0.0879721i \(-0.0280386\pi\)
\(642\) 0 0
\(643\) −445366. + 445366.i −1.07720 + 1.07720i −0.0804383 + 0.996760i \(0.525632\pi\)
−0.996760 + 0.0804383i \(0.974368\pi\)
\(644\) 116674. + 116674.i 0.281320 + 0.281320i
\(645\) 0 0
\(646\) −194805. −0.466805
\(647\) 535918.i 1.28023i 0.768277 + 0.640117i \(0.221114\pi\)
−0.768277 + 0.640117i \(0.778886\pi\)
\(648\) 0 0
\(649\) 563196.i 1.33712i
\(650\) 140937. 434617.i 0.333578 1.02868i
\(651\) 0 0
\(652\) 158658. 158658.i 0.373222 0.373222i
\(653\) 59790.9 0.140220 0.0701098 0.997539i \(-0.477665\pi\)
0.0701098 + 0.997539i \(0.477665\pi\)
\(654\) 0 0
\(655\) −294295. + 294295.i −0.685963 + 0.685963i
\(656\) −51466.3 + 51466.3i −0.119596 + 0.119596i
\(657\) 0 0
\(658\) 260239. + 260239.i 0.601063 + 0.601063i
\(659\) −254900. −0.586948 −0.293474 0.955967i \(-0.594811\pi\)
−0.293474 + 0.955967i \(0.594811\pi\)
\(660\) 0 0
\(661\) 90948.6 + 90948.6i 0.208158 + 0.208158i 0.803484 0.595326i \(-0.202977\pi\)
−0.595326 + 0.803484i \(0.702977\pi\)
\(662\) 185257.i 0.422725i
\(663\) 0 0
\(664\) −182126. −0.413082
\(665\) 457330. 457330.i 1.03416 1.03416i
\(666\) 0 0
\(667\) 315221.i 0.708538i
\(668\) 53830.0 53830.0i 0.120634 0.120634i
\(669\) 0 0
\(670\) −354914. 354914.i −0.790630 0.790630i
\(671\) 763721. + 763721.i 1.69625 + 1.69625i
\(672\) 0 0
\(673\) 2365.55i 0.00522279i −0.999997 0.00261140i \(-0.999169\pi\)
0.999997 0.00261140i \(-0.000831234\pi\)
\(674\) 348758. + 348758.i 0.767723 + 0.767723i
\(675\) 0 0
\(676\) 185006. + 134087.i 0.404849 + 0.293423i
\(677\) 229195. 0.500067 0.250034 0.968237i \(-0.419558\pi\)
0.250034 + 0.968237i \(0.419558\pi\)
\(678\) 0 0
\(679\) −346748. −0.752098
\(680\) 264384.i 0.571764i
\(681\) 0 0
\(682\) 257706. 257706.i 0.554060 0.554060i
\(683\) 147044. + 147044.i 0.315214 + 0.315214i 0.846926 0.531711i \(-0.178451\pi\)
−0.531711 + 0.846926i \(0.678451\pi\)
\(684\) 0 0
\(685\) 573136. 1.22145
\(686\) 2994.83i 0.00636392i
\(687\) 0 0
\(688\) 64364.5i 0.135978i
\(689\) −44151.3 86527.7i −0.0930048 0.182271i
\(690\) 0 0
\(691\) −238903. + 238903.i −0.500341 + 0.500341i −0.911544 0.411203i \(-0.865109\pi\)
0.411203 + 0.911544i \(0.365109\pi\)
\(692\) 258375. 0.539558
\(693\) 0 0
\(694\) 111674. 111674.i 0.231864 0.231864i
\(695\) 834917. 834917.i 1.72852 1.72852i
\(696\) 0 0
\(697\) 236319. + 236319.i 0.486444 + 0.486444i
\(698\) −121731. −0.249857
\(699\) 0 0
\(700\) 375286. + 375286.i 0.765889 + 0.765889i
\(701\) 927743.i 1.88796i 0.330009 + 0.943978i \(0.392948\pi\)
