Defining parameters
Level: | \( N \) | \(=\) | \( 22848 = 2^{6} \cdot 3 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 22848.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 164 \) | ||
Sturm bound: | \(9216\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(22848))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4656 | 384 | 4272 |
Cusp forms | 4561 | 384 | 4177 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(273\) | \(24\) | \(249\) | \(268\) | \(24\) | \(244\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(305\) | \(23\) | \(282\) | \(299\) | \(23\) | \(276\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(301\) | \(27\) | \(274\) | \(295\) | \(27\) | \(268\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(285\) | \(22\) | \(263\) | \(279\) | \(22\) | \(257\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(281\) | \(23\) | \(258\) | \(275\) | \(23\) | \(252\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(305\) | \(24\) | \(281\) | \(299\) | \(24\) | \(275\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(293\) | \(22\) | \(271\) | \(287\) | \(22\) | \(265\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(285\) | \(27\) | \(258\) | \(279\) | \(27\) | \(252\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(299\) | \(24\) | \(275\) | \(293\) | \(24\) | \(269\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(287\) | \(25\) | \(262\) | \(281\) | \(25\) | \(256\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(291\) | \(21\) | \(270\) | \(285\) | \(21\) | \(264\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(287\) | \(26\) | \(261\) | \(281\) | \(26\) | \(255\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(291\) | \(25\) | \(266\) | \(285\) | \(25\) | \(260\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(287\) | \(24\) | \(263\) | \(281\) | \(24\) | \(257\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(299\) | \(26\) | \(273\) | \(293\) | \(26\) | \(267\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(287\) | \(21\) | \(266\) | \(281\) | \(21\) | \(260\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(2312\) | \(184\) | \(2128\) | \(2265\) | \(184\) | \(2081\) | \(47\) | \(0\) | \(47\) | ||||||
Minus space | \(-\) | \(2344\) | \(200\) | \(2144\) | \(2296\) | \(200\) | \(2096\) | \(48\) | \(0\) | \(48\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(22848))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | 17 | |||||||
22848.2.a.a | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-3\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-3q^{5}-q^{7}+q^{9}-5q^{11}+3q^{13}+\cdots\) | |
22848.2.a.b | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-3\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}-3q^{5}-q^{7}+q^{9}-q^{11}-3q^{13}+\cdots\) | |
22848.2.a.c | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-3\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}-3q^{5}+q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
22848.2.a.d | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-2q^{5}-q^{7}+q^{9}-6q^{11}-4q^{13}+\cdots\) | |
22848.2.a.e | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{3}-2q^{5}-q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\) | |
22848.2.a.f | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}-2q^{5}-q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.g | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}-2q^{5}-q^{7}+q^{9}-2q^{11}+4q^{13}+\cdots\) | |
22848.2.a.h | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-2q^{5}-q^{7}+q^{9}+2q^{13}+2q^{15}+\cdots\) | |
22848.2.a.i | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-2q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.j | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}+q^{9}-6q^{11}+2q^{15}+\cdots\) | |
22848.2.a.k | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}+q^{9}-6q^{13}+2q^{15}+\cdots\) | |
22848.2.a.l | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}+q^{9}+2q^{13}+2q^{15}+\cdots\) | |
22848.2.a.m | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-2q^{5}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\) | |
22848.2.a.n | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}-q^{7}+q^{9}-5q^{11}+5q^{13}+\cdots\) | |
22848.2.a.o | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{5}-q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
22848.2.a.p | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{5}-q^{7}+q^{9}-q^{11}+7q^{13}+\cdots\) | |
22848.2.a.q | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}-q^{7}+q^{9}+3q^{11}+q^{13}+\cdots\) | |
22848.2.a.r | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{3}-q^{5}-q^{7}+q^{9}+5q^{11}+q^{13}+\cdots\) | |
22848.2.a.s | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q-q^{3}-q^{5}+q^{7}+q^{9}+3q^{11}-3q^{13}+\cdots\) | |
22848.2.a.t | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q-q^{3}-q^{5}+q^{7}+q^{9}+3q^{11}+3q^{13}+\cdots\) | |
22848.2.a.u | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}+q^{5}-q^{7}+q^{9}-5q^{11}+5q^{13}+\cdots\) | |
22848.2.a.v | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{3}+q^{5}-q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
22848.2.a.w | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}+q^{5}-q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\) | |
