Properties

Label 231.4.i.a.67.3
Level $231$
Weight $4$
Character 231.67
Analytic conductor $13.629$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [231,4,Mod(67,231)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("231.67"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(231, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 231 = 3 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 231.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6294412113\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 55 x^{14} - 108 x^{13} + 1559 x^{12} - 2354 x^{11} + 27458 x^{10} - 12372 x^{9} + \cdots + 7225344 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.3
Root \(1.74221 - 3.01759i\) of defining polynomial
Character \(\chi\) \(=\) 231.67
Dual form 231.4.i.a.100.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24221 - 2.15156i) q^{2} +(1.50000 - 2.59808i) q^{3} +(0.913847 - 1.58283i) q^{4} +(2.47926 + 4.29420i) q^{5} -7.45324 q^{6} +(5.11112 - 17.8010i) q^{7} -24.4160 q^{8} +(-4.50000 - 7.79423i) q^{9} +(6.15950 - 10.6686i) q^{10} +(-5.50000 + 9.52628i) q^{11} +(-2.74154 - 4.74849i) q^{12} -15.2217 q^{13} +(-44.6491 + 11.1156i) q^{14} +14.8756 q^{15} +(23.0190 + 39.8701i) q^{16} +(0.586100 - 1.01516i) q^{17} +(-11.1799 + 19.3641i) q^{18} +(-67.1398 - 116.290i) q^{19} +9.06266 q^{20} +(-38.5817 - 39.9806i) q^{21} +27.3285 q^{22} +(-42.5332 - 73.6697i) q^{23} +(-36.6241 + 63.4348i) q^{24} +(50.2065 - 86.9603i) q^{25} +(18.9084 + 32.7504i) q^{26} -27.0000 q^{27} +(-23.5052 - 24.3575i) q^{28} +44.5084 q^{29} +(-18.4785 - 32.0057i) q^{30} +(-132.686 + 229.818i) q^{31} +(-40.4755 + 70.1057i) q^{32} +(16.5000 + 28.5788i) q^{33} -2.91223 q^{34} +(89.1130 - 22.1852i) q^{35} -16.4493 q^{36} +(8.69454 + 15.0594i) q^{37} +(-166.803 + 288.911i) q^{38} +(-22.8325 + 39.5470i) q^{39} +(-60.5337 - 104.847i) q^{40} +79.0547 q^{41} +(-38.0944 + 132.675i) q^{42} -323.538 q^{43} +(10.0523 + 17.4111i) q^{44} +(22.3133 - 38.6478i) q^{45} +(-105.670 + 183.026i) q^{46} +(239.778 + 415.308i) q^{47} +138.114 q^{48} +(-290.753 - 181.966i) q^{49} -249.468 q^{50} +(-1.75830 - 3.04547i) q^{51} +(-13.9103 + 24.0933i) q^{52} +(46.1456 - 79.9266i) q^{53} +(33.5396 + 58.0922i) q^{54} -54.5437 q^{55} +(-124.793 + 434.631i) q^{56} -402.839 q^{57} +(-55.2886 - 95.7626i) q^{58} +(-118.898 + 205.937i) q^{59} +(13.5940 - 23.5455i) q^{60} +(-170.461 - 295.248i) q^{61} +659.292 q^{62} +(-161.745 + 40.2673i) q^{63} +569.420 q^{64} +(-37.7385 - 65.3649i) q^{65} +(40.9928 - 71.0016i) q^{66} +(366.559 - 634.898i) q^{67} +(-1.07121 - 1.85539i) q^{68} -255.199 q^{69} +(-158.430 - 164.174i) q^{70} -327.228 q^{71} +(109.872 + 190.304i) q^{72} +(370.181 - 641.172i) q^{73} +(21.6008 - 37.4137i) q^{74} +(-150.620 - 260.881i) q^{75} -245.422 q^{76} +(141.466 + 146.596i) q^{77} +113.451 q^{78} +(34.5321 + 59.8113i) q^{79} +(-114.140 + 197.696i) q^{80} +(-40.5000 + 70.1481i) q^{81} +(-98.2022 - 170.091i) q^{82} +423.586 q^{83} +(-98.5403 + 24.5321i) q^{84} +5.81238 q^{85} +(401.900 + 696.112i) q^{86} +(66.7625 - 115.636i) q^{87} +(134.288 - 232.594i) q^{88} +(-66.0794 - 114.453i) q^{89} -110.871 q^{90} +(-77.7998 + 270.961i) q^{91} -155.475 q^{92} +(398.057 + 689.455i) q^{93} +(595.709 - 1031.80i) q^{94} +(332.914 - 576.624i) q^{95} +(121.427 + 210.317i) q^{96} +1117.29 q^{97} +(-30.3375 + 851.613i) q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 24 q^{3} - 30 q^{4} - 20 q^{5} + 24 q^{6} + 18 q^{7} - 156 q^{8} - 72 q^{9} - 94 q^{10} - 88 q^{11} + 90 q^{12} - 188 q^{13} + 52 q^{14} - 120 q^{15} + 10 q^{16} - 144 q^{17} + 36 q^{18}+ \cdots + 1584 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/231\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(211\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24221 2.15156i −0.439186 0.760693i 0.558441 0.829544i \(-0.311400\pi\)
−0.997627 + 0.0688516i \(0.978067\pi\)
\(3\) 1.50000 2.59808i 0.288675 0.500000i
\(4\) 0.913847 1.58283i 0.114231 0.197854i
\(5\) 2.47926 + 4.29420i 0.221752 + 0.384085i 0.955340 0.295509i \(-0.0954892\pi\)
−0.733588 + 0.679594i \(0.762156\pi\)
\(6\) −7.45324 −0.507129
\(7\) 5.11112 17.8010i 0.275975 0.961165i
\(8\) −24.4160 −1.07905
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) 6.15950 10.6686i 0.194781 0.337370i
\(11\) −5.50000 + 9.52628i −0.150756 + 0.261116i
\(12\) −2.74154 4.74849i −0.0659513 0.114231i
\(13\) −15.2217 −0.324748 −0.162374 0.986729i \(-0.551915\pi\)
−0.162374 + 0.986729i \(0.551915\pi\)
\(14\) −44.6491 + 11.1156i −0.852356 + 0.212198i
\(15\) 14.8756 0.256057
\(16\) 23.0190 + 39.8701i 0.359672 + 0.622970i
\(17\) 0.586100 1.01516i 0.00836178 0.0144830i −0.861814 0.507224i \(-0.830672\pi\)
0.870176 + 0.492741i \(0.164005\pi\)
\(18\) −11.1799 + 19.3641i −0.146395 + 0.253564i
\(19\) −67.1398 116.290i −0.810680 1.40414i −0.912389 0.409325i \(-0.865764\pi\)
0.101709 0.994814i \(-0.467569\pi\)
\(20\) 9.06266 0.101324
\(21\) −38.5817 39.9806i −0.400915 0.415452i
\(22\) 27.3285 0.264839
\(23\) −42.5332 73.6697i −0.385600 0.667878i 0.606253 0.795272i \(-0.292672\pi\)
−0.991852 + 0.127394i \(0.959339\pi\)
\(24\) −36.6241 + 63.4348i −0.311494 + 0.539524i
\(25\) 50.2065 86.9603i 0.401652 0.695682i
\(26\) 18.9084 + 32.7504i 0.142625 + 0.247034i
\(27\) −27.0000 −0.192450
\(28\) −23.5052 24.3575i −0.158645 0.164397i
\(29\) 44.5084 0.285000 0.142500 0.989795i \(-0.454486\pi\)
0.142500 + 0.989795i \(0.454486\pi\)
\(30\) −18.4785 32.0057i −0.112457 0.194781i
\(31\) −132.686 + 229.818i −0.768744 + 1.33150i 0.169500 + 0.985530i \(0.445785\pi\)
−0.938244 + 0.345974i \(0.887549\pi\)
\(32\) −40.4755 + 70.1057i −0.223598 + 0.387283i
\(33\) 16.5000 + 28.5788i 0.0870388 + 0.150756i
\(34\) −2.91223 −0.0146895
\(35\) 89.1130 22.1852i 0.430367 0.107142i
\(36\) −16.4493 −0.0761540
\(37\) 8.69454 + 15.0594i 0.0386317 + 0.0669121i 0.884695 0.466171i \(-0.154367\pi\)
−0.846063 + 0.533083i \(0.821033\pi\)
\(38\) −166.803 + 288.911i −0.712079 + 1.23336i
\(39\) −22.8325 + 39.5470i −0.0937468 + 0.162374i
\(40\) −60.5337 104.847i −0.239281 0.414446i
\(41\) 79.0547 0.301129 0.150564 0.988600i \(-0.451891\pi\)
0.150564 + 0.988600i \(0.451891\pi\)
\(42\) −38.0944 + 132.675i −0.139955 + 0.487434i
\(43\) −323.538 −1.14742 −0.573710 0.819059i \(-0.694496\pi\)
−0.573710 + 0.819059i \(0.694496\pi\)
\(44\) 10.0523 + 17.4111i 0.0344419 + 0.0596552i
\(45\) 22.3133 38.6478i 0.0739172 0.128028i
\(46\) −105.670 + 183.026i −0.338700 + 0.586646i
\(47\) 239.778 + 415.308i 0.744155 + 1.28891i 0.950589 + 0.310453i \(0.100481\pi\)
−0.206434 + 0.978461i \(0.566186\pi\)
\(48\) 138.114 0.415313
\(49\) −290.753 181.966i −0.847676 0.530514i
\(50\) −249.468 −0.705601
\(51\) −1.75830 3.04547i −0.00482767 0.00836178i
\(52\) −13.9103 + 24.0933i −0.0370963 + 0.0642527i
\(53\) 46.1456 79.9266i 0.119596 0.207146i −0.800012 0.599985i \(-0.795173\pi\)
0.919608 + 0.392838i \(0.128507\pi\)
\(54\) 33.5396 + 58.0922i 0.0845214 + 0.146395i
\(55\) −54.5437 −0.133721
\(56\) −124.793 + 434.631i −0.297790 + 1.03714i
\(57\) −402.839 −0.936093
\(58\) −55.2886 95.7626i −0.125168 0.216797i
\(59\) −118.898 + 205.937i −0.262359 + 0.454420i −0.966868 0.255275i \(-0.917834\pi\)
0.704509 + 0.709695i \(0.251167\pi\)
\(60\) 13.5940 23.5455i 0.0292496 0.0506618i