−0.330009 + 0.943978i \(0.607052\pi\)
\(702\) 0 0
\(703\) 97073.7 0.196422
\(704\) 64431.7 64431.7i 0.130003 0.130003i
\(705\) 0 0
\(706\) 638923.i 1.28186i
\(707\) −885622. + 885622.i −1.77178 + 1.77178i
\(708\) 0 0
\(709\) 655343. + 655343.i 1.30369 + 1.30369i 0.925882 + 0.377813i \(0.123324\pi\)
0.377813 + 0.925882i \(0.376676\pi\)
\(710\) −180807. 180807.i −0.358673 0.358673i
\(711\) 0 0
\(712\) 135794.i 0.267867i
\(713\) 152136. + 152136.i 0.299264 + 0.299264i
\(714\) 0 0
\(715\) −543521. 1.06519e6i −1.06317 2.08361i
\(716\) 329394. 0.642524
\(717\) 0 0
\(718\) 344087. 0.667451
\(719\) 215165.i 0.416211i −0.978106 0.208106i \(-0.933270\pi\)
0.978106 0.208106i \(-0.0667298\pi\)
\(720\) 0 0
\(721\) 104441. 104441.i 0.200910 0.200910i
\(722\) 150784. + 150784.i 0.289256 + 0.289256i
\(723\) 0 0
\(724\) 253228. 0.483098
\(725\) 1.01392e6i 1.92898i
\(726\) 0 0
\(727\) 803738.i 1.52071i −0.649510 0.760353i \(-0.725026\pi\)
0.649510 0.760353i \(-0.274974\pi\)
\(728\) −236414. + 120632.i −0.446078 + 0.227614i
\(729\) 0 0
\(730\) 2542.90 2542.90i 0.00477182 0.00477182i
\(731\) 295544. 0.553079
\(732\) 0 0
\(733\) 200160. 200160.i 0.372537 0.372537i −0.495864 0.868400i \(-0.665148\pi\)
0.868400 + 0.495864i \(0.165148\pi\)
\(734\) −154495. + 154495.i −0.286763 + 0.286763i
\(735\) 0 0
\(736\) 38037.1 + 38037.1i 0.0702185 + 0.0702185i
\(737\) −794315. −1.46237
\(738\) 0 0
\(739\) 424211. + 424211.i 0.776771 + 0.776771i 0.979280 0.202509i \(-0.0649096\pi\)
−0.202509 + 0.979280i \(0.564910\pi\)
\(740\) 131746.i 0.240587i
\(741\) 0 0
\(742\) 112839. 0.204952
\(743\) 130672. 130672.i 0.236704 0.236704i −0.578780 0.815484i \(-0.696471\pi\)
0.815484 + 0.578780i \(0.196471\pi\)
\(744\) 0 0
\(745\) 1.24875e6i 2.24989i
\(746\) 427719. 427719.i 0.768566 0.768566i
\(747\) 0 0
\(748\) −295852. 295852.i −0.528776 0.528776i
\(749\) −433777. 433777.i −0.773220 0.773220i
\(750\) 0 0
\(751\) 742621.i 1.31670i 0.752711 + 0.658351i \(0.228746\pi\)
−0.752711 + 0.658351i \(0.771254\pi\)
\(752\) 84841.2 + 84841.2i 0.150028 + 0.150028i
\(753\) 0 0
\(754\) 482322. + 156407.i 0.848388 + 0.275114i
\(755\) −1.54201e6 −2.70516
\(756\) 0 0
\(757\) −382172. −0.666910 −0.333455 0.942766i \(-0.608215\pi\)
−0.333455 + 0.942766i \(0.608215\pi\)
\(758\) 724392.i 1.26077i
\(759\) 0 0
\(760\) 149095. 149095.i 0.258129 0.258129i
\(761\) −335972. 335972.i −0.580141 0.580141i 0.354801 0.934942i \(-0.384549\pi\)
−0.934942 + 0.354801i \(0.884549\pi\)
\(762\) 0 0
\(763\) 247121. 0.424482