22848.2.a.x | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+q^{5}+q^{7}+q^{9}-q^{11}+3q^{13}+\cdots\) | |
22848.2.a.y | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+q^{5}+q^{7}+q^{9}+5q^{11}-q^{13}+\cdots\) | |
22848.2.a.z | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(-1\) | $-$ | $+$ | $+$ | $+$ | \(q-q^{3}+2q^{5}-q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\) | |
22848.2.a.ba | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}+2q^{5}-q^{7}+q^{9}-2q^{11}-4q^{13}+\cdots\) | |
22848.2.a.bb | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}+2q^{5}-q^{7}+q^{9}-2q^{13}-2q^{15}+\cdots\) | |
22848.2.a.bc | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(-1\) | $-$ | $+$ | $+$ | $-$ | \(q-q^{3}+2q^{5}-q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.bd | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+2q^{5}+q^{7}+q^{9}-6q^{11}+4q^{13}+\cdots\) | |
22848.2.a.be | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(1\) | $-$ | $+$ | $-$ | $-$ | \(q-q^{3}+2q^{5}+q^{7}+q^{9}+6q^{13}-2q^{15}+\cdots\) | |
22848.2.a.bf | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}+2q^{5}+q^{7}+q^{9}+2q^{11}-2q^{15}+\cdots\) | |
22848.2.a.bg | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+2q^{5}+q^{7}+q^{9}+4q^{11}-6q^{13}+\cdots\) | |
22848.2.a.bh | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(2\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+2q^{5}+q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.bi | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(3\) | \(-1\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{3}+3q^{5}-q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
22848.2.a.bj | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(3\) | \(1\) | $-$ | $+$ | $-$ | $+$ | \(q-q^{3}+3q^{5}+q^{7}+q^{9}-5q^{11}-q^{13}+\cdots\) | |
22848.2.a.bk | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(3\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+3q^{5}+q^{7}+q^{9}-3q^{11}-5q^{13}+\cdots\) | |
22848.2.a.bl | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(3\) | \(1\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}+3q^{5}+q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\) | |
22848.2.a.bm | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(-1\) | \(3\) | \(1\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{3}+3q^{5}+q^{7}+q^{9}+3q^{11}+q^{13}+\cdots\) | |
22848.2.a.bn | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-3\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}-3q^{5}-q^{7}+q^{9}-q^{11}-q^{13}+\cdots\) | |
22848.2.a.bo | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-3\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}-3q^{5}+q^{7}+q^{9}+q^{11}-3q^{13}+\cdots\) | |
22848.2.a.bp | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-3\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}-3q^{5}+q^{7}+q^{9}+5q^{11}+3q^{13}+\cdots\) | |
22848.2.a.bq | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{5}-q^{7}+q^{9}-4q^{11}-2q^{13}+\cdots\) | |
22848.2.a.br | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{5}-q^{7}+q^{9}-6q^{13}-2q^{15}+\cdots\) | |
22848.2.a.bs | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{5}-q^{7}+q^{9}+2q^{13}-2q^{15}+\cdots\) | |
22848.2.a.bt | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}-2q^{5}-q^{7}+q^{9}+6q^{11}-2q^{15}+\cdots\) | |
22848.2.a.bu | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}-2q^{5}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.bv | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}-2q^{5}+q^{7}+q^{9}+2q^{13}-2q^{15}+\cdots\) | |
22848.2.a.bw | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}-2q^{5}+q^{7}+q^{9}+2q^{11}+4q^{13}+\cdots\) | |
22848.2.a.bx | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}-2q^{5}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\) | |
22848.2.a.by | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}-2q^{5}+q^{7}+q^{9}+4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.bz | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-2\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}-2q^{5}+q^{7}+q^{9}+6q^{11}-4q^{13}+\cdots\) | |
22848.2.a.ca | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-q^{7}+q^{9}-3q^{11}-3q^{13}+\cdots\) | |
22848.2.a.cb | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-q^{7}+q^{9}-3q^{11}+3q^{13}+\cdots\) | |
22848.2.a.cc | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}-q^{5}+q^{7}+q^{9}-5q^{11}+q^{13}+\cdots\) | |
22848.2.a.cd | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}-q^{5}+q^{7}+q^{9}-3q^{11}+q^{13}+\cdots\) | |
22848.2.a.ce | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}-q^{5}+q^{7}+q^{9}+q^{11}-q^{13}+\cdots\) | |
22848.2.a.cf | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}-q^{5}+q^{7}+q^{9}+q^{11}+7q^{13}+\cdots\) | |
22848.2.a.cg | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}-q^{5}+q^{7}+q^{9}+5q^{11}+5q^{13}+\cdots\) | |
22848.2.a.ch | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}+q^{5}-q^{7}+q^{9}-5q^{11}-q^{13}+\cdots\) | |
22848.2.a.ci | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+q^{5}-q^{7}+q^{9}+q^{11}+3q^{13}+\cdots\) | |
22848.2.a.cj | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}+q^{7}+q^{9}-3q^{11}-q^{13}+\cdots\) | |