\(61\) −170.461 295.248i −0.357793 0.619715i 0.629799 0.776758i \(-0.283137\pi\)
−0.987592 + 0.157043i \(0.949804\pi\)
\(62\) 659.292 1.35049
\(63\) −161.745 + 40.2673i −0.323460 + 0.0805271i
\(64\) 569.420 1.11215
\(65\) −37.7385 65.3649i −0.0720135 0.124731i
\(66\) 40.9928 71.0016i 0.0764525 0.132420i
\(67\) 366.559 634.898i 0.668392 1.15769i −0.309961 0.950749i \(-0.600316\pi\)
0.978354 0.206940i \(-0.0663505\pi\)
\(68\) −1.07121 1.85539i −0.00191035 0.00330882i
\(69\) −255.199 −0.445252
\(70\) −158.430 164.174i −0.270514 0.280322i
\(71\) −327.228 −0.546969 −0.273484 0.961876i \(-0.588176\pi\)
−0.273484 + 0.961876i \(0.588176\pi\)
\(72\) 109.872 + 190.304i 0.179841 + 0.311494i
\(73\) 370.181 641.172i 0.593512 1.02799i −0.400243 0.916409i \(-0.631074\pi\)
0.993755 0.111584i \(-0.0355923\pi\)
\(74\) 21.6008 37.4137i 0.0339330 0.0587737i
\(75\) −150.620 260.881i −0.231894 0.401652i
\(76\) −245.422 −0.370419
\(77\) 141.466 + 146.596i 0.209371 + 0.216963i
\(78\) 113.451 0.164689
\(79\) 34.5321 + 59.8113i 0.0491793 + 0.0851810i 0.889567 0.456804i \(-0.151006\pi\)
−0.840388 + 0.541986i \(0.817673\pi\)
\(80\) −114.140 + 197.696i −0.159516 + 0.276289i
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) −98.2022 170.091i −0.132252 0.229066i
\(83\) 423.586 0.560177 0.280088 0.959974i \(-0.409636\pi\)
0.280088 + 0.959974i \(0.409636\pi\)
\(84\) −98.5403 + 24.5321i −0.127996 + 0.0318652i
\(85\) 5.81238 0.00741696
\(86\) 401.900 + 696.112i 0.503931 + 0.872833i
\(87\) 66.7625 115.636i 0.0822724 0.142500i
\(88\) 134.288 232.594i 0.162672 0.281757i
\(89\) −66.0794 114.453i −0.0787012 0.136314i 0.823989 0.566606i \(-0.191744\pi\)
−0.902690 + 0.430292i \(0.858411\pi\)
\(90\) −110.871 −0.129854
\(91\) −77.7998 + 270.961i −0.0896224 + 0.312137i
\(92\) −155.475 −0.176190
\(93\) 398.057 + 689.455i 0.443835 + 0.768744i
\(94\) 595.709 1031.80i 0.653645 1.13215i
\(95\) 332.914 576.624i 0.359539 0.622741i
\(96\) 121.427 + 210.317i 0.129094 + 0.223598i
\(97\) 1117.29 1.16952 0.584760 0.811206i \(-0.301189\pi\)
0.584760 + 0.811206i \(0.301189\pi\)
\(98\) −30.3375 + 851.613i −0.0312709 + 0.877816i
\(99\) 99.0000 0.100504
\(100\) −91.7622 158.937i −0.0917622 0.158937i
\(101\) 651.125 1127.78i 0.641479 1.11107i −0.343624 0.939107i \(-0.611654\pi\)
0.985103 0.171967i \(-0.0550122\pi\)
\(102\) −4.36835 + 7.56620i −0.00424050 + 0.00734476i
\(103\) −86.5588 149.924i −0.0828048 0.143422i 0.821649 0.569994i \(-0.193054\pi\)
−0.904454 + 0.426572i \(0.859721\pi\)
\(104\) 371.653 0.350419
\(105\) 76.0308 264.800i 0.0706652 0.246113i
\(106\) −229.290 −0.210100
\(107\) −32.6773 56.5987i −0.0295237 0.0511365i 0.850886 0.525350i \(-0.176066\pi\)
−0.880410 + 0.474214i \(0.842732\pi\)
\(108\) −24.6739 + 42.7364i −0.0219838 + 0.0380770i
\(109\) 1115.81 1932.64i 0.980506 1.69829i 0.320086 0.947388i \(-0.396288\pi\)
0.660419 0.750897i \(-0.270379\pi\)
\(110\) 67.7545 + 117.354i 0.0587286 + 0.101721i
\(111\) 52.1672 0.0446081
\(112\) 827.381 205.981i 0.698037 0.173780i
\(113\) −264.433 −0.220140 −0.110070 0.993924i \(-0.535107\pi\)
−0.110070 + 0.993924i \(0.535107\pi\)
\(114\) 500.409 + 866.733i 0.411119 + 0.712079i
\(115\) 210.902 365.293i 0.171015 0.296206i
\(116\) 40.6739 70.4492i 0.0325558 0.0563883i
\(117\) 68.4975 + 118.641i 0.0541247 + 0.0937468i
\(118\) 590.784 0.460899
\(119\) −15.0752 15.6218i −0.0116129 0.0120340i
\(120\) −363.202 −0.276297
\(121\) −60.5000 104.789i −0.0454545 0.0787296i
\(122\) −423.496 + 733.517i −0.314275 + 0.544340i
\(123\) 118.582 205.390i 0.0869283 0.150564i
\(124\) 242.509 + 420.038i 0.175629 + 0.304198i
\(125\) 1117.72 0.799772
\(126\) 287.559 + 297.985i 0.203316 + 0.210687i
\(127\) −649.675 −0.453932 −0.226966 0.973903i \(-0.572881\pi\)
−0.226966 + 0.973903i \(0.572881\pi\)
\(128\) −383.532 664.297i −0.264842 0.458720i
\(129\) −485.306 + 840.575i −0.331231 + 0.573710i
\(130\) −93.7579 + 162.393i −0.0632547 + 0.109560i
\(131\) −1020.94 1768.31i −0.680913 1.17938i −0.974703 0.223506i \(-0.928250\pi\)
0.293789 0.955870i \(-0.405084\pi\)
\(132\) 60.3139 0.0397701
\(133\) −2413.23 + 600.787i −1.57334 + 0.391690i
\(134\) −1821.37 −1.17419
\(135\) −66.9400 115.944i −0.0426761 0.0739172i
\(136\) −14.3103 + 24.7861i −0.00902275 + 0.0156279i
\(137\) 1408.41 2439.44i 0.878310 1.52128i 0.0251165 0.999685i \(-0.492004\pi\)
0.853194 0.521594i \(-0.174662\pi\)
\(138\) 317.010 + 549.078i 0.195549 + 0.338700i
\(139\) 1643.67 1.00298 0.501490 0.865163i \(-0.332785\pi\)
0.501490 + 0.865163i \(0.332785\pi\)
\(140\) 46.3204 161.325i 0.0279628 0.0973887i
\(141\) 1438.67 0.859276
\(142\) 406.484 + 704.052i 0.240221 + 0.416075i
\(143\) 83.7192 145.006i 0.0489577 0.0847972i
\(144\) 207.171 358.830i 0.119891 0.207657i
\(145\) 110.348 + 191.128i 0.0631992 + 0.109464i
\(146\) −1839.36 −1.04265
\(147\) −908.892 + 482.448i −0.509960 + 0.270692i
\(148\) 31.7819 0.0176517
\(149\) 188.362 + 326.252i 0.103565 + 0.179380i 0.913151 0.407621i \(-0.133642\pi\)
−0.809586 + 0.587001i \(0.800308\pi\)
\(150\) −374.201 + 648.136i −0.203689 + 0.352800i
\(151\) −76.6136 + 132.699i −0.0412896 + 0.0715156i −0.885932 0.463816i \(-0.846480\pi\)
0.844642 + 0.535331i \(0.179813\pi\)
\(152\) 1639.29 + 2839.33i 0.874762 + 1.51513i
\(153\) −10.5498 −0.00557452
\(154\) 139.680 486.476i 0.0730889 0.254554i
\(155\) −1315.85 −0.681881
\(156\) 41.7308 + 72.2799i 0.0214176 + 0.0370963i
\(157\) 1445.27 2503.28i 0.734683 1.27251i −0.220179 0.975459i \(-0.570664\pi\)
0.954862 0.297049i \(-0.0960025\pi\)
\(158\) 85.7920 148.596i 0.0431977 0.0748207i
\(159\) −138.437 239.780i −0.0690488 0.119596i
\(160\) −401.397 −0.198333
\(161\) −1528.79 + 380.600i −0.748357 + 0.186307i
\(162\) 201.237 0.0975969
\(163\) 1645.50 + 2850.09i 0.790708 + 1.36955i 0.925529 + 0.378677i \(0.123621\pi\)
−0.134821 + 0.990870i \(0.543046\pi\)
\(164\) 72.2439 125.130i 0.0343982 0.0595794i
\(165\) −81.8156 + 141.709i −0.0386020 + 0.0668607i
\(166\) −526.182 911.373i −0.246022 0.426122i
\(167\) −1959.51 −0.907973 −0.453987 0.891009i \(-0.649999\pi\)
−0.453987 + 0.891009i \(0.649999\pi\)
\(168\) 942.013 + 976.169i 0.432607 + 0.448292i
\(169\) −1965.30 −0.894538
\(170\) −7.22018 12.5057i −0.00325742 0.00564203i
\(171\) −604.258 + 1046.61i −0.270227 + 0.468046i
\(172\) −295.664 + 512.105i −0.131071 + 0.227021i
\(173\) 1973.73 + 3418.60i 0.867397 + 1.50238i 0.864647 + 0.502380i \(0.167542\pi\)
0.00275021 + 0.999996i \(0.499125\pi\)
\(174\) −331.731 −0.144532
\(175\) −1291.37 1338.19i −0.557819 0.578045i
\(176\) −506.418 −0.216890
\(177\) 356.694 + 617.812i 0.151473 + 0.262359i
\(178\) −164.169 + 284.348i −0.0691289 + 0.119735i
\(179\) −2167.93 + 3754.96i −0.905243 + 1.56793i −0.0846530 + 0.996410i \(0.526978\pi\)
−0.820590 + 0.571517i \(0.806355\pi\)
\(180\) −40.7820 70.6365i −0.0168873 0.0292496i
\(181\) −1512.91 −0.621293 −0.310647 0.950525i \(-0.600546\pi\)
−0.310647 + 0.950525i \(0.600546\pi\)
\(182\) 679.634 169.198i 0.276801 0.0689111i
\(183\) −1022.77 −0.413143
\(184\) 1038.49 + 1798.72i 0.416080 + 0.720672i
\(185\) −43.1120 + 74.6722i −0.0171333 + 0.0296757i
\(186\) 988.938 1712.89i 0.389852 0.675244i
\(187\) 6.44710 + 11.1667i 0.00252117 + 0.00436680i
\(188\) 876.484 0.340022
\(189\) −138.000 + 480.628i −0.0531114 + 0.184976i
\(190\) −1654.19 −0.631619
\(191\) −528.274 914.997i −0.200128 0.346633i 0.748441 0.663201i \(-0.230803\pi\)
