Properties

Label 2300.1.k.b
Level $2300$
Weight $1$
Character orbit 2300.k
Analytic conductor $1.148$
Analytic rank $0$
Dimension $8$
Projective image $D_{6}$
CM discriminant -23
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2300,1,Mod(643,2300)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2300.643"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2300, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2300 = 2^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2300.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14784952906\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.4232000.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{24} q^{2} - \zeta_{24}^{3} q^{3} + \zeta_{24}^{2} q^{4} + \zeta_{24}^{4} q^{6} - \zeta_{24}^{3} q^{8} - \zeta_{24}^{5} q^{12} + ( - \zeta_{24}^{11} - \zeta_{24}^{7}) q^{13} + \zeta_{24}^{4} q^{16} + \cdots + \zeta_{24}^{7} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{6} + 4 q^{16} - 12 q^{26} + 8 q^{41} - 4 q^{46} + 8 q^{81} - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2300\mathbb{Z}\right)^\times\).

\(n\) \(277\) \(1151\) \(1201\)
\(\chi(n)\) \(\zeta_{24}^{6}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
643.1
0.965926 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 + 0.258819i
0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 0.258819i
−0.965926 + 0.258819i −0.707107 + 0.707107i 0.866025 0.500000i 0 0.500000 0.866025i 0 −0.707107 + 0.707107i 0 0
643.2 −0.258819 + 0.965926i 0.707107 0.707107i −0.866025 0.500000i 0 0.500000 + 0.866025i 0 0.707107 0.707107i 0 0
643.3 0.258819 0.965926i −0.707107 + 0.707107i −0.866025 0.500000i 0 0.500000 + 0.866025i 0 −0.707107 + 0.707107i 0 0
643.4 0.965926 0.258819i 0.707107 0.707107i 0.866025 0.500000i 0 0.500000 0.866025i 0 0.707107 0.707107i 0 0
2207.1 −0.965926 0.258819i −0.707107 0.707107i 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 −0.707107 0.707107i 0 0
2207.2 −0.258819 0.965926i 0.707107 + 0.707107i −0.866025 + 0.500000i 0 0.500000 0.866025i 0 0.707107 + 0.707107i 0 0
2207.3 0.258819 + 0.965926i −0.707107 0.707107i −0.866025 + 0.500000i 0 0.500000 0.866025i 0 −0.707107 0.707107i 0 0
2207.4 0.965926 + 0.258819i 0.707107 + 0.707107i 0.866025 + 0.500000i 0 0.500000 + 0.866025i 0 0.707107 + 0.707107i 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 643.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
4.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
20.d odd 2 1 inner
20.e even 4 2 inner
92.b even 2 1 inner
115.c odd 2 1 inner
115.e even 4 2 inner
460.g even 2 1 inner
460.k odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2300.1.k.b 8
4.b odd 2 1 inner 2300.1.k.b 8
5.b even 2 1 inner 2300.1.k.b 8
5.c odd 4 2 inner 2300.1.k.b 8
20.d odd 2 1 inner 2300.1.k.b 8
20.e even 4 2 inner 2300.1.k.b 8
23.b odd 2 1 CM 2300.1.k.b 8
92.b even 2 1 inner 2300.1.k.b 8
115.c odd 2 1 inner 2300.1.k.b 8
115.e even 4 2 inner 2300.1.k.b 8
460.g even 2 1 inner 2300.1.k.b 8
460.k odd 4 2 inner 2300.1.k.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2300.1.k.b 8 1.a even 1 1 trivial
2300.1.k.b 8 4.b odd 2 1 inner
2300.1.k.b 8 5.b even 2 1 inner
2300.1.k.b 8 5.c odd 4 2 inner
2300.1.k.b 8 20.d odd 2 1 inner
2300.1.k.b 8 20.e even 4 2 inner
2300.1.k.b 8 23.b odd 2 1 CM
2300.1.k.b 8 92.b even 2 1 inner
2300.1.k.b 8 115.c odd 2 1 inner
2300.1.k.b 8 115.e even 4 2 inner
2300.1.k.b 8 460.g even 2 1 inner
2300.1.k.b 8 460.k odd 4 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 1 \) acting on \(S_{1}^{\mathrm{new}}(2300, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$3$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T - 1)^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 9)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less