\(764\) 123164.i 0.211007i
\(765\) 0 0
\(766\) 808629.i 1.37813i
\(767\) 164971. 508733.i 0.280425 0.864767i
\(768\) 0 0
\(769\) −90354.5 + 90354.5i −0.152791 + 0.152791i −0.779363 0.626572i \(-0.784457\pi\)
0.626572 + 0.779363i \(0.284457\pi\)
\(770\) 1.38910e6 2.34289
\(771\) 0 0
\(772\) −257991. + 257991.i −0.432883 + 0.432883i
\(773\) −511378. + 511378.i −0.855821 + 0.855821i −0.990843 0.135021i \(-0.956890\pi\)
0.135021 + 0.990843i \(0.456890\pi\)
\(774\) 0 0
\(775\) 489354. + 489354.i 0.814741 + 0.814741i
\(776\) −113044. −0.187727
\(777\) 0 0
\(778\) 32090.1 + 32090.1i 0.0530167 + 0.0530167i
\(779\) 266537.i 0.439221i
\(780\) 0 0
\(781\) −404656. −0.663412
\(782\) 174656. 174656.i 0.285607 0.285607i
\(783\) 0 0
\(784\) 154640.i 0.251588i
\(785\) 95659.7 95659.7i 0.155235 0.155235i
\(786\) 0 0
\(787\) −305280. 305280.i −0.492888 0.492888i 0.416327 0.909215i \(-0.363317\pi\)
−0.909215 + 0.416327i \(0.863317\pi\)
\(788\) −226933. 226933.i −0.365465 0.365465i
\(789\) 0 0
\(790\) 739580.i 1.18504i
\(791\) 94876.5 + 94876.5i 0.151637 + 0.151637i
\(792\) 0 0
\(793\) −466158. 913575.i −0.741287 1.45277i
\(794\) 103052. 0.163461
\(795\) 0 0
\(796\) 330469. 0.521560
\(797\) 304571.i 0.479481i 0.970837 + 0.239740i \(0.0770623\pi\)
−0.970837 + 0.239740i \(0.922938\pi\)
\(798\) 0 0
\(799\) 389567. 389567.i 0.610223 0.610223i
\(800\) 122348. + 122348.i 0.191169 + 0.191169i
\(801\) 0 0
\(802\) −365085. −0.567604
\(803\) 5691.15i 0.00882610i
\(804\) 0 0
\(805\) 820053.i 1.26546i
\(806\) −308273. + 157298.i −0.474531 + 0.242133i
\(807\) 0 0
\(808\) −288724. + 288724.i −0.442243 + 0.442243i
\(809\) 685883. 1.04798 0.523990 0.851725i \(-0.324443\pi\)
0.523990 + 0.851725i \(0.324443\pi\)
\(810\) 0 0
\(811\) −815652. + 815652.i −1.24012 + 1.24012i −0.280166 + 0.959951i \(0.590390\pi\)
−0.959951 + 0.280166i \(0.909610\pi\)
\(812\) −416478. + 416478.i −0.631656 + 0.631656i
\(813\) 0 0
\(814\) 147427. + 147427.i 0.222499 + 0.222499i
\(815\) 1.11515e6 1.67887
\(816\) 0 0
\(817\) 166668. + 166668.i 0.249693 + 0.249693i
\(818\) 18984.1i 0.0283716i
\(819\) 0 0
\(820\) −361737. −0.537978
\(821\) −12855.5 + 12855.5i −0.0190723 + 0.0190723i −0.716579 0.697506i \(-0.754293\pi\)
0.697506 + 0.716579i \(0.254293\pi\)
\(822\) 0 0
\(823\) 94810.5i 0.139977i 0.997548 + 0.0699885i \(0.0222963\pi\)
−0.997548 + 0.0699885i \(0.977704\pi\)
\(824\) 34049.3 34049.3i 0.0501480 0.0501480i
\(825\) 0 0
\(826\) 439283. + 439283.i 0.643850 + 0.643850i