−0.948570 + 0.316568i \(0.897469\pi\)
\(192\) 854.129 1479.40i 0.321049 0.556074i
\(193\) 1059.36 1834.87i 0.395101 0.684335i −0.598013 0.801486i \(-0.704043\pi\)
0.993114 + 0.117151i \(0.0373763\pi\)
\(194\) −1387.90 2403.92i −0.513637 0.889645i
\(195\) −226.431 −0.0831541
\(196\) −553.726 + 293.923i −0.201795 + 0.107115i
\(197\) −1262.14 −0.456465 −0.228232 0.973607i \(-0.573295\pi\)
−0.228232 + 0.973607i \(0.573295\pi\)
\(198\) −122.978 213.005i −0.0441399 0.0764525i
\(199\) −791.323 + 1370.61i −0.281887 + 0.488242i −0.971849 0.235603i \(-0.924294\pi\)
0.689963 + 0.723845i \(0.257627\pi\)
\(200\) −1225.85 + 2123.23i −0.433402 + 0.750674i
\(201\) −1099.68 1904.69i −0.385896 0.668392i
\(202\) −3235.33 −1.12692
\(203\) 227.488 792.294i 0.0786527 0.273932i
\(204\) −6.42728 −0.00220588
\(205\) 195.997 + 339.477i 0.0667758 + 0.115659i
\(206\) −215.048 + 372.474i −0.0727334 + 0.125978i
\(207\) −382.799 + 663.027i −0.128533 + 0.222626i
\(208\) −350.387 606.889i −0.116803 0.202308i
\(209\) 1477.08 0.488858
\(210\) −664.181 + 165.351i −0.218251 + 0.0543349i
\(211\) 114.417 0.0373306 0.0186653 0.999826i \(-0.494058\pi\)
0.0186653 + 0.999826i \(0.494058\pi\)
\(212\) −84.3401 146.081i −0.0273231 0.0473250i
\(213\) −490.842 + 850.163i −0.157896 + 0.273484i
\(214\) −81.1838 + 140.615i −0.0259328 + 0.0449169i
\(215\) −802.134 1389.34i −0.254442 0.440707i
\(216\) 659.233 0.207663
\(217\) 3412.83 + 3536.57i 1.06764 + 1.10635i
\(218\) −5544.26 −1.72250
\(219\) −1110.54 1923.52i −0.342664 0.593512i
\(220\) −49.8446 + 86.3334i −0.0152751 + 0.0264573i
\(221\) −8.92142 + 15.4524i −0.00271547 + 0.00470334i
\(222\) −64.8025 112.241i −0.0195912 0.0339330i
\(223\) 2891.63 0.868332 0.434166 0.900833i \(-0.357043\pi\)
0.434166 + 0.900833i \(0.357043\pi\)
\(224\) 1041.08 + 1078.82i 0.310535 + 0.321795i
\(225\) −903.718 −0.267768
\(226\) 328.481 + 568.945i 0.0966823 + 0.167459i
\(227\) 2988.15 5175.62i 0.873702 1.51330i 0.0155620 0.999879i \(-0.495046\pi\)
0.858140 0.513417i \(-0.171620\pi\)
\(228\) −368.133 + 637.625i −0.106931 + 0.185209i
\(229\) 318.269 + 551.259i 0.0918421 + 0.159075i 0.908286 0.418349i \(-0.137391\pi\)
−0.816444 + 0.577424i \(0.804058\pi\)
\(230\) −1047.93 −0.300429
\(231\) 593.066 147.647i 0.168922 0.0420539i
\(232\) −1086.72 −0.307528
\(233\) −1090.71 1889.16i −0.306672 0.531171i 0.670960 0.741493i \(-0.265882\pi\)
−0.977632 + 0.210322i \(0.932549\pi\)
\(234\) 170.176 294.754i 0.0475417 0.0823446i
\(235\) −1188.95 + 2059.32i −0.330035 + 0.571638i
\(236\) 217.309 + 376.391i 0.0599391 + 0.103818i
\(237\) 207.193 0.0567874
\(238\) −14.8848 + 51.8407i −0.00405393 + 0.0141190i
\(239\) −1678.75 −0.454349 −0.227175 0.973854i \(-0.572949\pi\)
−0.227175 + 0.973854i \(0.572949\pi\)
\(240\) 342.420 + 593.089i 0.0920964 + 0.159516i
\(241\) 504.512 873.841i 0.134849 0.233565i −0.790691 0.612215i \(-0.790279\pi\)
0.925540 + 0.378651i \(0.123612\pi\)
\(242\) −150.307 + 260.339i −0.0399260 + 0.0691539i
\(243\) 121.500 + 210.444i 0.0320750 + 0.0555556i
\(244\) −623.103 −0.163484
\(245\) 60.5491 1699.69i 0.0157892 0.443222i
\(246\) −589.213 −0.152711
\(247\) 1021.98 + 1770.12i 0.263267 + 0.455992i
\(248\) 3239.66 5611.26i 0.829511 1.43676i
\(249\) 635.380 1100.51i 0.161709 0.280088i
\(250\) −1388.43 2404.84i −0.351249 0.608381i
\(251\) 6785.33 1.70632 0.853160 0.521649i \(-0.174683\pi\)
0.853160 + 0.521649i \(0.174683\pi\)
\(252\) −84.0742 + 292.814i −0.0210166 + 0.0731965i
\(253\) 935.731 0.232525
\(254\) 807.031 + 1397.82i 0.199361 + 0.345303i
\(255\) 8.71857 15.1010i 0.00214109 0.00370848i
\(256\) 1324.83 2294.67i 0.323444 0.560221i
\(257\) 2270.39 + 3932.43i 0.551063 + 0.954468i 0.998198 + 0.0600022i \(0.0191108\pi\)
−0.447136 + 0.894466i \(0.647556\pi\)
\(258\) 2411.40 0.581889
\(259\) 312.511 77.8013i 0.0749749 0.0186654i
\(260\) −137.949 −0.0329047
\(261\) −200.288 346.908i −0.0475000 0.0822724i
\(262\) −2536.43 + 4393.22i −0.598095 + 1.03593i
\(263\) 518.827 898.634i 0.121643 0.210693i −0.798772 0.601633i \(-0.794517\pi\)
0.920416 + 0.390941i \(0.127850\pi\)
\(264\) −402.865 697.782i −0.0939190 0.162672i
\(265\) 457.628 0.106082
\(266\) 4290.36 + 4445.92i 0.988944 + 1.02480i
\(267\) −396.476 −0.0908763
\(268\) −669.957 1160.40i −0.152702 0.264488i
\(269\) 1495.73 2590.68i 0.339019 0.587199i −0.645229 0.763989i \(-0.723238\pi\)
0.984249 + 0.176790i \(0.0565714\pi\)
\(270\) −166.307 + 288.052i −0.0374855 + 0.0649269i
\(271\) −2220.49 3846.00i −0.497732 0.862096i 0.502265 0.864714i \(-0.332500\pi\)
−0.999997 + 0.00261742i \(0.999167\pi\)
\(272\) 53.9657 0.0120300
\(273\) 587.278 + 608.572i 0.130197 + 0.134917i
\(274\) −6998.14 −1.54297
\(275\) 552.272 + 956.563i 0.121103 + 0.209756i
\(276\) −233.213 + 403.937i −0.0508616 + 0.0880948i
\(277\) −3693.72 + 6397.72i −0.801207 + 1.38773i 0.117615 + 0.993059i \(0.462475\pi\)
−0.918822 + 0.394672i \(0.870858\pi\)
\(278\) −2041.78 3536.46i −0.440495 0.762960i
\(279\) 2388.34 0.512496
\(280\) −2175.79 + 541.674i −0.464386 + 0.115611i
\(281\) −5581.14 −1.18485 −0.592425 0.805626i \(-0.701829\pi\)
−0.592425 + 0.805626i \(0.701829\pi\)
\(282\) −1787.13 3095.39i −0.377382 0.653645i
\(283\) 2122.12 3675.61i 0.445748 0.772058i −0.552356 0.833608i \(-0.686271\pi\)
0.998104 + 0.0615502i \(0.0196044\pi\)
\(284\) −299.036 + 517.946i −0.0624808 + 0.108220i
\(285\) −998.742 1729.87i −0.207580 0.359539i
\(286\) −415.986 −0.0860061
\(287\) 404.058 1407.25i 0.0831039 0.289434i
\(288\) 728.560 0.149065
\(289\) 2455.81 + 4253.59i 0.499860 + 0.865783i
\(290\) 274.149 474.841i 0.0555124 0.0961504i
\(291\) 1675.93 2902.80i 0.337611 0.584760i
\(292\) −676.577 1171.87i −0.135595 0.234857i
\(293\) −168.835 −0.0336637 −0.0168319 0.999858i \(-0.505358\pi\)
−0.0168319 + 0.999858i \(0.505358\pi\)
\(294\) 2167.05 + 1356.24i 0.429881 + 0.269039i
\(295\) −1179.12 −0.232715
\(296\) −212.286 367.691i −0.0416854 0.0722013i
\(297\) 148.500 257.210i 0.0290129 0.0502519i
\(298\) 467.969 810.545i 0.0909688 0.157563i
\(299\) 647.426 + 1121.38i 0.125223 + 0.216892i
\(300\) −550.573 −0.105958
\(301\) −1653.64 + 5759.30i −0.316659 + 1.10286i
\(302\) 380.680 0.0725353
\(303\) −1953.38 3383.35i −0.370358 0.641479i
\(304\) 3090.98 5353.73i 0.583157 1.01006i
\(305\) 845.236 1463.99i 0.158682 0.274846i
\(306\) 13.1050 + 22.6986i 0.00244825 + 0.00424050i
\(307\) 941.743 0.175075 0.0875376 0.996161i \(-0.472100\pi\)
0.0875376 + 0.996161i \(0.472100\pi\)
\(308\) 361.315 89.9512i 0.0668435 0.0166411i
\(309\) −519.353 −0.0956147
\(310\) 1634.56 + 2831.14i 0.299473 + 0.518702i
\(311\) 1323.73 2292.77i 0.241357 0.418043i −0.719744 0.694240i \(-0.755741\pi\)
0.961101 + 0.276197i \(0.0890742\pi\)
\(312\) 557.479 965.583i 0.101157 0.175209i
\(313\) 692.157 + 1198.85i 0.124994 + 0.216495i 0.921730 0.387831i \(-0.126776\pi\)
−0.796737 + 0.604326i \(0.793442\pi\)
\(314\) −7181.30 −1.29065
\(315\) −573.925 594.734i −0.102657 0.106379i
\(316\) 126.228 0.0224712
\(317\) 4285.77 + 7423.16i 0.759346 + 1.31523i 0.943185 + 0.332269i \(0.107814\pi\)
−0.183839 + 0.982956i \(0.558853\pi\)
\(318\) −343.934 + 595.712i −0.0606506 + 0.105050i
\(319\) −244.796 + 423.999i −0.0429653 + 0.0744182i
\(320\) 1411.74 + 2445.20i 0.246621 + 0.427160i
\(321\) −196.064 −0.0340910
\(322\) 2717.96 + 2816.50i 0.470391 + 0.487446i
