Properties

Label 2312.4.a.r.1.2
Level $2312$
Weight $4$
Character 2312.1
Self dual yes
Analytic conductor $136.412$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2312,4,Mod(1,2312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2312.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2312 = 2^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2312.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(136.412415933\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 136)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Character \(\chi\) \(=\) 2312.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.52797 q^{3} +9.40407 q^{5} -4.13788 q^{7} +45.7263 q^{9} -2.00416 q^{11} -58.7886 q^{13} -80.1977 q^{15} +83.4503 q^{19} +35.2877 q^{21} +39.2877 q^{23} -36.5634 q^{25} -159.698 q^{27} +157.900 q^{29} +120.205 q^{31} +17.0915 q^{33} -38.9129 q^{35} -337.772 q^{37} +501.347 q^{39} -271.819 q^{41} +239.225 q^{43} +430.014 q^{45} -150.254 q^{47} -325.878 q^{49} -726.333 q^{53} -18.8473 q^{55} -711.662 q^{57} +634.284 q^{59} +617.478 q^{61} -189.210 q^{63} -552.852 q^{65} -712.549 q^{67} -335.045 q^{69} +830.269 q^{71} +510.246 q^{73} +311.812 q^{75} +8.29299 q^{77} +299.690 q^{79} +127.286 q^{81} -614.259 q^{83} -1346.57 q^{87} +1268.61 q^{89} +243.260 q^{91} -1025.10 q^{93} +784.772 q^{95} -1027.92 q^{97} -91.6430 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 88 q^{9} - 168 q^{13} - 120 q^{15} + 88 q^{19} - 64 q^{21} + 144 q^{25} - 520 q^{33} + 512 q^{35} - 616 q^{43} - 984 q^{47} + 272 q^{49} - 1640 q^{53} - 2296 q^{55} + 1304 q^{59} - 1960 q^{67} - 2408 q^{69}+ \cdots + 616 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.52797 −1.64121 −0.820605 0.571496i \(-0.806363\pi\)
−0.820605 + 0.571496i \(0.806363\pi\)
\(4\) 0 0
\(5\) 9.40407 0.841126 0.420563 0.907263i \(-0.361833\pi\)
0.420563 + 0.907263i \(0.361833\pi\)
\(6\) 0 0
\(7\) −4.13788 −0.223425 −0.111712 0.993741i \(-0.535633\pi\)
−0.111712 + 0.993741i \(0.535633\pi\)
\(8\) 0 0
\(9\) 45.7263 1.69357
\(10\) 0 0
\(11\) −2.00416 −0.0549344 −0.0274672 0.999623i \(-0.508744\pi\)
−0.0274672 + 0.999623i \(0.508744\pi\)
\(12\) 0 0
\(13\) −58.7886 −1.25423 −0.627116 0.778926i \(-0.715765\pi\)
−0.627116 + 0.778926i \(0.715765\pi\)
\(14\) 0 0
\(15\) −80.1977 −1.38046
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 83.4503 1.00762 0.503811 0.863814i \(-0.331931\pi\)
0.503811 + 0.863814i \(0.331931\pi\)
\(20\) 0 0
\(21\) 35.2877 0.366686
\(22\) 0 0
\(23\) 39.2877 0.356176 0.178088 0.984015i \(-0.443009\pi\)
0.178088 + 0.984015i \(0.443009\pi\)
\(24\) 0 0
\(25\) −36.5634 −0.292507
\(26\) 0 0
\(27\) −159.698 −1.13829
\(28\) 0 0
\(29\) 157.900 1.01108 0.505540 0.862803i \(-0.331293\pi\)
0.505540 + 0.862803i \(0.331293\pi\)
\(30\) 0 0
\(31\) 120.205 0.696433 0.348216 0.937414i \(-0.386787\pi\)
0.348216 + 0.937414i \(0.386787\pi\)
\(32\) 0 0
\(33\) 17.0915 0.0901588
\(34\) 0 0
\(35\) −38.9129 −0.187928
\(36\) 0 0
\(37\) −337.772 −1.50080 −0.750398 0.660986i \(-0.770138\pi\)
−0.750398 + 0.660986i \(0.770138\pi\)
\(38\) 0 0
\(39\) 501.347 2.05846
\(40\) 0 0
\(41\) −271.819 −1.03539 −0.517695 0.855566i \(-0.673210\pi\)
−0.517695 + 0.855566i \(0.673210\pi\)
\(42\) 0 0
\(43\) 239.225 0.848405 0.424202 0.905567i \(-0.360554\pi\)
0.424202 + 0.905567i \(0.360554\pi\)
\(44\) 0 0
\(45\) 430.014 1.42450
\(46\) 0 0
\(47\) −150.254 −0.466314 −0.233157 0.972439i \(-0.574906\pi\)
−0.233157 + 0.972439i \(0.574906\pi\)
\(48\) 0 0
\(49\) −325.878 −0.950081
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −726.333 −1.88244 −0.941222 0.337788i \(-0.890321\pi\)
−0.941222 + 0.337788i \(0.890321\pi\)
\(54\) 0 0
\(55\) −18.8473 −0.0462067
\(56\) 0 0
\(57\) −711.662 −1.65372
\(58\) 0 0
\(59\) 634.284 1.39961 0.699803 0.714336i \(-0.253271\pi\)
0.699803 + 0.714336i \(0.253271\pi\)
\(60\) 0 0
\(61\) 617.478 1.29607 0.648033 0.761612i \(-0.275592\pi\)
0.648033 + 0.761612i \(0.275592\pi\)
\(62\) 0 0
\(63\) −189.210 −0.378385
\(64\) 0 0
\(65\) −552.852 −1.05497
\(66\) 0 0
\(67\) −712.549 −1.29928 −0.649640 0.760242i \(-0.725080\pi\)
−0.649640 + 0.760242i \(0.725080\pi\)
\(68\) 0 0
