Properties

Label 22848.2.a.dg
Level $22848$
Weight $2$
Character orbit 22848.a
Self dual yes
Analytic conductor $182.442$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [22848,2,Mod(1,22848)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22848, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("22848.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 22848 = 2^{6} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 22848.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-1,0,-2,0,2,0,-1,0,-3,0,1,0,-2,0,-12,0,2,0,6,0,11,0, -2,0,2,0,0,0,1,0,1,0,3,0,3,0,10,0,-11,0,-1,0,-16,0,2,0,2,0,9,0,21,0,12, 0,2,0,4,0,-2,0,-19,0,-13,0,-6,0,-4,0,-17,0,-11,0,1,0,21,0,2,0,-23,0,1, 0,-2,0,23,0,3,0,0,0,6,0,7,0,-1,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(182.442198538\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q - 2 q^{3} - q^{5} - 2 q^{7} + 2 q^{9} - q^{11} - 3 q^{13} + q^{15} - 2 q^{17} - 12 q^{19} + 2 q^{21} + 6 q^{23} + 11 q^{25} - 2 q^{27} + 2 q^{29} + q^{33} + q^{35} + 3 q^{37} + 3 q^{39} + 10 q^{41}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.