\(323\) −157.403 −0.0271149
\(324\) 74.0216 + 128.209i 0.0126923 + 0.0219838i
\(325\) −764.227 + 1323.68i −0.130436 + 0.225922i
\(326\) 4088.10 7080.79i 0.694536 1.20297i
\(327\) −3347.43 5797.91i −0.566095 0.980506i
\(328\) −1930.20 −0.324932
\(329\) 8618.45 2145.61i 1.44423 0.359548i
\(330\) 406.527 0.0678139
\(331\) 3341.45 + 5787.56i 0.554872 + 0.961066i 0.997913 + 0.0645653i \(0.0205661\pi\)
−0.443042 + 0.896501i \(0.646101\pi\)
\(332\) 387.093 670.465i 0.0639895 0.110833i
\(333\) 78.2508 135.534i 0.0128772 0.0223040i
\(334\) 2434.12 + 4216.01i 0.398769 + 0.690689i
\(335\) 3635.18 0.592869
\(336\) 705.917 2458.57i 0.114616 0.399184i
\(337\) 6780.34 1.09599 0.547995 0.836482i \(-0.315391\pi\)
0.547995 + 0.836482i \(0.315391\pi\)
\(338\) 2441.31 + 4228.47i 0.392869 + 0.680469i
\(339\) −396.650 + 687.018i −0.0635488 + 0.110070i
\(340\) 5.31163 9.20001i 0.000847246 0.00146747i
\(341\) −1459.54 2528.00i −0.231785 0.401463i
\(342\) 3002.45 0.474719
\(343\) −4725.26 + 4245.65i −0.743849 + 0.668348i
\(344\) 7899.51 1.23812
\(345\) −632.705 1095.88i −0.0987354 0.171015i
\(346\) 4903.55 8493.20i 0.761898 1.31965i
\(347\) −6092.05 + 10551.7i −0.942474 + 1.63241i −0.181744 + 0.983346i \(0.558174\pi\)
−0.760731 + 0.649068i \(0.775159\pi\)
\(348\) −122.022 211.348i −0.0187961 0.0325558i
\(349\) 3464.32 0.531350 0.265675 0.964063i \(-0.414405\pi\)
0.265675 + 0.964063i \(0.414405\pi\)
\(350\) −1275.06 + 4440.78i −0.194728 + 0.678199i
\(351\) 410.985 0.0624979
\(352\) −445.231 771.162i −0.0674173 0.116770i
\(353\) 1014.41 1757.02i 0.152951 0.264920i −0.779360 0.626577i \(-0.784456\pi\)
0.932311 + 0.361657i \(0.117789\pi\)
\(354\) 886.176 1534.90i 0.133050 0.230449i
\(355\) −811.283 1405.18i −0.121291 0.210083i
\(356\) −241.546 −0.0359604
\(357\) −63.1993 + 15.7338i −0.00936936 + 0.00233255i
\(358\) 10772.1 1.59028
\(359\) −2963.72 5133.32i −0.435708 0.754669i 0.561645 0.827378i \(-0.310169\pi\)
−0.997353 + 0.0727096i \(0.976835\pi\)
\(360\) −544.804 + 943.627i −0.0797602 + 0.138149i
\(361\) −5586.00 + 9675.24i −0.814404 + 1.41059i
\(362\) 1879.35 + 3255.13i 0.272863 + 0.472613i
\(363\) −363.000 −0.0524864
\(364\) 357.788 + 370.761i 0.0515198 + 0.0533878i
\(365\) 3671.10 0.526449
\(366\) 1270.49 + 2200.55i 0.181447 + 0.314275i
\(367\) −312.369 + 541.039i −0.0444292 + 0.0769537i −0.887385 0.461029i \(-0.847480\pi\)
0.842956 + 0.537983i \(0.180814\pi\)
\(368\) 1958.14 3391.60i 0.277378 0.480434i
\(369\) −355.746 616.170i −0.0501881 0.0869283i
\(370\) 214.216 0.0300988
\(371\) −1186.92 1229.95i −0.166096 0.172119i
\(372\) 1455.05 0.202799
\(373\) −3877.28 6715.65i −0.538225 0.932233i −0.999000 0.0447162i \(-0.985762\pi\)
0.460774 0.887517i \(-0.347572\pi\)
\(374\) 16.0173 27.7427i 0.00221453 0.00383567i
\(375\) 1676.57 2903.91i 0.230874 0.399886i
\(376\) −5854.44 10140.2i −0.802978 1.39080i
\(377\) −677.491 −0.0925533
\(378\) 1205.53 300.122i 0.164036 0.0408376i
\(379\) −9904.96 −1.34244 −0.671219 0.741259i \(-0.734229\pi\)
−0.671219 + 0.741259i \(0.734229\pi\)
\(380\) −608.465 1053.89i −0.0821410 0.142272i
\(381\) −974.513 + 1687.91i −0.131039 + 0.226966i
\(382\) −1312.45 + 2273.23i −0.175787 + 0.304473i
\(383\) 735.224 + 1273.44i 0.0980892 + 0.169896i 0.910894 0.412641i \(-0.135394\pi\)
−0.812804 + 0.582537i \(0.802060\pi\)
\(384\) −2301.19 −0.305813
\(385\) −278.780 + 970.934i −0.0369037 + 0.128528i
\(386\) −5263.78 −0.694091
\(387\) 1455.92 + 2521.73i 0.191237 + 0.331231i
\(388\) 1021.03 1768.48i 0.133595 0.231394i
\(389\) −1212.48 + 2100.08i −0.158034 + 0.273724i −0.934160 0.356855i \(-0.883849\pi\)
0.776125 + 0.630579i \(0.217182\pi\)
\(390\) 281.274 + 487.180i 0.0365201 + 0.0632547i
\(391\) −99.7150 −0.0128972
\(392\) 7099.04 + 4442.90i 0.914682 + 0.572450i
\(393\) −6125.62 −0.786251
\(394\) 1567.83 + 2715.57i 0.200473 + 0.347229i
\(395\) −171.228 + 296.576i −0.0218112 + 0.0377781i
\(396\) 90.4709 156.700i 0.0114806 0.0198851i
\(397\) 5476.05 + 9484.80i 0.692280 + 1.19906i 0.971089 + 0.238718i \(0.0767270\pi\)
−0.278809 + 0.960347i \(0.589940\pi\)
\(398\) 3931.95 0.495203
\(399\) −2058.96 + 7170.94i −0.258338 + 0.899739i
\(400\) 4622.81 0.577852
\(401\) −7916.44 13711.7i −0.985856 1.70755i −0.638070 0.769978i \(-0.720267\pi\)
−0.347786 0.937574i \(-0.613066\pi\)
\(402\) −2732.05 + 4732.05i −0.338961 + 0.587097i
\(403\) 2019.70 3498.22i 0.249648 0.432404i
\(404\) −1190.06 2061.24i −0.146553 0.253838i
\(405\) −401.640 −0.0492782
\(406\) −1987.26 + 494.739i −0.242921 + 0.0604765i
\(407\) −191.280 −0.0232958
\(408\) 42.9308 + 74.3583i 0.00520929 + 0.00902275i
\(409\) −870.547 + 1507.83i −0.105246 + 0.182292i −0.913839 0.406077i \(-0.866896\pi\)
0.808592 + 0.588369i \(0.200230\pi\)
\(410\) 486.938 843.401i 0.0586540 0.101592i
\(411\) −4225.23 7318.31i −0.507093 0.878310i
\(412\) −316.406 −0.0378355
\(413\) 3058.20 + 3169.08i 0.364368 + 0.377579i
\(414\) 1902.06 0.225800
\(415\) 1050.18 + 1818.97i 0.124220 + 0.215156i
\(416\) 616.105 1067.13i 0.0726131 0.125770i
\(417\) 2465.50 4270.38i 0.289535 0.501490i
\(418\) −1834.83 3178.02i −0.214700 0.371871i
\(419\) −12573.1 −1.46596 −0.732980 0.680250i \(-0.761871\pi\)
−0.732980 + 0.680250i \(0.761871\pi\)
\(420\) −349.653 362.331i −0.0406222 0.0420951i
\(421\) 15134.3 1.75202 0.876008 0.482297i \(-0.160198\pi\)
0.876008 + 0.482297i \(0.160198\pi\)
\(422\) −142.129 246.175i −0.0163951 0.0283971i
\(423\) 2158.01 3737.78i 0.248052 0.429638i
\(424\) −1126.69 + 1951.49i −0.129050 + 0.223521i
\(425\) −58.8521 101.935i −0.00671706 0.0116343i
\(426\) 2438.91 0.277384
\(427\) −6126.96 + 1525.34i −0.694390 + 0.172872i
\(428\) −119.448 −0.0134901
\(429\) −251.157 435.017i −0.0282657 0.0489577i
\(430\) −1992.83 + 3451.68i −0.223495 + 0.387105i
\(431\) −133.274 + 230.838i −0.0148946 + 0.0257983i −0.873377 0.487045i \(-0.838075\pi\)
0.858482 + 0.512844i \(0.171408\pi\)
\(432\) −621.513 1076.49i −0.0692188 0.119891i
\(433\) 5174.52 0.574299 0.287150 0.957886i \(-0.407292\pi\)
0.287150 + 0.957886i \(0.407292\pi\)
\(434\) 3369.72 11736.1i 0.372700 1.29804i
\(435\) 662.087 0.0729762
\(436\) −2039.36 3532.27i −0.224008 0.387993i
\(437\) −5711.34 + 9892.34i −0.625196 + 1.08287i
\(438\) −2759.04 + 4778.80i −0.300987 + 0.521324i
\(439\) 3271.67 + 5666.69i 0.355691 + 0.616074i 0.987236 0.159265i \(-0.0509124\pi\)
−0.631545 + 0.775339i \(0.717579\pi\)
\(440\) 1331.74 0.144292
\(441\) −109.900 + 3085.04i −0.0118670 + 0.333122i
\(442\) 44.3290 0.00477040
\(443\) −3719.69 6442.69i −0.398934 0.690974i 0.594661 0.803977i \(-0.297286\pi\)
−0.993595 + 0.113003i \(0.963953\pi\)
\(444\) 47.6729 82.5719i 0.00509562 0.00882587i
\(445\) 327.656 567.517i 0.0349042 0.0604559i
\(446\) −3592.01 6221.54i −0.381360 0.660534i
\(447\) 1130.17 0.119587
\(448\) 2910.37 10136.3i 0.306925 1.06896i
\(449\) −17134.3 −1.80093 −0.900466 0.434927i \(-0.856774\pi\)
−0.900466 + 0.434927i \(0.856774\pi\)
\(450\) 1122.60 + 1944.41i 0.117600 + 0.203689i
\(451\) −434.801 + 753.097i −0.0453968 + 0.0786296i
\(452\) −241.652 + 418.553i −0.0251468 + 0.0435555i
\(453\) 229.841 + 398.096i 0.0238385 + 0.0412896i
\(454\) −14847.6 −1.53487
\(455\) −1356.45 + 337.695i −0.139761 + 0.0347943i
\(456\) 9835.73 1.01009
\(457\) 2421.96 + 4194.96i 0.247909 + 0.429392i 0.962946 0.269696i \(-0.0869231\pi\)
−0.715036 + 0.699087i \(0.753590\pi\)