\(69\) −335.045 −0.584560
\(70\) 0 0
\(71\) 830.269 1.38781 0.693907 0.720064i \(-0.255888\pi\)
0.693907 + 0.720064i \(0.255888\pi\)
\(72\) 0 0
\(73\) 510.246 0.818080 0.409040 0.912516i \(-0.365864\pi\)
0.409040 + 0.912516i \(0.365864\pi\)
\(74\) 0 0
\(75\) 311.812 0.480066
\(76\) 0 0
\(77\) 8.29299 0.0122737
\(78\) 0 0
\(79\) 299.690 0.426807 0.213404 0.976964i \(-0.431545\pi\)
0.213404 + 0.976964i \(0.431545\pi\)
\(80\) 0 0
\(81\) 127.286 0.174604
\(82\) 0 0
\(83\) −614.259 −0.812333 −0.406167 0.913799i \(-0.633135\pi\)
−0.406167 + 0.913799i \(0.633135\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1346.57 −1.65939
\(88\) 0 0
\(89\) 1268.61 1.51093 0.755466 0.655188i \(-0.227411\pi\)
0.755466 + 0.655188i \(0.227411\pi\)
\(90\) 0 0
\(91\) 243.260 0.280226
\(92\) 0 0
\(93\) −1025.10 −1.14299
\(94\) 0 0
\(95\) 784.772 0.847536
\(96\) 0 0
\(97\) −1027.92 −1.07598 −0.537989 0.842952i \(-0.680816\pi\)
−0.537989 + 0.842952i \(0.680816\pi\)
\(98\) 0 0
\(99\) −91.6430 −0.0930351
\(100\) 0 0
\(101\) −53.5154 −0.0527226 −0.0263613 0.999652i \(-0.508392\pi\)
−0.0263613 + 0.999652i \(0.508392\pi\)
\(102\) 0 0
\(103\) 1364.04 1.30488 0.652442 0.757839i \(-0.273745\pi\)
0.652442 + 0.757839i \(0.273745\pi\)
\(104\) 0 0
\(105\) 331.848 0.308429
\(106\) 0 0
\(107\) 536.496 0.484720 0.242360 0.970186i \(-0.422078\pi\)
0.242360 + 0.970186i \(0.422078\pi\)
\(108\) 0 0
\(109\) 1359.64 1.19477 0.597383 0.801956i \(-0.296207\pi\)
0.597383 + 0.801956i \(0.296207\pi\)
\(110\) 0 0
\(111\) 2880.51 2.46312
\(112\) 0 0
\(113\) 1289.88 1.07382 0.536910 0.843640i \(-0.319591\pi\)
0.536910 + 0.843640i \(0.319591\pi\)
\(114\) 0 0
\(115\) 369.465 0.299589
\(116\) 0 0
\(117\) −2688.19 −2.12413
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1326.98 −0.996982
\(122\) 0 0
\(123\) 2318.06 1.69929
\(124\) 0 0
\(125\) −1519.35 −1.08716
\(126\) 0 0
\(127\) −1061.22 −0.741483 −0.370741 0.928736i \(-0.620896\pi\)
−0.370741 + 0.928736i \(0.620896\pi\)
\(128\) 0 0
\(129\) −2040.10 −1.39241
\(130\) 0 0
\(131\) 1.15632 0.000771206 0 0.000385603 1.00000i \(-0.499877\pi\)
0.000385603 1.00000i \(0.499877\pi\)
\(132\) 0 0
\(133\) −345.307 −0.225127
\(134\) 0 0
\(135\) −1501.81 −0.957445
\(136\) 0 0
\(137\) 581.471 0.362616 0.181308 0.983426i \(-0.441967\pi\)
0.181308 + 0.983426i \(0.441967\pi\)
\(138\) 0 0
\(139\) 2521.16 1.53843 0.769217 0.638987i \(-0.220646\pi\)
0.769217 + 0.638987i \(0.220646\pi\)
\(140\) 0 0
\(141\) 1281.36 0.765319
\(142\) 0 0
\(143\) 117.822 0.0689005
\(144\) 0 0
\(145\) 1484.90 0.850445
\(146\) 0 0
\(147\) 2779.08 1.55928
\(148\) 0 0
\(149\) 1889.71 1.03900 0.519501 0.854470i \(-0.326118\pi\)
0.519501 + 0.854470i \(0.326118\pi\)
\(150\) 0 0
\(151\) −1128.94 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1130.41 0.585787
\(156\) 0 0
\(157\) 2012.97 1.02327 0.511633 0.859204i \(-0.329041\pi\)
0.511633 + 0.859204i \(0.329041\pi\)
\(158\) 0 0
\(159\) 6194.15 3.08949
\(160\) 0 0
\(161\) −162.568 −0.0795785
\(162\) 0 0
\(163\) 2800.61 1.34577 0.672886 0.739746i \(-0.265054\pi\)
0.672886 + 0.739746i \(0.265054\pi\)
\(164\) 0 0
\(165\) 160.729 0.0758349
\(166\) 0 0
\(167\) −2088.33 −0.967665 −0.483832 0.875161i \(-0.660756\pi\)
−0.483832 + 0.875161i \(0.660756\pi\)
\(168\) 0 0
\(169\) 1259.10 0.573098
\(170\) 0 0
\(171\) 3815.87 1.70647
\(172\) 0 0
\(173\) −956.725 −0.420453 −0.210227 0.977653i \(-0.567420\pi\)
−0.210227 + 0.977653i \(0.567420\pi\)
\(174\) 0 0
\(175\) 151.295 0.0653533
\(176\) 0 0
\(177\) −5409.16 −2.29705
\(178\) 0 0
\(179\) −4186.09 −1.74795 −0.873975 0.485972i \(-0.838466\pi\)
−0.873975 + 0.485972i \(0.838466\pi\)
\(180\) 0 0
\(181\) −465.328 −0.191092 −0.0955458 0.995425i \(-0.530460\pi\)
−0.0955458 + 0.995425i \(0.530460\pi\)
\(182\) 0 0
\(183\) −5265.84 −2.12711
\(184\) 0 0
\(185\) −3176.44 −1.26236
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 660.809 0.254322
\(190\) 0 0
\(191\) −2273.42 −0.861249 −0.430625 0.902531i \(-0.641707\pi\)
−0.430625 + 0.902531i \(0.641707\pi\)
\(192\) 0 0
\(193\) −1048.40 −0.391015 −0.195507 0.980702i \(-0.562635\pi\)
−0.195507 + 0.980702i \(0.562635\pi\)
\(194\) 0 0
\(195\) 4714.71 1.73142
\(196\) 0 0
