Defining parameters
Level: | \( N \) | \(=\) | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 234.g (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(84\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 92 | 28 | 64 |
Cusp forms | 76 | 28 | 48 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
234.2.g.a | $2$ | $1.868$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(-3\) | \(-1\) | \(2\) | \(q-\zeta_{6}q^{2}+(-2+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
234.2.g.b | $2$ | $1.868$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(3\) | \(3\) | \(-2\) | \(q+\zeta_{6}q^{2}+(2-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
234.2.g.c | $12$ | $1.868$ | 12.0.\(\cdots\).1 | None | \(-6\) | \(3\) | \(1\) | \(10\) | \(q+\beta _{1}q^{2}-\beta _{10}q^{3}+(-1-\beta _{1})q^{4}+\cdots\) |
234.2.g.d | $12$ | $1.868$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(6\) | \(-3\) | \(-3\) | \(-2\) | \(q+\beta _{8}q^{2}+\beta _{6}q^{3}+(-1+\beta _{8})q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)