\(458\) 790.713 1369.55i 0.0806716 0.139727i
\(459\) −15.8247 + 27.4092i −0.00160922 + 0.00278726i
\(460\) −385.464 667.644i −0.0390703 0.0676718i
\(461\) 10300.6 1.04066 0.520330 0.853965i \(-0.325809\pi\)
0.520330 + 0.853965i \(0.325809\pi\)
\(462\) −1054.38 1092.61i −0.106178 0.110028i
\(463\) 6748.75 0.677410 0.338705 0.940893i \(-0.390011\pi\)
0.338705 + 0.940893i \(0.390011\pi\)
\(464\) 1024.54 + 1774.55i 0.102506 + 0.177546i
\(465\) −1973.77 + 3418.68i −0.196842 + 0.340941i
\(466\) −2709.76 + 4693.45i −0.269372 + 0.466566i
\(467\) −469.629 813.420i −0.0465349 0.0806009i 0.841820 0.539759i \(-0.181485\pi\)
−0.888355 + 0.459158i \(0.848151\pi\)
\(468\) 250.385 0.0247309
\(469\) −9428.31 9770.16i −0.928271 0.961928i
\(470\) 5907.67 0.579788
\(471\) −4335.82 7509.85i −0.424170 0.734683i
\(472\) 2903.02 5028.18i 0.283098 0.490341i
\(473\) 1779.46 3082.11i 0.172980 0.299610i
\(474\) −257.376 445.788i −0.0249402 0.0431977i
\(475\) −13483.4 −1.30245
\(476\) −38.5030 + 9.58553i −0.00370753 + 0.000923009i
\(477\) −830.621 −0.0797307
\(478\) 2085.36 + 3611.94i 0.199544 + 0.345620i
\(479\) 5380.23 9318.82i 0.513212 0.888910i −0.486670 0.873586i \(-0.661789\pi\)
0.999883 0.0153242i \(-0.00487805\pi\)
\(480\) −602.096 + 1042.86i −0.0572538 + 0.0991664i
\(481\) −132.345 229.229i −0.0125456 0.0217296i
\(482\) −2506.83 −0.236894
\(483\) −1304.36 + 4542.81i −0.122878 + 0.427961i
\(484\) −221.151 −0.0207693
\(485\) 2770.05 + 4797.86i 0.259343 + 0.449195i
\(486\) 301.856 522.830i 0.0281738 0.0487985i
\(487\) −3841.41 + 6653.52i −0.357435 + 0.619096i −0.987532 0.157421i \(-0.949682\pi\)
0.630096 + 0.776517i \(0.283015\pi\)
\(488\) 4161.99 + 7208.78i 0.386075 + 0.668702i
\(489\) 9872.99 0.913031
\(490\) −3732.22 + 1981.10i −0.344090 + 0.182646i
\(491\) −12080.6 −1.11037 −0.555185 0.831727i \(-0.687353\pi\)
−0.555185 + 0.831727i \(0.687353\pi\)
\(492\) −216.732 375.391i −0.0198598 0.0343982i
\(493\) 26.0864 45.1829i 0.00238311 0.00412766i
\(494\) 2539.02 4397.71i 0.231247 0.400531i
\(495\) 245.447 + 425.126i 0.0222869 + 0.0386020i
\(496\) −12217.2 −1.10598
\(497\) −1672.50 + 5824.99i −0.150950 + 0.525727i
\(498\) −3157.09 −0.284082
\(499\) 473.811 + 820.665i 0.0425064 + 0.0736233i 0.886496 0.462736i \(-0.153132\pi\)
−0.843989 + 0.536360i \(0.819799\pi\)
\(500\) 1021.42 1769.15i 0.0913587 0.158238i
\(501\) −2939.27 + 5090.96i −0.262109 + 0.453987i
\(502\) −8428.78 14599.1i −0.749393 1.29799i
\(503\) −12353.5 −1.09506 −0.547532 0.836785i \(-0.684433\pi\)
−0.547532 + 0.836785i \(0.684433\pi\)
\(504\) 3949.18 983.169i 0.349029 0.0868925i
\(505\) 6457.24 0.568996
\(506\) −1162.37 2013.29i −0.102122 0.176880i
\(507\) −2947.95 + 5106.00i −0.258231 + 0.447269i
\(508\) −593.704 + 1028.33i −0.0518531 + 0.0898122i
\(509\) −5333.38 9237.69i −0.464436 0.804427i 0.534740 0.845017i \(-0.320410\pi\)
−0.999176 + 0.0405896i \(0.987076\pi\)
\(510\) −43.3211 −0.00376135
\(511\) −9521.47 9866.70i −0.824276 0.854163i
\(512\) −12719.3 −1.09789
\(513\) 1812.77 + 3139.82i 0.156015 + 0.270227i
\(514\) 5640.59 9769.78i 0.484038 0.838379i
\(515\) 429.204 743.402i 0.0367242 0.0636082i
\(516\) 886.992 + 1536.32i 0.0756737 + 0.131071i
\(517\) −5275.13 −0.448742
\(518\) −555.598 575.743i −0.0471266 0.0488353i
\(519\) 11842.4 1.00158
\(520\) 921.424 + 1595.95i 0.0777060 + 0.134591i
\(521\) −10208.3 + 17681.3i −0.858416 + 1.48682i 0.0150228 + 0.999887i \(0.495218\pi\)
−0.873439 + 0.486933i \(0.838115\pi\)
\(522\) −497.597 + 861.863i −0.0417227 + 0.0722658i
\(523\) 3645.26 + 6313.77i 0.304772 + 0.527881i 0.977211 0.212272i \(-0.0680862\pi\)
−0.672438 + 0.740153i \(0.734753\pi\)
\(524\) −3731.92 −0.311125
\(525\) −5413.78 + 1347.79i −0.450051 + 0.112043i
\(526\) −2577.96 −0.213696
\(527\) 155.534 + 269.393i 0.0128561 + 0.0222675i
\(528\) −759.627 + 1315.71i −0.0626108 + 0.108445i
\(529\) 2465.35 4270.11i 0.202626 0.350958i
\(530\) −568.468 984.616i −0.0465900 0.0806962i
\(531\) 2140.17 0.174906
\(532\) −1254.38 + 4368.76i −0.102226 + 0.356034i
\(533\) −1203.34 −0.0977910
\(534\) 492.506 + 853.045i 0.0399116 + 0.0691289i
\(535\) 162.031 280.646i 0.0130938 0.0226792i
\(536\) −8949.92 + 15501.7i −0.721227 + 1.24920i
\(537\) 6503.78 + 11264.9i 0.522642 + 0.905243i
\(538\) −7432.02 −0.595571
\(539\) 3332.60 1768.98i 0.266318 0.141364i
\(540\) −244.692 −0.0194997
\(541\) 8510.19 + 14740.1i 0.676306 + 1.17140i 0.976085 + 0.217388i \(0.0697538\pi\)
−0.299779 + 0.954009i \(0.596913\pi\)
\(542\) −5516.62 + 9555.06i −0.437194 + 0.757242i
\(543\) −2269.37 + 3930.67i −0.179352 + 0.310647i
\(544\) 47.4455 + 82.1779i 0.00373935 + 0.00647675i
\(545\) 11065.5 0.869715
\(546\) 579.860 2019.54i 0.0454501 0.158294i
\(547\) −3900.40 −0.304879 −0.152440 0.988313i \(-0.548713\pi\)
−0.152440 + 0.988313i \(0.548713\pi\)
\(548\) −2574.14 4458.55i −0.200660 0.347554i
\(549\) −1534.15 + 2657.23i −0.119264 + 0.206572i
\(550\) 1372.07 2376.50i 0.106373 0.184244i
\(551\) −2988.28 5175.86i −0.231044 0.400179i
\(552\) 6230.96 0.480448
\(553\) 1241.20 309.003i 0.0954453 0.0237616i
\(554\) 18353.5 1.40752
\(555\) 129.336 + 224.017i 0.00989191 + 0.0171333i
\(556\) 1502.06 2601.65i 0.114571 0.198443i
\(557\) −8033.51 + 13914.4i −0.611114 + 1.05848i 0.379939 + 0.925012i \(0.375945\pi\)
−0.991053 + 0.133469i \(0.957388\pi\)
\(558\) −2966.82 5138.67i −0.225081 0.389852i
\(559\) 4924.78 0.372623
\(560\) 2935.82 + 3042.26i 0.221537 + 0.229570i
\(561\) 38.6826 0.00291120
\(562\) 6932.92 + 12008.2i 0.520370 + 0.901306i
\(563\) −10095.3 + 17485.5i −0.755710 + 1.30893i 0.189311 + 0.981917i \(0.439375\pi\)
−0.945021 + 0.327010i \(0.893959\pi\)
\(564\) 1314.73 2277.17i 0.0981559 0.170011i
\(565\) −655.599 1135.53i −0.0488164 0.0845524i
\(566\) −10544.4 −0.783065
\(567\) 1041.71 + 1079.48i 0.0771562 + 0.0799537i
\(568\) 7989.61 0.590205
\(569\) −4469.12 7740.75i −0.329271 0.570315i 0.653096 0.757275i \(-0.273470\pi\)
−0.982367 + 0.186960i \(0.940136\pi\)
\(570\) −2481.29 + 4297.71i −0.182333 + 0.315810i
\(571\) 8306.16 14386.7i 0.608760 1.05440i −0.382685 0.923879i \(-0.625001\pi\)
0.991445 0.130524i \(-0.0416661\pi\)
\(572\) −153.013 265.026i −0.0111850 0.0193729i
\(573\) −3169.64 −0.231088
\(574\) −3529.72 + 878.743i −0.256669 + 0.0638990i
\(575\) −8541.78 −0.619508
\(576\) −2562.39 4438.19i −0.185358 0.321049i
\(577\) 1960.68 3395.99i 0.141463 0.245021i −0.786585 0.617482i \(-0.788153\pi\)
0.928048 + 0.372461i \(0.121486\pi\)
\(578\) 6101.25 10567.7i 0.439063 0.760480i
\(579\) −3178.08 5504.60i −0.228112 0.395101i
\(580\) 403.364 0.0288772
\(581\) 2165.00 7540.27i 0.154595 0.538422i
\(582\) −8327.41 −0.593097
\(583\) 507.602 + 879.192i 0.0360596 + 0.0624570i
\(584\) −9038.35 + 15654.9i −0.640427 + 1.10925i
\(585\) −339.646 + 588.284i −0.0240045 + 0.0415770i
\(586\) 209.728 + 363.260i 0.0147846 + 0.0256077i
\(587\) 19646.6 1.38144 0.690719 0.723123i \(-0.257294\pi\)
0.690719 + 0.723123i \(0.257294\pi\)
\(588\) −66.9547 + 1879.51i −0.00469586 + 0.131819i
\(589\) 35634.0 2.49282
\(590\) 1464.71 + 2536.95i 0.102205 + 0.177024i
\(591\) −1893.20 + 3279.13i −0.131770 + 0.228232i
\(592\) −400.279 + 693.303i −0.0277895 + 0.0481328i
\(593\) 12017.4 + 20814.8i 0.832202 + 1.44142i 0.896288 + 0.443472i \(0.146254\pi\)
−0.0640857 + 0.997944i \(0.520413\pi\)
\(594\) −737.870 −0.0509683