\(197\) −3159.17 −1.14254 −0.571272 0.820761i \(-0.693550\pi\)
−0.571272 + 0.820761i \(0.693550\pi\)
\(198\) 0 0
\(199\) −952.107 −0.339161 −0.169581 0.985516i \(-0.554241\pi\)
−0.169581 + 0.985516i \(0.554241\pi\)
\(200\) 0 0
\(201\) 6076.60 2.13239
\(202\) 0 0
\(203\) −653.372 −0.225900
\(204\) 0 0
\(205\) −2556.20 −0.870892
\(206\) 0 0
\(207\) 1796.48 0.603209
\(208\) 0 0
\(209\) −167.248 −0.0553530
\(210\) 0 0
\(211\) 4718.27 1.53943 0.769713 0.638390i \(-0.220399\pi\)
0.769713 + 0.638390i \(0.220399\pi\)
\(212\) 0 0
\(213\) −7080.51 −2.27769
\(214\) 0 0
\(215\) 2249.69 0.713615
\(216\) 0 0
\(217\) −497.393 −0.155600
\(218\) 0 0
\(219\) −4351.37 −1.34264
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −3891.86 −1.16869 −0.584346 0.811505i \(-0.698649\pi\)
−0.584346 + 0.811505i \(0.698649\pi\)
\(224\) 0 0
\(225\) −1671.91 −0.495381
\(226\) 0 0
\(227\) −2996.14 −0.876038 −0.438019 0.898966i \(-0.644320\pi\)
−0.438019 + 0.898966i \(0.644320\pi\)
\(228\) 0 0
\(229\) −3927.50 −1.13335 −0.566674 0.823942i \(-0.691770\pi\)
−0.566674 + 0.823942i \(0.691770\pi\)
\(230\) 0 0
\(231\) −70.7224 −0.0201437
\(232\) 0 0
\(233\) 2817.81 0.792278 0.396139 0.918191i \(-0.370350\pi\)
0.396139 + 0.918191i \(0.370350\pi\)
\(234\) 0 0
\(235\) −1413.00 −0.392229
\(236\) 0 0
\(237\) −2555.75 −0.700480
\(238\) 0 0
\(239\) −4737.45 −1.28218 −0.641089 0.767467i \(-0.721517\pi\)
−0.641089 + 0.767467i \(0.721517\pi\)
\(240\) 0 0
\(241\) −3996.77 −1.06828 −0.534138 0.845397i \(-0.679364\pi\)
−0.534138 + 0.845397i \(0.679364\pi\)
\(242\) 0 0
\(243\) 3226.34 0.851728
\(244\) 0 0
\(245\) −3064.58 −0.799138
\(246\) 0 0
\(247\) −4905.92 −1.26379
\(248\) 0 0
\(249\) 5238.38 1.33321
\(250\) 0 0
\(251\) −6549.14 −1.64693 −0.823463 0.567370i \(-0.807961\pi\)
−0.823463 + 0.567370i \(0.807961\pi\)
\(252\) 0 0
\(253\) −78.7390 −0.0195663
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1024.97 0.248779 0.124389 0.992233i \(-0.460303\pi\)
0.124389 + 0.992233i \(0.460303\pi\)
\(258\) 0 0
\(259\) 1397.66 0.335315
\(260\) 0 0
\(261\) 7220.19 1.71233
\(262\) 0 0
\(263\) −1434.01 −0.336217 −0.168108 0.985769i \(-0.553766\pi\)
−0.168108 + 0.985769i \(0.553766\pi\)
\(264\) 0 0
\(265\) −6830.49 −1.58337
\(266\) 0 0
\(267\) −10818.7 −2.47975
\(268\) 0 0
\(269\) 1259.89 0.285565 0.142782 0.989754i \(-0.454395\pi\)
0.142782 + 0.989754i \(0.454395\pi\)
\(270\) 0 0
\(271\) 546.986 0.122609 0.0613044 0.998119i \(-0.480474\pi\)
0.0613044 + 0.998119i \(0.480474\pi\)
\(272\) 0 0
\(273\) −2074.52 −0.459910
\(274\) 0 0
\(275\) 73.2791 0.0160687
\(276\) 0 0
\(277\) −7462.88 −1.61878 −0.809388 0.587274i \(-0.800201\pi\)
−0.809388 + 0.587274i \(0.800201\pi\)
\(278\) 0 0
\(279\) 5496.52 1.17946
\(280\) 0 0
\(281\) −4464.00 −0.947687 −0.473844 0.880609i \(-0.657134\pi\)
−0.473844 + 0.880609i \(0.657134\pi\)
\(282\) 0 0
\(283\) −5935.97 −1.24684 −0.623422 0.781885i \(-0.714258\pi\)
−0.623422 + 0.781885i \(0.714258\pi\)
\(284\) 0 0
\(285\) −6692.52 −1.39098
\(286\) 0 0
\(287\) 1124.75 0.231331
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 8766.11 1.76591
\(292\) 0 0
\(293\) 670.673 0.133724 0.0668620 0.997762i \(-0.478701\pi\)
0.0668620 + 0.997762i \(0.478701\pi\)
\(294\) 0 0
\(295\) 5964.85 1.17724
\(296\) 0 0
\(297\) 320.060 0.0625312
\(298\) 0 0
\(299\) −2309.67 −0.446728
\(300\) 0 0
\(301\) −989.883 −0.189554
\(302\) 0 0
\(303\) 456.378 0.0865288
\(304\) 0 0
\(305\) 5806.81 1.09015
\(306\) 0 0
\(307\) 9301.80 1.72926 0.864628 0.502412i \(-0.167554\pi\)
0.864628 + 0.502412i \(0.167554\pi\)
\(308\) 0 0
\(309\) −11632.5 −2.14159
\(310\) 0 0
\(311\) −9072.42 −1.65418 −0.827089 0.562071i \(-0.810005\pi\)
−0.827089 + 0.562071i \(0.810005\pi\)
\(312\) 0 0
\(313\) 3447.23 0.622520 0.311260 0.950325i \(-0.399249\pi\)
0.311260 + 0.950325i \(0.399249\pi\)
\(314\) 0 0
\(315\) −1779.34 −0.318269
\(316\) 0 0
\(317\) 6060.27 1.07375 0.536875 0.843662i \(-0.319605\pi\)
0.536875 + 0.843662i \(0.319605\pi\)
\(318\) 0 0
\(319\) −316.458 −0.0555430
\(320\) 0 0
\(321\) −4575.23 −0.795527
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2149.51 0.366872
\(326\) 0 0
\(327\) −11594.9 −1.96086