\(827\) −113400. 113400.i −0.165807 0.165807i 0.619327 0.785134i \(-0.287406\pi\)
−0.785134 + 0.619327i \(0.787406\pi\)
\(828\) 0 0
\(829\) 15161.7i 0.0220616i 0.999939 + 0.0110308i \(0.00351129\pi\)
−0.999939 + 0.0110308i \(0.996489\pi\)
\(830\) −640048. 640048.i −0.929086 0.929086i
\(831\) 0 0
\(832\) −77074.2 + 39327.6i −0.111343 + 0.0568134i
\(833\) −710065. −1.02331
\(834\) 0 0
\(835\) 378350. 0.542651
\(836\) 333683.i 0.477443i
\(837\) 0 0
\(838\) −165020. + 165020.i −0.234989 + 0.234989i
\(839\) 398624. + 398624.i 0.566290 + 0.566290i 0.931087 0.364797i \(-0.118862\pi\)
−0.364797 + 0.931087i \(0.618862\pi\)
\(840\) 0 0
\(841\) 417933. 0.590901
\(842\) 637810.i 0.899636i
\(843\) 0 0
\(844\) 429582.i 0.603062i
\(845\) 178946. + 1.12139e6i 0.250615 + 1.57052i
\(846\) 0 0
\(847\) 835892. 835892.i 1.16515 1.16515i
\(848\) 36787.1 0.0511569
\(849\) 0 0
\(850\) 561788. 561788.i 0.777561 0.777561i
\(851\) −87033.0 + 87033.0i −0.120178 + 0.120178i
\(852\) 0 0
\(853\) −160276. 160276.i −0.220277 0.220277i 0.588338 0.808615i \(-0.299782\pi\)
−0.808615 + 0.588338i \(0.799782\pi\)
\(854\) 1.19138e6 1.63356
\(855\) 0 0
\(856\) −141417. 141417.i −0.192999 0.192999i
\(857\) 65742.3i 0.0895124i −0.998998 0.0447562i \(-0.985749\pi\)
0.998998 0.0447562i \(-0.0142511\pi\)
\(858\) 0 0
\(859\) −214439. −0.290614 −0.145307 0.989387i \(-0.546417\pi\)
−0.145307 + 0.989387i \(0.546417\pi\)
\(860\) −226196. + 226196.i −0.305836 + 0.305836i
\(861\) 0 0
\(862\) 767474.i 1.03288i
\(863\) 735390. 735390.i 0.987407 0.987407i −0.0125152 0.999922i \(-0.503984\pi\)
0.999922 + 0.0125152i \(0.00398381\pi\)
\(864\) 0 0
\(865\) 908009. + 908009.i 1.21355 + 1.21355i
\(866\) 334399. + 334399.i 0.445892 + 0.445892i
\(867\) 0 0
\(868\) 402014.i 0.533582i
\(869\) −827609. 827609.i −1.09594 1.09594i
\(870\) 0 0
\(871\) 717502. + 232670.i 0.945773 + 0.306694i
\(872\) 80564.5 0.105952
\(873\) 0 0
\(874\) 196989. 0.257881
\(875\) 912994.i 1.19248i
\(876\) 0 0
\(877\) −704397. + 704397.i −0.915838 + 0.915838i −0.996723 0.0808858i \(-0.974225\pi\)
0.0808858 + 0.996723i \(0.474225\pi\)
\(878\) −446023. 446023.i −0.578587 0.578587i
\(879\) 0 0
\(880\) 452865. 0.584795
\(881\) 547899.i 0.705909i 0.935641 + 0.352954i \(0.114823\pi\)
−0.935641 + 0.352954i \(0.885177\pi\)
\(882\) 0 0
\(883\) 949898.i 1.21830i −0.793054 0.609152i \(-0.791510\pi\)
0.793054 0.609152i \(-0.208490\pi\)
\(884\) 180581. + 353903.i 0.231083 + 0.452877i
\(885\) 0 0
\(886\) 34875.8 34875.8i 0.0444280 0.0444280i
\(887\) −587902. −0.747236 −0.373618 0.927583i \(-0.621883\pi\)