\(595\) 29.7078 103.466i 0.00204689 0.00712892i
\(596\) 688.536 0.0473214
\(597\) 2373.97 + 4111.84i 0.162747 + 0.281887i
\(598\) 1608.47 2785.96i 0.109992 0.190512i
\(599\) 1125.73 1949.82i 0.0767881 0.133001i −0.825074 0.565024i \(-0.808867\pi\)
0.901862 + 0.432023i \(0.142200\pi\)
\(600\) 3677.54 + 6369.68i 0.250225 + 0.433402i
\(601\) 22743.7 1.54365 0.771826 0.635833i \(-0.219343\pi\)
0.771826 + 0.635833i \(0.219343\pi\)
\(602\) 14445.7 3596.32i 0.978009 0.243480i
\(603\) −6598.06 −0.445595
\(604\) 140.026 + 242.533i 0.00943309 + 0.0163386i
\(605\) 299.990 519.599i 0.0201592 0.0349168i
\(606\) −4852.99 + 8405.63i −0.325312 + 0.563458i
\(607\) 9673.75 + 16755.4i 0.646862 + 1.12040i 0.983868 + 0.178896i \(0.0572525\pi\)
−0.337006 + 0.941503i \(0.609414\pi\)
\(608\) 10870.1 0.725065
\(609\) −1717.21 1779.47i −0.114261 0.118404i
\(610\) −4199.83 −0.278764
\(611\) −3649.83 6321.69i −0.241663 0.418573i
\(612\) −9.64091 + 16.6986i −0.000636782 + 0.00110294i
\(613\) 3901.55 6757.69i 0.257067 0.445253i −0.708388 0.705823i \(-0.750577\pi\)
0.965455 + 0.260570i \(0.0839105\pi\)
\(614\) −1169.84 2026.22i −0.0768906 0.133178i
\(615\) 1175.98 0.0771060
\(616\) −3454.05 3579.29i −0.225921 0.234113i
\(617\) −1122.39 −0.0732345 −0.0366172 0.999329i \(-0.511658\pi\)
−0.0366172 + 0.999329i \(0.511658\pi\)
\(618\) 645.143 + 1117.42i 0.0419927 + 0.0727334i
\(619\) 10410.9 18032.2i 0.676010 1.17088i −0.300163 0.953888i \(-0.597041\pi\)
0.976173 0.216995i \(-0.0696255\pi\)
\(620\) −1202.49 + 2082.77i −0.0778919 + 0.134913i
\(621\) 1148.40 + 1989.08i 0.0742087 + 0.128533i
\(622\) −6577.40 −0.424003
\(623\) −2375.12 + 591.298i −0.152740 + 0.0380255i
\(624\) −2102.32 −0.134872
\(625\) −3504.71 6070.34i −0.224302 0.388502i
\(626\) 1719.60 2978.44i 0.109791 0.190164i
\(627\) 2215.61 3837.55i 0.141121 0.244429i
\(628\) −2641.52 4575.24i −0.167847 0.290720i
\(629\) 20.3835 0.00129212
\(630\) −566.676 + 1973.62i −0.0358363 + 0.124811i
\(631\) −24051.6 −1.51740 −0.758700 0.651440i \(-0.774165\pi\)
−0.758700 + 0.651440i \(0.774165\pi\)
\(632\) −843.137 1460.36i −0.0530668 0.0919143i
\(633\) 171.625 297.263i 0.0107764 0.0186653i
\(634\) 10647.6 18442.2i 0.666988 1.15526i
\(635\) −1610.71 2789.84i −0.100660 0.174349i
\(636\) −506.041 −0.0315500
\(637\) 4425.74 + 2769.83i 0.275281 + 0.172284i
\(638\) 1216.35 0.0754791
\(639\) 1472.53 + 2550.49i 0.0911615 + 0.157896i
\(640\) 1901.75 3293.93i 0.117458 0.203444i
\(641\) −1013.35 + 1755.17i −0.0624414 + 0.108152i −0.895556 0.444948i \(-0.853222\pi\)
0.833115 + 0.553100i \(0.186555\pi\)
\(642\) 243.552 + 421.844i 0.0149723 + 0.0259328i
\(643\) −10457.5 −0.641375 −0.320688 0.947185i \(-0.603914\pi\)
−0.320688 + 0.947185i \(0.603914\pi\)
\(644\) −794.654 + 2767.62i −0.0486239 + 0.169347i
\(645\) −4812.80 −0.293805
\(646\) 195.526 + 338.662i 0.0119085 + 0.0206261i
\(647\) −3390.93 + 5873.27i −0.206045 + 0.356881i −0.950465 0.310831i \(-0.899393\pi\)
0.744420 + 0.667712i \(0.232726\pi\)
\(648\) 988.850 1712.74i 0.0599471 0.103831i
\(649\) −1307.88 2265.31i −0.0791044 0.137013i
\(650\) 3797.31 0.229143
\(651\) 14307.5 3561.94i 0.861377 0.214444i
\(652\) 6014.94 0.361293
\(653\) −5607.44 9712.37i −0.336043 0.582043i 0.647642 0.761945i \(-0.275755\pi\)
−0.983685 + 0.179902i \(0.942422\pi\)
\(654\) −8316.39 + 14404.4i −0.497242 + 0.861249i
\(655\) 5062.33 8768.22i 0.301987 0.523058i
\(656\) 1819.76 + 3151.92i 0.108307 + 0.187594i
\(657\) −6663.25 −0.395675
\(658\) −15322.3 15877.9i −0.907790 0.940705i
\(659\) 17393.9 1.02818 0.514089 0.857737i \(-0.328130\pi\)
0.514089 + 0.857737i \(0.328130\pi\)
\(660\) 149.534 + 259.000i 0.00881909 + 0.0152751i
\(661\) 7123.47 12338.2i 0.419169 0.726022i −0.576687 0.816965i \(-0.695655\pi\)
0.995856 + 0.0909428i \(0.0289881\pi\)
\(662\) 8301.54 14378.7i 0.487384 0.844174i
\(663\) 26.7643 + 46.3571i 0.00156778 + 0.00271547i
\(664\) −10342.3 −0.604457
\(665\) −8562.93 8873.40i −0.499333 0.517437i
\(666\) −388.815 −0.0226220
\(667\) −1893.08 3278.92i −0.109896 0.190345i
\(668\) −1790.69 + 3101.57i −0.103719 + 0.179646i
\(669\) 4337.45 7512.68i 0.250666 0.434166i
\(670\) −4515.64 7821.32i −0.260380 0.450991i
\(671\) 3750.15 0.215757
\(672\) 4364.48 1086.56i 0.250541 0.0623735i
\(673\) −21886.3 −1.25357 −0.626785 0.779192i \(-0.715630\pi\)
−0.626785 + 0.779192i \(0.715630\pi\)
\(674\) −8422.58 14588.3i −0.481343 0.833711i
\(675\) −1355.58 + 2347.93i −0.0772980 + 0.133884i
\(676\) −1795.99 + 3110.74i −0.102184 + 0.176988i
\(677\) 13678.8 + 23692.3i 0.776540 + 1.34501i 0.933925 + 0.357469i \(0.116360\pi\)
−0.157385 + 0.987537i \(0.550306\pi\)
\(678\) 1970.88 0.111639
\(679\) 5710.60 19888.9i 0.322758 1.12410i
\(680\) −141.915 −0.00800324
\(681\) −8964.44 15526.9i −0.504432 0.873702i
\(682\) −3626.11 + 6280.60i −0.203594 + 0.352634i
\(683\) 15691.2 27177.9i 0.879073 1.52260i 0.0267131 0.999643i \(-0.491496\pi\)
0.852360 0.522956i \(-0.175171\pi\)
\(684\) 1104.40 + 1912.88i 0.0617365 + 0.106931i
\(685\) 13967.3 0.779067
\(686\) 15004.5 + 4892.74i 0.835096 + 0.272311i
\(687\) 1909.62 0.106050
\(688\) −7447.51 12899.5i −0.412694 0.714807i
\(689\) −702.413 + 1216.62i −0.0388386 + 0.0672705i
\(690\) −1571.90 + 2722.61i −0.0867265 + 0.150215i
\(691\) −5615.64 9726.57i −0.309159 0.535479i 0.669020 0.743245i \(-0.266714\pi\)
−0.978179 + 0.207766i \(0.933381\pi\)
\(692\) 7214.74 0.396334
\(693\) 506.001 1762.30i 0.0277365 0.0966007i
\(694\) 30270.4 1.65569
\(695\) 4075.08 + 7058.25i 0.222413 + 0.385230i
\(696\) −1630.08 + 2823.38i −0.0887758 + 0.153764i
\(697\) 46.3340 80.2528i 0.00251797 0.00436125i
\(698\) −4303.40 7453.72i −0.233361 0.404194i
\(699\) −6544.23 −0.354114
\(700\) −3298.25 + 821.116i −0.178089 + 0.0443361i
\(701\) 2836.65 0.152837 0.0764185 0.997076i \(-0.475651\pi\)
0.0764185 + 0.997076i \(0.475651\pi\)
\(702\) −510.528 884.261i −0.0274482 0.0475417i
\(703\) 1167.50 2022.17i 0.0626359 0.108489i
\(704\) −3131.81 + 5424.45i −0.167663 + 0.290400i
\(705\) 3566.84 + 6177.95i 0.190546 + 0.330035i
\(706\) −5040.45 −0.268697
\(707\) −16747.7 17354.9i −0.890894 0.923196i
\(708\) 1303.86 0.0692118
\(709\) 1612.32 + 2792.63i 0.0854049 + 0.147926i 0.905564 0.424210i \(-0.139448\pi\)
−0.820159 + 0.572136i \(0.806115\pi\)
\(710\) −2015.56 + 3491.05i −0.106539 + 0.184531i
\(711\) 310.789 538.302i 0.0163931 0.0283937i
\(712\) 1613.40 + 2794.49i 0.0849223 + 0.147090i
\(713\) 22574.2 1.18571
\(714\) 112.359 + 116.433i 0.00588925 + 0.00610278i
\(715\) 830.246 0.0434258
\(716\) 3962.31 + 6862.92i 0.206814 + 0.358212i
\(717\) −2518.13 + 4361.53i −0.131159 + 0.227175i
\(718\) −7363.11 + 12753.3i −0.382714 + 0.662880i
\(719\) 8419.13 + 14582.4i 0.436691 + 0.756371i 0.997432 0.0716204i \(-0.0228170\pi\)
−0.560741 + 0.827991i \(0.689484\pi\)
\(720\) 2054.52 0.106344
\(721\) −3111.22 + 774.554i −0.160704 + 0.0400082i
\(722\) 27755.9 1.43070
\(723\) −1513.54 2621.52i −0.0778548 0.134849i
\(724\) −1382.57 + 2394.69i −0.0709709 + 0.122925i
\(725\) 2234.61 3870.46i 0.114471 0.198269i
\(726\) 450.921 + 781.018i 0.0230513 + 0.0399260i
\(727\) 7433.04 0.379197 0.189598 0.981862i \(-0.439281\pi\)
0.189598 + 0.981862i \(0.439281\pi\)
\(728\) 1899.56 6615.80i 0.0967067 0.336810i
\(729\) 729.000 0.0370370
\(730\) −4560.26 7898.60i −0.231209 0.400466i