\(328\) 0 0
\(329\) 621.732 0.104186
\(330\) 0 0
\(331\) 10905.6 1.81096 0.905479 0.424390i \(-0.139512\pi\)
0.905479 + 0.424390i \(0.139512\pi\)
\(332\) 0 0
\(333\) −15445.1 −2.54170
\(334\) 0 0
\(335\) −6700.87 −1.09286
\(336\) 0 0
\(337\) −3583.49 −0.579243 −0.289622 0.957141i \(-0.593529\pi\)
−0.289622 + 0.957141i \(0.593529\pi\)
\(338\) 0 0
\(339\) −11000.1 −1.76236
\(340\) 0 0
\(341\) −240.910 −0.0382581
\(342\) 0 0
\(343\) 2767.74 0.435696
\(344\) 0 0
\(345\) −3150.78 −0.491688
\(346\) 0 0
\(347\) 5075.02 0.785133 0.392566 0.919724i \(-0.371587\pi\)
0.392566 + 0.919724i \(0.371587\pi\)
\(348\) 0 0
\(349\) 191.428 0.0293608 0.0146804 0.999892i \(-0.495327\pi\)
0.0146804 + 0.999892i \(0.495327\pi\)
\(350\) 0 0
\(351\) 9388.40 1.42768
\(352\) 0 0
\(353\) 2272.17 0.342594 0.171297 0.985219i \(-0.445204\pi\)
0.171297 + 0.985219i \(0.445204\pi\)
\(354\) 0 0
\(355\) 7807.91 1.16733
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8848.23 −1.30081 −0.650407 0.759586i \(-0.725401\pi\)
−0.650407 + 0.759586i \(0.725401\pi\)
\(360\) 0 0
\(361\) 104.949 0.0153009
\(362\) 0 0
\(363\) 11316.5 1.63626
\(364\) 0 0
\(365\) 4798.39 0.688108
\(366\) 0 0
\(367\) −2380.72 −0.338617 −0.169309 0.985563i \(-0.554153\pi\)
−0.169309 + 0.985563i \(0.554153\pi\)
\(368\) 0 0
\(369\) −12429.3 −1.75350
\(370\) 0 0
\(371\) 3005.48 0.420584
\(372\) 0 0
\(373\) −6927.12 −0.961589 −0.480794 0.876833i \(-0.659652\pi\)
−0.480794 + 0.876833i \(0.659652\pi\)
\(374\) 0 0
\(375\) 12957.0 1.78426
\(376\) 0 0
\(377\) −9282.72 −1.26813
\(378\) 0 0
\(379\) −12553.8 −1.70145 −0.850723 0.525615i \(-0.823835\pi\)
−0.850723 + 0.525615i \(0.823835\pi\)
\(380\) 0 0
\(381\) 9050.08 1.21693
\(382\) 0 0
\(383\) 5106.77 0.681315 0.340658 0.940187i \(-0.389350\pi\)
0.340658 + 0.940187i \(0.389350\pi\)
\(384\) 0 0
\(385\) 77.9879 0.0103237
\(386\) 0 0
\(387\) 10938.9 1.43683
\(388\) 0 0
\(389\) 9980.35 1.30083 0.650416 0.759578i \(-0.274595\pi\)
0.650416 + 0.759578i \(0.274595\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −9.86105 −0.00126571
\(394\) 0 0
\(395\) 2818.31 0.358999
\(396\) 0 0
\(397\) 3314.57 0.419027 0.209513 0.977806i \(-0.432812\pi\)
0.209513 + 0.977806i \(0.432812\pi\)
\(398\) 0 0
\(399\) 2944.77 0.369481
\(400\) 0 0
\(401\) −8451.38 −1.05247 −0.526237 0.850338i \(-0.676397\pi\)
−0.526237 + 0.850338i \(0.676397\pi\)
\(402\) 0 0
\(403\) −7066.67 −0.873488
\(404\) 0 0
\(405\) 1197.01 0.146864
\(406\) 0 0
\(407\) 676.951 0.0824453
\(408\) 0 0
\(409\) −44.1623 −0.00533908 −0.00266954 0.999996i \(-0.500850\pi\)
−0.00266954 + 0.999996i \(0.500850\pi\)
\(410\) 0 0
\(411\) −4958.77 −0.595129
\(412\) 0 0
\(413\) −2624.59 −0.312706
\(414\) 0 0
\(415\) −5776.54 −0.683275
\(416\) 0 0
\(417\) −21500.4 −2.52489
\(418\) 0 0
\(419\) −11515.4 −1.34263 −0.671316 0.741171i \(-0.734271\pi\)
−0.671316 + 0.741171i \(0.734271\pi\)
\(420\) 0 0
\(421\) −10857.1 −1.25688 −0.628438 0.777860i \(-0.716305\pi\)
−0.628438 + 0.777860i \(0.716305\pi\)
\(422\) 0 0
\(423\) −6870.55 −0.789735
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2555.05 −0.289573
\(428\) 0 0
\(429\) −1004.78 −0.113080
\(430\) 0 0
\(431\) −1723.74 −0.192644 −0.0963220 0.995350i \(-0.530708\pi\)
−0.0963220 + 0.995350i \(0.530708\pi\)
\(432\) 0 0
\(433\) 2261.87 0.251036 0.125518 0.992091i \(-0.459941\pi\)
0.125518 + 0.992091i \(0.459941\pi\)
\(434\) 0 0
\(435\) −12663.2 −1.39576
\(436\) 0 0
\(437\) 3278.57 0.358891
\(438\) 0 0
\(439\) 7812.41 0.849353 0.424676 0.905345i \(-0.360388\pi\)
0.424676 + 0.905345i \(0.360388\pi\)
\(440\) 0 0
\(441\) −14901.2 −1.60903
\(442\) 0 0
\(443\) 4323.15 0.463654 0.231827 0.972757i \(-0.425530\pi\)
0.231827 + 0.972757i \(0.425530\pi\)
\(444\) 0 0
\(445\) 11930.1 1.27088
\(446\) 0 0
\(447\) −16115.4 −1.70522
\(448\) 0 0
\(449\) −1534.50 −0.161286 −0.0806430 0.996743i \(-0.525697\pi\)
−0.0806430 + 0.996743i \(0.525697\pi\)
\(450\) 0 0
\(451\) 544.769 0.0568784
\(452\) 0 0
\(453\) 9627.59 0.998551
\(454\) 0 0
\(455\) 2287.64 0.235705
\(456\) 0 0
\(457\) −12303.6 −1.25939 −0.629693 0.776844i \(-0.716819\pi\)
−0.629693 + 0.776844i \(0.716819\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2668.02 0.269549 0.134774 0.990876i \(-0.456969\pi\)
