Properties

Label 234.4.a.m
Level $234$
Weight $4$
Character orbit 234.a
Self dual yes
Analytic conductor $13.806$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,4,Mod(1,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,0,8,8,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8064469413\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{22}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{22}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + (\beta + 4) q^{5} + (\beta + 6) q^{7} + 8 q^{8} + (2 \beta + 8) q^{10} + ( - 5 \beta + 22) q^{11} + 13 q^{13} + (2 \beta + 12) q^{14} + 16 q^{16} + (4 \beta + 28) q^{17} + ( - 11 \beta + 30) q^{19}+ \cdots + (24 \beta - 438) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 8 q^{4} + 8 q^{5} + 12 q^{7} + 16 q^{8} + 16 q^{10} + 44 q^{11} + 26 q^{13} + 24 q^{14} + 32 q^{16} + 56 q^{17} + 60 q^{19} + 32 q^{20} + 88 q^{22} + 168 q^{23} - 42 q^{25} + 52 q^{26} + 48 q^{28}+ \cdots - 876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.69042
4.69042
2.00000 0 4.00000 −5.38083 0 −3.38083 8.00000 0 −10.7617
1.2 2.00000 0 4.00000 13.3808 0 15.3808 8.00000 0 26.7617
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 234.4.a.m yes 2
3.b odd 2 1 234.4.a.l 2
4.b odd 2 1 1872.4.a.bg 2
12.b even 2 1 1872.4.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
234.4.a.l 2 3.b odd 2 1
234.4.a.m yes 2 1.a even 1 1 trivial
1872.4.a.w 2 12.b even 2 1
1872.4.a.bg 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(234))\):

\( T_{5}^{2} - 8T_{5} - 72 \) Copy content Toggle raw display
\( T_{7}^{2} - 12T_{7} - 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 8T - 72 \) Copy content Toggle raw display
$7$ \( T^{2} - 12T - 52 \) Copy content Toggle raw display
$11$ \( T^{2} - 44T - 1716 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 56T - 624 \) Copy content Toggle raw display
$19$ \( T^{2} - 60T - 9748 \) Copy content Toggle raw display
$23$ \( T^{2} - 168T - 5616 \) Copy content Toggle raw display
$29$ \( T^{2} - 216T - 1008 \) Copy content Toggle raw display
$31$ \( T^{2} + 116T - 35444 \) Copy content Toggle raw display
$37$ \( T^{2} + 108T - 87196 \) Copy content Toggle raw display
$41$ \( T^{2} - 464T + 49512 \) Copy content Toggle raw display
$43$ \( T^{2} + 432T + 4064 \) Copy content Toggle raw display
$47$ \( T^{2} - 308T + 19404 \) Copy content Toggle raw display
$53$ \( T^{2} - 416T + 42912 \) Copy content Toggle raw display
$59$ \( T^{2} - 148T - 157236 \) Copy content Toggle raw display
$61$ \( T^{2} + 852T + 11108 \) Copy content Toggle raw display
$67$ \( T^{2} + 380T - 2708 \) Copy content Toggle raw display
$71$ \( T^{2} + 860T + 129900 \) Copy content Toggle raw display
$73$ \( T^{2} + 404T - 161948 \) Copy content Toggle raw display
$79$ \( T^{2} + 728T - 678512 \) Copy content Toggle raw display
$83$ \( T^{2} + 1092 T - 196884 \) Copy content Toggle raw display
$89$ \( T^{2} + 1792 T + 787944 \) Copy content Toggle raw display
$97$ \( T^{2} - 684T - 391324 \) Copy content Toggle raw display
show more
show less