\(731\) −189.626 + 328.441i −0.00959446 + 0.0166181i
\(732\) −934.654 + 1618.87i −0.0471937 + 0.0817420i
\(733\) 11509.2 + 19934.4i 0.579946 + 1.00450i 0.995485 + 0.0949203i \(0.0302596\pi\)
−0.415539 + 0.909575i \(0.636407\pi\)
\(734\) 1552.11 0.0780508
\(735\) −4325.11 2706.85i −0.217053 0.135842i
\(736\) 6886.22 0.344877
\(737\) 4032.15 + 6983.88i 0.201528 + 0.349056i
\(738\) −883.820 + 1530.82i −0.0440838 + 0.0763554i
\(739\) 9115.95 15789.3i 0.453769 0.785952i −0.544847 0.838535i \(-0.683412\pi\)
0.998617 + 0.0525837i \(0.0167456\pi\)
\(740\) 78.7956 + 136.478i 0.00391430 + 0.00677977i
\(741\) 6131.88 0.303995
\(742\) −1171.93 + 4081.59i −0.0579822 + 0.201940i
\(743\) −11383.5 −0.562072 −0.281036 0.959697i \(-0.590678\pi\)
−0.281036 + 0.959697i \(0.590678\pi\)
\(744\) −9718.98 16833.8i −0.478918 0.829511i
\(745\) −933.996 + 1617.73i −0.0459315 + 0.0795557i
\(746\) −9632.77 + 16684.4i −0.472762 + 0.818848i
\(747\) −1906.14 3301.53i −0.0933628 0.161709i
\(748\) 23.5667 0.00115198
\(749\) −1174.53 + 292.406i −0.0572984 + 0.0142647i
\(750\) −8330.60 −0.405587
\(751\) −13747.1 23810.6i −0.667960 1.15694i −0.978474 0.206372i \(-0.933834\pi\)
0.310513 0.950569i \(-0.399499\pi\)
\(752\) −11038.9 + 19120.0i −0.535303 + 0.927172i
\(753\) 10178.0 17628.8i 0.492572 0.853160i
\(754\) 841.584 + 1457.67i 0.0406481 + 0.0704046i
\(755\) −759.780 −0.0366241
\(756\) 634.641 + 657.651i 0.0305313 + 0.0316383i
\(757\) 36682.7 1.76124 0.880618 0.473827i \(-0.157128\pi\)
0.880618 + 0.473827i \(0.157128\pi\)
\(758\) 12304.0 + 21311.2i 0.589580 + 1.02118i
\(759\) 1403.60 2431.10i 0.0671243 0.116263i
\(760\) −8128.44 + 14078.9i −0.387960 + 0.671966i
\(761\) 18028.8 + 31226.8i 0.858795 + 1.48748i 0.873079 + 0.487579i \(0.162120\pi\)
−0.0142838 + 0.999898i \(0.504547\pi\)
\(762\) 4842.19 0.230202
\(763\) −28699.9 29740.5i −1.36174 1.41111i
\(764\) −1931.05 −0.0914434
\(765\) −26.1557 45.3030i −0.00123616 0.00214109i
\(766\) 1826.60 3163.76i 0.0861589 0.149232i
\(767\) 1809.83 3134.71i 0.0852008 0.147572i
\(768\) −3974.48 6884.00i −0.186740 0.323444i
\(769\) −18923.0 −0.887363 −0.443682 0.896185i \(-0.646328\pi\)
−0.443682 + 0.896185i \(0.646328\pi\)
\(770\) 2435.33 606.288i 0.113978 0.0283755i
\(771\) 13622.3 0.636312
\(772\) −1936.19 3353.58i −0.0902655 0.156344i
\(773\) −4638.28 + 8033.74i −0.215818 + 0.373808i −0.953525 0.301313i \(-0.902575\pi\)
0.737707 + 0.675121i \(0.235908\pi\)
\(774\) 3617.10 6265.01i 0.167977 0.290944i
\(775\) 13323.4 + 23076.8i 0.617536 + 1.06960i
\(776\) −27279.8 −1.26197
\(777\) 266.633 928.630i 0.0123107 0.0428757i
\(778\) 6024.62 0.277626
\(779\) −5307.72 9193.23i −0.244119 0.422826i
\(780\) −206.923 + 358.401i −0.00949877 + 0.0164523i
\(781\) 1799.75 3117.26i 0.0824587 0.142823i
\(782\) 123.867 + 214.543i 0.00566427 + 0.00981080i
\(783\) −1201.73 −0.0548482
\(784\) 562.176 15781.0i 0.0256093 0.718887i
\(785\) 14332.8 0.651669
\(786\) 7609.28 + 13179.7i 0.345311 + 0.598095i
\(787\) 6893.45 11939.8i 0.312230 0.540798i −0.666615 0.745402i \(-0.732257\pi\)
0.978845 + 0.204604i \(0.0655908\pi\)
\(788\) −1153.40 + 1997.75i −0.0521424 + 0.0903132i
\(789\) −1556.48 2695.90i −0.0702309 0.121643i
\(790\) 850.802 0.0383167
\(791\) −1351.55 + 4707.18i −0.0607530 + 0.211591i
\(792\) −2417.19 −0.108448
\(793\) 2594.71 + 4494.16i 0.116193 + 0.201251i
\(794\) 13604.8 23564.2i 0.608080 1.05322i
\(795\) 686.442 1188.95i 0.0306234 0.0530412i
\(796\) 1446.30 + 2505.06i 0.0644003 + 0.111545i
\(797\) −11360.1 −0.504887 −0.252444 0.967612i \(-0.581234\pi\)
−0.252444 + 0.967612i \(0.581234\pi\)
\(798\) 17986.4 4477.81i 0.797884 0.198637i
\(799\) 562.137 0.0248898
\(800\) 4064.27 + 7039.53i 0.179617 + 0.311106i
\(801\) −594.715 + 1030.08i −0.0262337 + 0.0454381i
\(802\) −19667.7 + 34065.5i −0.865949 + 1.49987i
\(803\) 4071.99 + 7052.89i 0.178951 + 0.309951i
\(804\) −4019.74 −0.176325
\(805\) −5424.64 5621.32i −0.237507 0.246119i
\(806\) −10035.5 −0.438569
\(807\) −4487.19 7772.04i −0.195733 0.339019i
\(808\) −15897.9 + 27536.0i −0.692186 + 1.19890i
\(809\) −2919.33 + 5056.43i −0.126870 + 0.219746i −0.922463 0.386087i \(-0.873827\pi\)
0.795592 + 0.605833i \(0.207160\pi\)
\(810\) 498.920 + 864.155i 0.0216423 + 0.0374855i
\(811\) −40805.7 −1.76681 −0.883403 0.468613i \(-0.844754\pi\)
−0.883403 + 0.468613i \(0.844754\pi\)
\(812\) −1046.18 1084.11i −0.0452139 0.0468532i
\(813\) −13322.9 −0.574731
\(814\) 237.609 + 411.551i 0.0102312 + 0.0177209i
\(815\) −8159.24 + 14132.2i −0.350682 + 0.607399i
\(816\) 80.9486 140.207i 0.00347276 0.00601499i
\(817\) 21722.2 + 37624.0i 0.930190 + 1.61114i
\(818\) 4325.60 0.184891
\(819\) 2462.03 612.936i 0.105043 0.0261511i
\(820\) 716.446 0.0305114
\(821\) −17069.0 29564.3i −0.725592 1.25676i −0.958730 0.284319i \(-0.908232\pi\)
0.233137 0.972444i \(-0.425101\pi\)
\(822\) −10497.2 + 18181.7i −0.445416 + 0.771484i
\(823\) −541.969 + 938.718i −0.0229549 + 0.0397590i −0.877275 0.479989i \(-0.840641\pi\)
0.854320 + 0.519748i \(0.173974\pi\)
\(824\) 2113.42 + 3660.56i 0.0893502 + 0.154759i
\(825\) 3313.63 0.139837
\(826\) 3019.57 10516.6i 0.127196 0.443000i
\(827\) −12650.5 −0.531922 −0.265961 0.963984i \(-0.585689\pi\)
−0.265961 + 0.963984i \(0.585689\pi\)
\(828\) 699.640 + 1211.81i 0.0293649 + 0.0508616i
\(829\) 8386.54 14525.9i 0.351359 0.608571i −0.635129 0.772406i \(-0.719053\pi\)
0.986488 + 0.163835i \(0.0523864\pi\)
\(830\) 2609.08 4519.06i 0.109112 0.188987i
\(831\) 11081.2 + 19193.2i 0.462577 + 0.801207i
\(832\) −8667.51 −0.361168
\(833\) −355.135 + 188.509i −0.0147715 + 0.00784087i
\(834\) −12250.7 −0.508640
\(835\) −4858.14 8414.54i −0.201345 0.348739i
\(836\) 1349.82 2337.96i 0.0558428 0.0967225i
\(837\) 3582.52 6205.10i 0.147945 0.256248i
\(838\) 15618.4 + 27051.9i 0.643830 + 1.11515i
\(839\) 12587.5 0.517960 0.258980 0.965883i \(-0.416614\pi\)
0.258980 + 0.965883i \(0.416614\pi\)
\(840\) −1856.37 + 6465.37i −0.0762511 + 0.265567i
\(841\) −22408.0 −0.918775
\(842\) −18799.9 32562.3i −0.769461 1.33275i
\(843\) −8371.70 + 14500.2i −0.342037 + 0.592425i
\(844\) 104.559 181.102i 0.00426431 0.00738600i
\(845\) −4872.49 8439.40i −0.198365 0.343579i
\(846\) −10722.8 −0.435763
\(847\) −2174.58 + 541.372i −0.0882164 + 0.0219619i
\(848\) 4248.90 0.172061
\(849\) −6366.35 11026.8i −0.257353 0.445748i
\(850\) −146.213 + 253.248i −0.00590008 + 0.0102192i
\(851\) 739.613 1281.05i 0.0297927 0.0516025i
\(852\) 897.109 + 1553.84i 0.0360733 + 0.0624808i
\(853\) 3697.77 0.148428 0.0742140 0.997242i \(-0.476355\pi\)
0.0742140 + 0.997242i \(0.476355\pi\)
\(854\) 10892.8 + 11287.8i 0.436469 + 0.452294i
\(855\) −5992.45 −0.239693
\(856\) 797.850 + 1381.92i 0.0318574 + 0.0551787i
\(857\) −17659.4 + 30587.0i −0.703889 + 1.21917i 0.263201 + 0.964741i \(0.415222\pi\)
−0.967091 + 0.254431i \(0.918112\pi\)
\(858\) −623.979 + 1080.76i −0.0248278 + 0.0430031i
\(859\) −5408.41 9367.64i −0.214822 0.372083i 0.738395 0.674368i \(-0.235584\pi\)
−0.953218 + 0.302285i \(0.902251\pi\)
\(860\) −2932.11 −0.116261
\(861\) −3050.07 3160.66i −0.120727 0.125104i
\(862\) 662.216 0.0261661
\(863\) 3901.17 + 6757.02i 0.153879 + 0.266526i 0.932650 0.360782i \(-0.117490\pi\)
−0.778772 + 0.627308i \(0.784157\pi\)
\(864\) 1092.84 1892.85i 0.0430314 0.0745326i
\(865\) −9786.77 + 16951.2i −0.384694 + 0.666309i
\(866\) −6427.82 11133.3i −0.252224 0.436865i