0.134774 + 0.990876i \(0.456969\pi\)
\(462\) 0 0
\(463\) −15499.8 −1.55580 −0.777900 0.628388i \(-0.783715\pi\)
−0.777900 + 0.628388i \(0.783715\pi\)
\(464\) 0 0
\(465\) −9640.14 −0.961400
\(466\) 0 0
\(467\) −12417.5 −1.23044 −0.615220 0.788355i \(-0.710933\pi\)
−0.615220 + 0.788355i \(0.710933\pi\)
\(468\) 0 0
\(469\) 2948.44 0.290291
\(470\) 0 0
\(471\) −17166.6 −1.67939
\(472\) 0 0
\(473\) −479.445 −0.0466066
\(474\) 0 0
\(475\) −3051.23 −0.294737
\(476\) 0 0
\(477\) −33212.6 −3.18805
\(478\) 0 0
\(479\) −7455.49 −0.711169 −0.355585 0.934644i \(-0.615718\pi\)
−0.355585 + 0.934644i \(0.615718\pi\)
\(480\) 0 0
\(481\) 19857.2 1.88235
\(482\) 0 0
\(483\) 1386.37 0.130605
\(484\) 0 0
\(485\) −9666.67 −0.905033
\(486\) 0 0
\(487\) 10935.4 1.01751 0.508757 0.860910i \(-0.330105\pi\)
0.508757 + 0.860910i \(0.330105\pi\)
\(488\) 0 0
\(489\) −23883.5 −2.20869
\(490\) 0 0
\(491\) −5498.02 −0.505340 −0.252670 0.967552i \(-0.581309\pi\)
−0.252670 + 0.967552i \(0.581309\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −861.818 −0.0782542
\(496\) 0 0
\(497\) −3435.55 −0.310072
\(498\) 0 0
\(499\) 839.358 0.0753002 0.0376501 0.999291i \(-0.488013\pi\)
0.0376501 + 0.999291i \(0.488013\pi\)
\(500\) 0 0
\(501\) 17809.2 1.58814
\(502\) 0 0
\(503\) −10982.9 −0.973566 −0.486783 0.873523i \(-0.661830\pi\)
−0.486783 + 0.873523i \(0.661830\pi\)
\(504\) 0 0
\(505\) −503.263 −0.0443463
\(506\) 0 0
\(507\) −10737.5 −0.940574
\(508\) 0 0
\(509\) 2774.81 0.241633 0.120817 0.992675i \(-0.461449\pi\)
0.120817 + 0.992675i \(0.461449\pi\)
\(510\) 0 0
\(511\) −2111.34 −0.182779
\(512\) 0 0
\(513\) −13326.8 −1.14696
\(514\) 0 0
\(515\) 12827.5 1.09757
\(516\) 0 0
\(517\) 301.133 0.0256167
\(518\) 0 0
\(519\) 8158.92 0.690052
\(520\) 0 0
\(521\) −15691.0 −1.31945 −0.659727 0.751506i \(-0.729328\pi\)
−0.659727 + 0.751506i \(0.729328\pi\)
\(522\) 0 0
\(523\) −5670.76 −0.474121 −0.237060 0.971495i \(-0.576184\pi\)
−0.237060 + 0.971495i \(0.576184\pi\)
\(524\) 0 0
\(525\) −1290.24 −0.107258
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −10623.5 −0.873138
\(530\) 0 0
\(531\) 29003.5 2.37033
\(532\) 0 0
\(533\) 15979.8 1.29862
\(534\) 0 0
\(535\) 5045.25 0.407711
\(536\) 0 0
\(537\) 35698.8 2.86875
\(538\) 0 0
\(539\) 653.113 0.0521921
\(540\) 0 0
\(541\) −757.935 −0.0602332 −0.0301166 0.999546i \(-0.509588\pi\)
−0.0301166 + 0.999546i \(0.509588\pi\)
\(542\) 0 0
\(543\) 3968.31 0.313621
\(544\) 0 0
\(545\) 12786.1 1.00495
\(546\) 0 0
\(547\) 2541.09 0.198627 0.0993136 0.995056i \(-0.468335\pi\)
0.0993136 + 0.995056i \(0.468335\pi\)
\(548\) 0 0
\(549\) 28235.0 2.19497
\(550\) 0 0
\(551\) 13176.8 1.01879
\(552\) 0 0
\(553\) −1240.08 −0.0953592
\(554\) 0 0
\(555\) 27088.6 2.07179
\(556\) 0 0
\(557\) −17606.6 −1.33934 −0.669672 0.742657i \(-0.733565\pi\)
−0.669672 + 0.742657i \(0.733565\pi\)
\(558\) 0 0
\(559\) −14063.7 −1.06410
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7476.24 −0.559656 −0.279828 0.960050i \(-0.590277\pi\)
−0.279828 + 0.960050i \(0.590277\pi\)
\(564\) 0 0
\(565\) 12130.1 0.903218
\(566\) 0 0
\(567\) −526.694 −0.0390107
\(568\) 0 0
\(569\) −17176.1 −1.26548 −0.632742 0.774363i \(-0.718071\pi\)
−0.632742 + 0.774363i \(0.718071\pi\)
\(570\) 0 0
\(571\) −14747.8 −1.08087 −0.540433 0.841387i \(-0.681740\pi\)
−0.540433 + 0.841387i \(0.681740\pi\)
\(572\) 0 0
\(573\) 19387.6 1.41349
\(574\) 0 0
\(575\) −1436.49 −0.104184
\(576\) 0 0
\(577\) 21154.7 1.52631 0.763156 0.646214i \(-0.223649\pi\)
0.763156 + 0.646214i \(0.223649\pi\)
\(578\) 0 0
\(579\) 8940.77 0.641737
\(580\) 0 0
\(581\) 2541.73 0.181495
\(582\) 0 0
\(583\) 1455.69 0.103411
\(584\) 0 0
\(585\) −25279.9 −1.78666
\(586\) 0 0
\(587\) −282.370 −0.0198546 −0.00992731 0.999951i \(-0.503160\pi\)
−0.00992731 + 0.999951i \(0.503160\pi\)
\(588\) 0 0
\(589\) 10031.1 0.701740
\(590\) 0 0
\(591\) 26941.3 1.87515
\(592\) 0 0
\(593\) −26808.9 −1.85651 −0.928253 0.371950i \(-0.878689\pi\)
−0.928253 + 0.371950i \(0.878689\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8119.54 0.556634
\(598\) 0 0
