Properties

Label 234.2.g
Level $234$
Weight $2$
Character orbit 234.g
Rep. character $\chi_{234}(61,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $28$
Newform subspaces $4$
Sturm bound $84$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(84\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(234, [\chi])\).

Total New Old
Modular forms 92 28 64
Cusp forms 76 28 48
Eisenstein series 16 0 16

Trace form

\( 28 q - 14 q^{4} + 8 q^{7} + 4 q^{9} + 8 q^{11} - 2 q^{13} - 8 q^{14} - 16 q^{15} - 14 q^{16} - 8 q^{17} + 8 q^{18} + 2 q^{19} + 20 q^{21} + 8 q^{23} - 14 q^{25} + 4 q^{26} - 18 q^{27} - 4 q^{28} - 10 q^{29}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(234, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
234.2.g.a 234.g 117.f $2$ $1.868$ \(\Q(\sqrt{-3}) \) None 234.2.f.b \(-1\) \(-3\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{2}+(-2+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
234.2.g.b 234.g 117.f $2$ $1.868$ \(\Q(\sqrt{-3}) \) None 234.2.f.a \(1\) \(3\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(2-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
234.2.g.c 234.g 117.f $12$ $1.868$ 12.0.\(\cdots\).1 None 234.2.f.d \(-6\) \(3\) \(1\) \(10\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}-\beta _{10}q^{3}+(-1-\beta _{1})q^{4}+\cdots\)
234.2.g.d 234.g 117.f $12$ $1.868$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 234.2.f.c \(6\) \(-3\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{8}q^{2}+\beta _{6}q^{3}+(-1+\beta _{8})q^{4}+(\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(234, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(234, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)