\(867\) 14734.9 0.577189
\(868\) 8716.60 2170.04i 0.340853 0.0848572i
\(869\) −759.706 −0.0296562
\(870\) −822.448 1424.52i −0.0320501 0.0555124i
\(871\) −5579.63 + 9664.21i −0.217059 + 0.375958i
\(872\) −27243.6 + 47187.4i −1.05801 + 1.83253i
\(873\) −5027.80 8708.40i −0.194920 0.337611i
\(874\) 28378.7 1.09831
\(875\) 5712.78 19896.5i 0.220717 0.768713i
\(876\) −4059.46 −0.156571
\(877\) 21962.3 + 38039.9i 0.845627 + 1.46467i 0.885076 + 0.465447i \(0.154106\pi\)
−0.0394487 + 0.999222i \(0.512560\pi\)
\(878\) 8128.17 14078.4i 0.312429 0.541143i
\(879\) −253.253 + 438.647i −0.00971787 + 0.0168319i
\(880\) −1255.54 2174.66i −0.0480958 0.0833043i
\(881\) −31311.8 −1.19741 −0.598706 0.800969i \(-0.704318\pi\)
−0.598706 + 0.800969i \(0.704318\pi\)
\(882\) 6774.19 3595.80i 0.258615 0.137275i
\(883\) −25960.6 −0.989404 −0.494702 0.869063i \(-0.664723\pi\)
−0.494702 + 0.869063i \(0.664723\pi\)
\(884\) 16.3056 + 28.2422i 0.000620382 + 0.00107453i
\(885\) −1768.68 + 3063.44i −0.0671789 + 0.116357i
\(886\) −9241.24 + 16006.3i −0.350413 + 0.606932i
\(887\) −5292.29 9166.52i −0.200336 0.346992i 0.748301 0.663360i \(-0.230870\pi\)
−0.948637 + 0.316368i \(0.897537\pi\)
\(888\) −1273.72 −0.0481342
\(889\) −3320.57 + 11564.9i −0.125274 + 0.436304i
\(890\) −1628.07 −0.0613178
\(891\) −445.500 771.629i −0.0167506 0.0290129i
\(892\) 2642.51 4576.96i 0.0991904 0.171803i
\(893\) 32197.3 55767.4i 1.20654 2.08979i
\(894\) −1403.91 2431.64i −0.0525208 0.0909688i
\(895\) −21499.4 −0.802957
\(896\) −13785.5 + 3431.96i −0.513995 + 0.127962i
\(897\) 3884.56 0.144595
\(898\) 21284.4 + 36865.6i 0.790944 + 1.36996i
\(899\) −5905.63 + 10228.8i −0.219092 + 0.379478i
\(900\) −825.860 + 1430.43i −0.0305874 + 0.0529790i
\(901\) −54.0919 93.6900i −0.00200007 0.00346422i
\(902\) 2160.45 0.0797507
\(903\) 12482.6 + 12935.2i 0.460018 + 0.476697i
\(904\) 6456.41 0.237541
\(905\) −3750.91 6496.77i −0.137773 0.238630i
\(906\) 571.019 989.035i 0.0209391 0.0362676i
\(907\) −13351.8 + 23126.0i −0.488798 + 0.846624i −0.999917 0.0128866i \(-0.995898\pi\)
0.511119 + 0.859510i \(0.329231\pi\)
\(908\) −5461.42 9459.46i −0.199607 0.345730i
\(909\) −11720.3 −0.427653
\(910\) 2411.56 + 2499.00i 0.0878489 + 0.0910341i
\(911\) 40608.6 1.47686 0.738432 0.674328i \(-0.235567\pi\)
0.738432 + 0.674328i \(0.235567\pi\)
\(912\) −9272.94 16061.2i −0.336686 0.583157i
\(913\) −2329.73 + 4035.20i −0.0844498 + 0.146271i
\(914\) 6017.15 10422.0i 0.217757 0.377166i
\(915\) −2535.71 4391.98i −0.0916152 0.158682i
\(916\) 1163.40 0.0419648
\(917\) −36695.9 + 9135.64i −1.32149 + 0.328992i
\(918\) 78.6302 0.00282700
\(919\) 14772.9 + 25587.4i 0.530265 + 0.918446i 0.999377 + 0.0353071i \(0.0112409\pi\)
−0.469111 + 0.883139i \(0.655426\pi\)
\(920\) −5149.39 + 8919.00i −0.184533 + 0.319620i
\(921\) 1412.61 2446.72i 0.0505399 0.0875376i
\(922\) −12795.4 22162.3i −0.457044 0.791623i
\(923\) 4980.95 0.177627
\(924\) 308.272 1073.65i 0.0109755 0.0382256i
\(925\) 1746.09 0.0620661
\(926\) −8383.33 14520.4i −0.297509 0.515301i
\(927\) −779.029 + 1349.32i −0.0276016 + 0.0478074i
\(928\) −1801.50 + 3120.29i −0.0637253 + 0.110376i
\(929\) −22402.8 38802.8i −0.791186 1.37038i −0.925233 0.379400i \(-0.876130\pi\)
0.134046 0.990975i \(-0.457203\pi\)
\(930\) 9807.34 0.345801
\(931\) −1639.71 + 46028.7i −0.0577220 + 1.62033i
\(932\) −3986.95 −0.140126
\(933\) −3971.20 6878.32i −0.139348 0.241357i
\(934\) −1166.75 + 2020.87i −0.0408750 + 0.0707976i
\(935\) −31.9681 + 55.3704i −0.00111815 + 0.00193669i
\(936\) −1672.44 2896.75i −0.0584031 0.101157i
\(937\) −46926.5 −1.63610 −0.818048 0.575150i \(-0.804944\pi\)
−0.818048 + 0.575150i \(0.804944\pi\)
\(938\) −9309.23 + 32422.2i −0.324048 + 1.12859i
\(939\) 4152.94 0.144330
\(940\) 2173.03 + 3763.80i 0.0754005 + 0.130597i
\(941\) −5626.52 + 9745.42i −0.194920 + 0.337611i −0.946874 0.321604i \(-0.895778\pi\)
0.751955 + 0.659215i \(0.229111\pi\)
\(942\) −10772.0 + 18657.6i −0.372579 + 0.645325i
\(943\) −3362.45 5823.94i −0.116115 0.201117i
\(944\) −10947.7 −0.377453
\(945\) −2406.05 + 598.999i −0.0828242 + 0.0206195i
\(946\) −8841.81 −0.303882
\(947\) −18412.1 31890.6i −0.631797 1.09430i −0.987184 0.159585i \(-0.948984\pi\)
0.355387 0.934719i \(-0.384349\pi\)
\(948\) 189.342 327.951i 0.00648687 0.0112356i
\(949\) −5634.77 + 9759.70i −0.192742 + 0.333839i
\(950\) 16749.2 + 29010.5i 0.572016 + 0.990762i
\(951\) 25714.6 0.876817
\(952\) 368.076 + 381.422i 0.0125309 + 0.0129852i
\(953\) 18571.8 0.631268 0.315634 0.948881i \(-0.397783\pi\)
0.315634 + 0.948881i \(0.397783\pi\)
\(954\) 1031.80 + 1787.13i 0.0350166 + 0.0606506i
\(955\) 2619.46 4537.03i 0.0887577 0.153733i
\(956\) −1534.12 + 2657.18i −0.0519007 + 0.0898947i
\(957\) 734.388 + 1272.00i 0.0248061 + 0.0429653i
\(958\) −26733.4 −0.901583
\(959\) −36225.9 37539.4i −1.21981 1.26404i
\(960\) 8470.44 0.284773
\(961\) −20315.5 35187.5i −0.681935 1.18115i
\(962\) −328.800 + 569.499i −0.0110197 + 0.0190867i
\(963\) −294.095 + 509.388i −0.00984122 + 0.0170455i
\(964\) −922.095 1597.11i −0.0308077 0.0533606i
\(965\) 10505.7 0.350457
\(966\) 11394.4 2836.70i 0.379513 0.0944818i
\(967\) 8548.12 0.284270 0.142135 0.989847i \(-0.454603\pi\)
0.142135 + 0.989847i \(0.454603\pi\)
\(968\) 1477.17 + 2558.53i 0.0490476 + 0.0849529i
\(969\) −236.104 + 408.944i −0.00782740 + 0.0135575i
\(970\) 6881.94 11919.9i 0.227800 0.394561i
\(971\) −11494.7 19909.5i −0.379901 0.658007i 0.611147 0.791517i \(-0.290708\pi\)
−0.991047 + 0.133510i \(0.957375\pi\)
\(972\) 444.130 0.0146558
\(973\) 8400.99 29259.0i 0.276797 0.964029i
\(974\) 19087.3 0.627923
\(975\) 2292.68 + 3971.04i 0.0753072 + 0.130436i
\(976\) 7847.70 13592.6i 0.257376 0.445788i
\(977\) −5502.20 + 9530.09i −0.180175 + 0.312072i −0.941940 0.335781i \(-0.891000\pi\)
0.761765 + 0.647853i \(0.224333\pi\)
\(978\) −12264.3 21242.4i −0.400991 0.694536i
\(979\) 1453.75 0.0474586
\(980\) −2634.99 1649.10i −0.0858896 0.0537536i
\(981\) −20084.6 −0.653670
\(982\) 15006.7 + 25992.3i 0.487660 + 0.844651i
\(983\) 25143.5 43549.8i 0.815822 1.41305i −0.0929141 0.995674i \(-0.529618\pi\)
0.908736 0.417371i \(-0.137048\pi\)
\(984\) −2895.31 + 5014.82i −0.0937998 + 0.162466i
\(985\) −3129.16 5419.87i −0.101222 0.175321i
\(986\) −129.619 −0.00418651
\(987\) 7353.22 25609.8i 0.237138 0.825906i
\(988\) 3735.73 0.120293
\(989\) 13761.1 + 23834.9i 0.442444 + 0.766336i
\(990\) 609.791 1056.19i 0.0195762 0.0339070i
\(991\) 5719.62 9906.67i 0.183340 0.317554i −0.759676 0.650302i \(-0.774642\pi\)
0.943016 + 0.332748i \(0.107976\pi\)
\(992\) −10741.1 18604.0i −0.343779 0.595443i
\(993\) 20048.7 0.640711
\(994\) 14610.4 3637.34i 0.466212 0.116066i
\(995\) −7847.58 −0.250035
\(996\) −1161.28 2011.40i −0.0369443 0.0639895i
\(997\) 11537.5 19983.5i 0.366495 0.634787i −0.622520 0.782604i \(-0.713891\pi\)
0.989015 + 0.147816i \(0.0472245\pi\)
\(998\) 1177.14 2038.87i 0.0373365 0.0646686i
\(999\) −234.753 406.603i −0.00743468 0.0128772i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 231.4.i.a.67.3 16
7.2 even 3 inner 231.4.i.a.100.3 yes 16
7.3 odd 6 1617.4.a.v.1.6 8
7.4 even 3 1617.4.a.u.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.i.a.67.3 16 1.1 even 1 trivial
231.4.i.a.100.3 yes 16 7.2 even 3 inner
1617.4.a.u.1.6 8 7.4 even 3
1617.4.a.v.1.6 8 7.3 odd 6