\(599\) 24971.8 1.70337 0.851687 0.524050i \(-0.175580\pi\)
0.851687 + 0.524050i \(0.175580\pi\)
\(600\) 0 0
\(601\) −13110.3 −0.889815 −0.444908 0.895576i \(-0.646764\pi\)
−0.444908 + 0.895576i \(0.646764\pi\)
\(602\) 0 0
\(603\) −32582.3 −2.20042
\(604\) 0 0
\(605\) −12479.0 −0.838587
\(606\) 0 0
\(607\) 21659.7 1.44834 0.724170 0.689622i \(-0.242223\pi\)
0.724170 + 0.689622i \(0.242223\pi\)
\(608\) 0 0
\(609\) 5571.94 0.370749
\(610\) 0 0
\(611\) 8833.21 0.584866
\(612\) 0 0
\(613\) 13819.3 0.910535 0.455268 0.890355i \(-0.349544\pi\)
0.455268 + 0.890355i \(0.349544\pi\)
\(614\) 0 0
\(615\) 21799.2 1.42932
\(616\) 0 0
\(617\) −6805.24 −0.444033 −0.222017 0.975043i \(-0.571264\pi\)
−0.222017 + 0.975043i \(0.571264\pi\)
\(618\) 0 0
\(619\) −9778.77 −0.634963 −0.317481 0.948265i \(-0.602837\pi\)
−0.317481 + 0.948265i \(0.602837\pi\)
\(620\) 0 0
\(621\) −6274.15 −0.405432
\(622\) 0 0
\(623\) −5249.38 −0.337579
\(624\) 0 0
\(625\) −9717.69 −0.621932
\(626\) 0 0
\(627\) 1426.29 0.0908459
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 15422.1 0.972969 0.486485 0.873689i \(-0.338279\pi\)
0.486485 + 0.873689i \(0.338279\pi\)
\(632\) 0 0
\(633\) −40237.3 −2.52652
\(634\) 0 0
\(635\) −9979.82 −0.623680
\(636\) 0 0
\(637\) 19157.9 1.19162
\(638\) 0 0
\(639\) 37965.2 2.35036
\(640\) 0 0
\(641\) −74.2747 −0.00457672 −0.00228836 0.999997i \(-0.500728\pi\)
−0.00228836 + 0.999997i \(0.500728\pi\)
\(642\) 0 0
\(643\) −7086.66 −0.434636 −0.217318 0.976101i \(-0.569731\pi\)
−0.217318 + 0.976101i \(0.569731\pi\)
\(644\) 0 0
\(645\) −19185.3 −1.17119
\(646\) 0 0
\(647\) −11222.7 −0.681932 −0.340966 0.940076i \(-0.610754\pi\)
−0.340966 + 0.940076i \(0.610754\pi\)
\(648\) 0 0
\(649\) −1271.21 −0.0768865
\(650\) 0 0
\(651\) 4241.75 0.255372
\(652\) 0 0
\(653\) −18981.6 −1.13753 −0.568765 0.822500i \(-0.692579\pi\)
−0.568765 + 0.822500i \(0.692579\pi\)
\(654\) 0 0
\(655\) 10.8741 0.000648681 0
\(656\) 0 0
\(657\) 23331.7 1.38547
\(658\) 0 0
\(659\) 26196.7 1.54853 0.774263 0.632864i \(-0.218121\pi\)
0.774263 + 0.632864i \(0.218121\pi\)
\(660\) 0 0
\(661\) −6740.44 −0.396631 −0.198315 0.980138i \(-0.563547\pi\)
−0.198315 + 0.980138i \(0.563547\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3247.29 −0.189360
\(666\) 0 0
\(667\) 6203.54 0.360123
\(668\) 0 0
\(669\) 33189.7 1.91807
\(670\) 0 0
\(671\) −1237.53 −0.0711985
\(672\) 0 0
\(673\) 7131.24 0.408453 0.204227 0.978924i \(-0.434532\pi\)
0.204227 + 0.978924i \(0.434532\pi\)
\(674\) 0 0
\(675\) 5839.09 0.332958
\(676\) 0 0
\(677\) −4296.22 −0.243895 −0.121948 0.992537i \(-0.538914\pi\)
−0.121948 + 0.992537i \(0.538914\pi\)
\(678\) 0 0
\(679\) 4253.43 0.240400
\(680\) 0 0
\(681\) 25551.0 1.43776
\(682\) 0 0
\(683\) 12331.2 0.690834 0.345417 0.938449i \(-0.387737\pi\)
0.345417 + 0.938449i \(0.387737\pi\)
\(684\) 0 0
\(685\) 5468.19 0.305006
\(686\) 0 0
\(687\) 33493.6 1.86006
\(688\) 0 0
\(689\) 42700.1 2.36102
\(690\) 0 0
\(691\) −23842.4 −1.31260 −0.656300 0.754500i \(-0.727879\pi\)
−0.656300 + 0.754500i \(0.727879\pi\)
\(692\) 0 0
\(693\) 379.208 0.0207863
\(694\) 0 0
\(695\) 23709.2 1.29402
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −24030.2 −1.30029
\(700\) 0 0
\(701\) 33388.6 1.79896 0.899479 0.436964i \(-0.143946\pi\)
0.899479 + 0.436964i \(0.143946\pi\)
\(702\) 0 0
\(703\) −28187.2 −1.51223
\(704\) 0 0
\(705\) 12050.0 0.643730
\(706\) 0 0
\(707\) 221.440 0.0117795
\(708\) 0 0
\(709\) 18906.2 1.00146 0.500731 0.865603i \(-0.333065\pi\)
0.500731 + 0.865603i \(0.333065\pi\)
\(710\) 0 0
\(711\) 13703.7 0.722827
\(712\) 0 0
\(713\) 4722.57 0.248053
\(714\) 0 0
\(715\) 1108.01 0.0579539
\(716\) 0 0
\(717\) 40400.9 2.10432
\(718\) 0 0
\(719\) −25967.4 −1.34690 −0.673451 0.739232i \(-0.735189\pi\)
−0.673451 + 0.739232i \(0.735189\pi\)
\(720\) 0 0
\(721\) −5644.24 −0.291543
\(722\) 0 0
\(723\) 34084.3 1.75326
\(724\) 0 0
\(725\) −5773.37 −0.295748
\(726\) 0 0
\(727\) 3980.23 0.203052 0.101526 0.994833i \(-0.467628\pi\)
0.101526 + 0.994833i \(0.467628\pi\)
\(728\) 0 0
\(729\) −30950.9 −1.57247
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −8241.98 −0.415313 −0.207656 0.978202i \(-0.566584\pi\)