−0.373618 + 0.927583i \(0.621883\pi\)
\(888\) 0 0
\(889\) −380954. + 380954.i −0.482025 + 0.482025i
\(890\) −477221. + 477221.i −0.602476 + 0.602476i
\(891\) 0 0
\(892\) 318098. + 318098.i 0.399789 + 0.399789i
\(893\) 439382. 0.550984
\(894\) 0 0
\(895\) 1.15759e6 + 1.15759e6i 1.44514 + 1.44514i
\(896\) 100511.i 0.125198i
\(897\) 0 0
\(898\) 410213. 0.508694
\(899\) −543067. + 543067.i −0.671945 + 0.671945i
\(900\) 0 0
\(901\) 168916.i 0.208076i
\(902\) −404793. + 404793.i −0.497530 + 0.497530i
\(903\) 0 0
\(904\) 30931.0 + 30931.0i 0.0378492 + 0.0378492i
\(905\) 889922. + 889922.i 1.08656 + 1.08656i
\(906\) 0 0
\(907\) 490495.i 0.596239i 0.954529 + 0.298119i \(0.0963594\pi\)
−0.954529 + 0.298119i \(0.903641\pi\)
\(908\) −110076. 110076.i −0.133512 0.133512i
\(909\) 0 0
\(910\) −1.25477e6 406895.i −1.51524 0.491359i
\(911\) 265333. 0.319708 0.159854 0.987141i \(-0.448898\pi\)
0.159854 + 0.987141i \(0.448898\pi\)
\(912\) 0 0
\(913\) −1.43246e6 −1.71846
\(914\) 851145.i 1.01885i
\(915\) 0 0
\(916\) −210089. + 210089.i −0.250387 + 0.250387i
\(917\) 513734. + 513734.i 0.610942 + 0.610942i
\(918\) 0 0
\(919\) 1.16310e6 1.37717 0.688584 0.725156i \(-0.258232\pi\)
0.688584 + 0.725156i \(0.258232\pi\)
\(920\) 267348.i 0.315865i
\(921\) 0 0
\(922\) 653437.i 0.768674i
\(923\) 365524. + 118532.i 0.429055 + 0.139133i
\(924\) 0 0
\(925\) −279946. + 279946.i −0.327183 + 0.327183i
\(926\) −48250.6 −0.0562705
\(927\) 0 0
\(928\) −135777. + 135777.i −0.157664 + 0.157664i
\(929\) −452245. + 452245.i −0.524013 + 0.524013i −0.918781 0.394768i \(-0.870825\pi\)
0.394768 + 0.918781i \(0.370825\pi\)
\(930\) 0 0
\(931\) −400431. 400431.i −0.461986 0.461986i
\(932\) 331070. 0.381144
\(933\) 0 0
\(934\) −811484. 811484.i −0.930221 0.930221i
\(935\) 2.07943e6i 2.37860i
\(936\) 0 0
\(937\) −748585. −0.852633 −0.426316 0.904574i \(-0.640189\pi\)
−0.426316 + 0.904574i \(0.640189\pi\)
\(938\) −619553. + 619553.i −0.704162 + 0.704162i
\(939\) 0 0
\(940\) 596316.i 0.674871i
\(941\) −39986.3 + 39986.3i −0.0451577 + 0.0451577i −0.729325 0.684167i \(-0.760166\pi\)
0.684167 + 0.729325i \(0.260166\pi\)
\(942\) 0 0
\(943\) −238968. 238968.i −0.268731 0.268731i
\(944\) 143212. + 143212.i 0.160707 + 0.160707i
\(945\) 0 0
\(946\) 506239.i 0.565683i
\(947\) 811733. + 811733.i 0.905135 + 0.905135i 0.995875 0.0907396i \(-0.0289231\pi\)
−0.0907396 + 0.995875i \(0.528923\pi\)
\(948\) 0 0
\(949\) −1667.05 + 5140.79i −0.00185104 + 0.00570818i
\(950\) 633624. 0.702077
\(951\) 0 0
\(952\) −461520. −0.509233
\(953\) 783349.i 0.862521i −0.902227 0.431260i \(-0.858069\pi\)
0.902227 0.431260i \(-0.141931\pi\)
\(954\) 0 0
\(955\) 432835. 432835.i 0.474587 0.474587i
\(956\) 12803.6 + 12803.6i 0.0140093 + 0.0140093i
\(957\) 0 0
\(958\) −273662. −0.298183
\(959\) 1.00049e6i 1.08787i
\(960\) 0 0
\(961\) 399315.i 0.432384i
\(962\) −89985.9 176354.i −0.0972354 0.190562i
\(963\) 0 0
\(964\) −264231. + 264231.i −0.284335 + 0.284335i
\(965\) −1.81332e6 −1.94724
\(966\) 0 0
\(967\) 374447. 374447.i 0.400440 0.400440i −0.477948 0.878388i \(-0.658619\pi\)
0.878388 + 0.477948i \(0.158619\pi\)
\(968\) 272512. 272512.i 0.290827 0.290827i
\(969\) 0 0
\(970\) −397273. 397273.i −0.422226 0.422226i
\(971\) −93108.8 −0.0987535 −0.0493767 0.998780i \(-0.515724\pi\)
−0.0493767 + 0.998780i \(0.515724\pi\)
\(972\) 0 0
\(973\) −1.45747e6 1.45747e6i −1.53948 1.53948i
\(974\) 27358.0i 0.0288380i
\(975\) 0 0
\(976\) 388405. 0.407742
\(977\) 360353. 360353.i 0.377519 0.377519i −0.492687 0.870206i \(-0.663985\pi\)
0.870206 + 0.492687i \(0.163985\pi\)
\(978\) 0 0
\(979\) 1.06804e6i 1.11436i
\(980\) 543453. 543453.i 0.565862 0.565862i
\(981\) 0 0
\(982\) 634875. + 634875.i 0.658363 + 0.658363i
\(983\) −525101. 525101.i −0.543420 0.543420i 0.381110 0.924530i \(-0.375542\pi\)
−0.924530 + 0.381110i \(0.875542\pi\)
\(984\) 0 0
\(985\) 1.59503e6i 1.64398i
\(986\) 623452. + 623452.i 0.641282 + 0.641282i
\(987\) 0 0
\(988\) −97742.3 + 301415.i −0.100131 + 0.308781i
\(989\) −298857. −0.305542
\(990\) 0 0
\(991\) −1.55237e6 −1.58069 −0.790347 0.612660i \(-0.790100\pi\)
−0.790347 + 0.612660i \(0.790100\pi\)
\(992\) 131062.i 0.133184i
\(993\) 0 0
\(994\) −315625. + 315625.i −0.319447 + 0.319447i
\(995\) 1.16137e6 + 1.16137e6i 1.17307 + 1.17307i
\(996\) 0 0
\(997\) −1.39961e6 −1.40805 −0.704024 0.710176i \(-0.748615\pi\)
−0.704024 + 0.710176i \(0.748615\pi\)
\(998\) 677272.i 0.679989i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.5.i.b.109.3 6
3.2 odd 2 26.5.d.a.5.2 6
12.11 even 2 208.5.t.b.161.2 6
13.8 odd 4 inner 234.5.i.b.73.3 6
39.5 even 4 338.5.d.d.99.2 6
39.8 even 4 26.5.d.a.21.2 yes 6
39.38 odd 2 338.5.d.d.239.2 6
156.47 odd 4 208.5.t.b.177.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.5.d.a.5.2 6 3.2 odd 2
26.5.d.a.21.2 yes 6 39.8 even 4
208.5.t.b.161.2 6 12.11 even 2
208.5.t.b.177.2 6 156.47 odd 4
234.5.i.b.73.3 6 13.8 odd 4 inner
234.5.i.b.109.3 6 1.1 even 1 trivial
338.5.d.d.99.2 6 39.5 even 4
338.5.d.d.239.2 6 39.38 odd 2