−0.207656 + 0.978202i \(0.566584\pi\)
\(734\) 0 0
\(735\) 26134.7 1.31155
\(736\) 0 0
\(737\) 1428.07 0.0713751
\(738\) 0 0
\(739\) −22817.5 −1.13580 −0.567901 0.823097i \(-0.692244\pi\)
−0.567901 + 0.823097i \(0.692244\pi\)
\(740\) 0 0
\(741\) 41837.6 2.07415
\(742\) 0 0
\(743\) −15912.5 −0.785698 −0.392849 0.919603i \(-0.628510\pi\)
−0.392849 + 0.919603i \(0.628510\pi\)
\(744\) 0 0
\(745\) 17771.0 0.873931
\(746\) 0 0
\(747\) −28087.8 −1.37574
\(748\) 0 0
\(749\) −2219.96 −0.108298
\(750\) 0 0
\(751\) 33746.0 1.63969 0.819846 0.572584i \(-0.194059\pi\)
0.819846 + 0.572584i \(0.194059\pi\)
\(752\) 0 0
\(753\) 55850.9 2.70295
\(754\) 0 0
\(755\) −10616.7 −0.511761
\(756\) 0 0
\(757\) 17855.6 0.857297 0.428648 0.903471i \(-0.358990\pi\)
0.428648 + 0.903471i \(0.358990\pi\)
\(758\) 0 0
\(759\) 671.484 0.0321124
\(760\) 0 0
\(761\) 15100.8 0.719322 0.359661 0.933083i \(-0.382892\pi\)
0.359661 + 0.933083i \(0.382892\pi\)
\(762\) 0 0
\(763\) −5626.01 −0.266940
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −37288.7 −1.75543
\(768\) 0 0
\(769\) −22563.7 −1.05809 −0.529044 0.848595i \(-0.677449\pi\)
−0.529044 + 0.848595i \(0.677449\pi\)
\(770\) 0 0
\(771\) −8740.96 −0.408298
\(772\) 0 0
\(773\) −12598.6 −0.586209 −0.293104 0.956080i \(-0.594688\pi\)
−0.293104 + 0.956080i \(0.594688\pi\)
\(774\) 0 0
\(775\) −4395.10 −0.203712
\(776\) 0 0
\(777\) −11919.2 −0.550321
\(778\) 0 0
\(779\) −22683.3 −1.04328
\(780\) 0 0
\(781\) −1664.00 −0.0762387
\(782\) 0 0
\(783\) −25216.3 −1.15090
\(784\) 0 0
\(785\) 18930.1 0.860695
\(786\) 0 0
\(787\) −33969.6 −1.53861 −0.769304 0.638882i \(-0.779397\pi\)
−0.769304 + 0.638882i \(0.779397\pi\)
\(788\) 0 0
\(789\) 12229.2 0.551802
\(790\) 0 0
\(791\) −5337.37 −0.239918
\(792\) 0 0
\(793\) −36300.7 −1.62557
\(794\) 0 0
\(795\) 58250.3 2.59865
\(796\) 0 0
\(797\) 2078.89 0.0923941 0.0461971 0.998932i \(-0.485290\pi\)
0.0461971 + 0.998932i \(0.485290\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 58009.1 2.55886
\(802\) 0 0
\(803\) −1022.62 −0.0449407
\(804\) 0 0
\(805\) −1528.80 −0.0669355
\(806\) 0 0
\(807\) −10744.3 −0.468671
\(808\) 0 0
\(809\) −2256.87 −0.0980809 −0.0490405 0.998797i \(-0.515616\pi\)
−0.0490405 + 0.998797i \(0.515616\pi\)
\(810\) 0 0
\(811\) 8964.94 0.388165 0.194082 0.980985i \(-0.437827\pi\)
0.194082 + 0.980985i \(0.437827\pi\)
\(812\) 0 0
\(813\) −4664.68 −0.201227
\(814\) 0 0
\(815\) 26337.2 1.13196
\(816\) 0 0
\(817\) 19963.4 0.854871
\(818\) 0 0
\(819\) 11123.4 0.474582
\(820\) 0 0
\(821\) 13908.9 0.591260 0.295630 0.955303i \(-0.404471\pi\)
0.295630 + 0.955303i \(0.404471\pi\)
\(822\) 0 0
\(823\) 18123.0 0.767592 0.383796 0.923418i \(-0.374617\pi\)
0.383796 + 0.923418i \(0.374617\pi\)
\(824\) 0 0
\(825\) −624.922 −0.0263721
\(826\) 0 0
\(827\) 23470.8 0.986891 0.493445 0.869777i \(-0.335737\pi\)
0.493445 + 0.869777i \(0.335737\pi\)
\(828\) 0 0
\(829\) −43790.8 −1.83464 −0.917321 0.398149i \(-0.869653\pi\)
−0.917321 + 0.398149i \(0.869653\pi\)
\(830\) 0 0
\(831\) 63643.2 2.65675
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −19638.8 −0.813928
\(836\) 0 0
\(837\) −19196.4 −0.792742
\(838\) 0 0
\(839\) −12876.3 −0.529844 −0.264922 0.964270i \(-0.585346\pi\)
−0.264922 + 0.964270i \(0.585346\pi\)
\(840\) 0 0
\(841\) 543.446 0.0222824
\(842\) 0 0
\(843\) 38068.9 1.55535
\(844\) 0 0
\(845\) 11840.6 0.482048
\(846\) 0 0
\(847\) 5490.90 0.222750
\(848\) 0 0
\(849\) 50621.8 2.04633
\(850\) 0 0
\(851\) −13270.3 −0.534548
\(852\) 0 0
\(853\) −25822.5 −1.03651 −0.518257 0.855225i \(-0.673419\pi\)
−0.518257 + 0.855225i \(0.673419\pi\)
\(854\) 0 0
\(855\) 35884.8 1.43536
\(856\) 0 0
\(857\) −16951.4 −0.675669 −0.337835 0.941205i \(-0.609694\pi\)
−0.337835 + 0.941205i \(0.609694\pi\)
\(858\) 0 0
\(859\) −12762.7 −0.506934 −0.253467 0.967344i \(-0.581571\pi\)
−0.253467 + 0.967344i \(0.581571\pi\)
\(860\) 0 0
\(861\) −9591.86 −0.379663
\(862\) 0 0
\(863\) 894.306 0.0352752 0.0176376 0.999844i \(-0.494385\pi\)
0.0176376 + 0.999844i \(0.494385\pi\)
\(864\) 0 0
\(865\) −8997.11 −0.353654
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −600.628 −0.0234464
\(870\) 0 0
\(871\) 41889.8 1.62960
\(872\) 0 0
\(873\) −47003.2 −1.82224
\(874\) 0 0
\(875\) 6286.90 0.242898
\(876\) 0 0
\(877\) −2985.37 −0.114947 −0.0574737 0.998347i \(-0.518305\pi\)
−0.0574737 + 0.998347i \(0.518305\pi\)
\(878\) 0 0
\(879\) −5719.48 −0.219469
\(880\) 0 0
\(881\) −2015.87 −0.0770901 −0.0385450 0.999257i \(-0.512272\pi\)
−0.0385450 + 0.999257i \(0.512272\pi\)
\(882\) 0 0
\(883\) 14631.2 0.557620 0.278810 0.960346i \(-0.410060\pi\)
0.278810 + 0.960346i \(0.410060\pi\)
\(884\) 0 0
\(885\) −50868.1 −1.93211
\(886\) 0 0
\(887\) −41218.0 −1.56028 −0.780139 0.625607i \(-0.784851\pi\)
−0.780139 + 0.625607i \(0.784851\pi\)
\(888\) 0 0
\(889\) 4391.21 0.165665
\(890\) 0 0
\(891\) −255.102 −0.00959174
\(892\) 0 0
\(893\) −12538.7 −0.469868
\(894\) 0 0
\(895\) −39366.3 −1.47025
\(896\) 0 0
\(897\) 19696.8 0.733174
\(898\) 0 0
\(899\) 18980.3 0.704149
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 8441.69 0.311099
\(904\) 0 0
\(905\) −4375.98 −0.160732
\(906\) 0 0
\(907\) 46611.2 1.70639 0.853196 0.521590i \(-0.174661\pi\)
0.853196 + 0.521590i \(0.174661\pi\)
\(908\) 0 0
\(909\) −2447.06 −0.0892893
\(910\) 0 0
\(911\) −30366.8 −1.10439 −0.552194 0.833716i \(-0.686209\pi\)
−0.552194 + 0.833716i \(0.686209\pi\)
\(912\) 0 0
\(913\) 1231.08 0.0446250
\(914\) 0 0
\(915\) −49520.3 −1.78917
\(916\) 0 0
\(917\) −4.78470 −0.000172306 0
\(918\) 0 0
\(919\) −4035.91 −0.144867 −0.0724333 0.997373i \(-0.523076\pi\)
−0.0724333 + 0.997373i \(0.523076\pi\)
\(920\) 0 0
\(921\) −79325.5 −2.83807
\(922\) 0 0
\(923\) −48810.4 −1.74064
\(924\) 0 0
\(925\) 12350.1 0.438994
\(926\) 0 0
\(927\) 62372.6 2.20991
\(928\) 0 0
\(929\) −6116.13 −0.216000 −0.108000 0.994151i \(-0.534445\pi\)
−0.108000 + 0.994151i \(0.534445\pi\)
\(930\) 0 0
\(931\) −27194.6 −0.957322
\(932\) 0 0
\(933\) 77369.3 2.71485
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −31795.8 −1.10856 −0.554282 0.832329i \(-0.687007\pi\)
−0.554282 + 0.832329i \(0.687007\pi\)
\(938\) 0 0
\(939\) −29397.8 −1.02169
\(940\) 0 0
\(941\) −41083.2 −1.42324 −0.711622 0.702562i \(-0.752039\pi\)
−0.711622 + 0.702562i \(0.752039\pi\)
\(942\) 0 0
\(943\) −10679.1 −0.368781
\(944\) 0 0
\(945\) 6214.30 0.213917
\(946\) 0 0
\(947\) 40161.2 1.37810 0.689052 0.724712i \(-0.258027\pi\)
0.689052 + 0.724712i \(0.258027\pi\)
\(948\) 0 0
\(949\) −29996.7 −1.02606
\(950\) 0 0
\(951\) −51681.8 −1.76225
\(952\) 0 0
\(953\) 34421.2 1.17000 0.585002 0.811032i \(-0.301094\pi\)
0.585002 + 0.811032i \(0.301094\pi\)
\(954\) 0 0
\(955\) −21379.4 −0.724419
\(956\) 0 0
\(957\) 2698.74 0.0911577
\(958\) 0 0
\(959\) −2406.06 −0.0810173
\(960\) 0 0
\(961\) −15341.8 −0.514982
\(962\) 0 0
\(963\) 24532.0 0.820906
\(964\) 0 0
\(965\) −9859.27 −0.328892
\(966\) 0 0
\(967\) −21369.3 −0.710642 −0.355321 0.934744i \(-0.615628\pi\)
−0.355321 + 0.934744i \(0.615628\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40323.8 1.33270 0.666351 0.745638i \(-0.267855\pi\)
0.666351 + 0.745638i \(0.267855\pi\)
\(972\) 0 0
\(973\) −10432.3 −0.343724
\(974\) 0 0
\(975\) −18331.0 −0.602114
\(976\) 0 0
\(977\) 43661.9 1.42975 0.714877 0.699250i \(-0.246483\pi\)
0.714877 + 0.699250i \(0.246483\pi\)
\(978\) 0 0
\(979\) −2542.51 −0.0830021
\(980\) 0 0
\(981\) 62171.2 2.02342
\(982\) 0 0
\(983\) 4631.96 0.150291 0.0751457 0.997173i \(-0.476058\pi\)
0.0751457 + 0.997173i \(0.476058\pi\)
\(984\) 0 0
\(985\) −29709.0 −0.961023
\(986\) 0 0
\(987\) −5302.12 −0.170991
\(988\) 0 0
\(989\) 9398.59 0.302182
\(990\) 0 0
\(991\) 8846.42 0.283568 0.141784 0.989898i \(-0.454716\pi\)
0.141784 + 0.989898i \(0.454716\pi\)
\(992\) 0 0
\(993\) −93002.9 −2.97216
\(994\) 0 0
\(995\) −8953.68 −0.285277
\(996\) 0 0
\(997\) −16194.4 −0.514424 −0.257212 0.966355i \(-0.582804\pi\)
−0.257212 + 0.966355i \(0.582804\pi\)
\(998\) 0 0
\(999\) 53941.4 1.70834
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2312.4.a.r.1.2 24
17.5 odd 16 136.4.n.a.25.6 24
17.7 odd 16 136.4.n.a.49.6 yes 24
17.16 even 2 inner 2312.4.a.r.1.23 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.4.n.a.25.6 24 17.5 odd 16
136.4.n.a.49.6 yes 24 17.7 odd 16
2312.4.a.r.1.2 24 1.1 even 1 trivial
2312.4.a.r.1.23 24 17.16 even 2 inner