22848.2.a.ck | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}+q^{7}+q^{9}+q^{11}+q^{13}+\cdots\) | |
22848.2.a.cl | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}+q^{7}+q^{9}+5q^{11}+5q^{13}+\cdots\) | |
22848.2.a.cm | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+2q^{5}-q^{7}+q^{9}-4q^{11}-6q^{13}+\cdots\) | |
22848.2.a.cn | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q+q^{3}+2q^{5}-q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.co | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}+2q^{5}-q^{7}+q^{9}-2q^{11}+2q^{15}+\cdots\) | |
22848.2.a.cp | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | \(q+q^{3}+2q^{5}-q^{7}+q^{9}+6q^{13}+2q^{15}+\cdots\) | |
22848.2.a.cq | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+2q^{5}-q^{7}+q^{9}+6q^{11}+4q^{13}+\cdots\) | |
22848.2.a.cr | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{5}+q^{7}+q^{9}-4q^{11}+2q^{13}+\cdots\) | |
22848.2.a.cs | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{5}+q^{7}+q^{9}-2q^{13}+2q^{15}+\cdots\) | |
22848.2.a.ct | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(1\) | $+$ | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{5}+q^{7}+q^{9}+2q^{11}-4q^{13}+\cdots\) | |
22848.2.a.cu | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+2q^{5}+q^{7}+q^{9}+4q^{11}-2q^{13}+\cdots\) | |
22848.2.a.cv | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}+3q^{5}-q^{7}+q^{9}-3q^{11}-q^{13}+\cdots\) | |
22848.2.a.cw | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+3q^{5}-q^{7}+q^{9}-3q^{11}+q^{13}+\cdots\) | |
22848.2.a.cx | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(-1\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}+3q^{5}-q^{7}+q^{9}+3q^{11}-5q^{13}+\cdots\) | |
22848.2.a.cy | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(-1\) | $+$ | $-$ | $+$ | $+$ | \(q+q^{3}+3q^{5}-q^{7}+q^{9}+5q^{11}-q^{13}+\cdots\) | |
22848.2.a.cz | $1$ | $182.442$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q+q^{3}+3q^{5}+q^{7}+q^{9}-q^{11}+q^{13}+\cdots\) | |
22848.2.a.da | $2$ | $182.442$ | \(\Q(\sqrt{201}) \) | None | \(0\) | \(-2\) | \(-6\) | \(2\) | $+$ | $+$ | $-$ | $-$ | ||
22848.2.a.db | $2$ | $182.442$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(-4\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
22848.2.a.dc | $2$ | $182.442$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(-2\) | \(-4\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
22848.2.a.dd | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(-3\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
22848.2.a.de | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(-3\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
22848.2.a.df | $2$ | $182.442$ | \(\Q(\sqrt{10}) \) | None | \(0\) | \(-2\) | \(-2\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
22848.2.a.dg | $2$ | $182.442$ | \(\Q(\sqrt{41}) \) | None | \(0\) | \(-2\) | \(-1\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
22848.2.a.dh | $2$ | $182.442$ | \(\Q(\sqrt{15}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
22848.2.a.di | $2$ | $182.442$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $+$ | $+$ | $-$ | $+$ | ||
22848.2.a.dj | $2$ | $182.442$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(2\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
22848.2.a.dk | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
22848.2.a.dl | $2$ | $182.442$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
22848.2.a.dm | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(3\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | ||
22848.2.a.dn | $2$ | $182.442$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(-2\) | \(3\) | \(2\) | $+$ | $+$ | $-$ | $-$ | ||
22848.2.a.do | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(3\) | \(2\) | $-$ | $+$ | $-$ | $+$ | ||
22848.2.a.dp | $2$ | $182.442$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(4\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | ||
22848.2.a.dq | $2$ | $182.442$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(4\) | \(2\) | $-$ | $+$ | $-$ | $-$ | ||
22848.2.a.dr | $2$ | $182.442$ | \(\Q(\sqrt{201}) \) | None | \(0\) | \(2\) | \(-6\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
22848.2.a.ds | $2$ | $182.442$ | \(\Q(\sqrt{6}) \) | None | \(0\) | \(2\) | \(-4\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
22848.2.a.dt | $2$ | $182.442$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(-4\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
22848.2.a.du | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(-3\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
22848.2.a.dv | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(-3\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
22848.2.a.dw | $2$ | $182.442$ | \(\Q(\sqrt{10}) \) | None | \(0\) | \(2\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
22848.2.a.dx | $2$ | $182.442$ | \(\Q(\sqrt{41}) \) | None | \(0\) | \(2\) | \(-1\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
22848.2.a.dy | $2$ | $182.442$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
22848.2.a.dz | $2$ | $182.442$ | \(\Q(\sqrt{15}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
22848.2.a.ea | $2$ | $182.442$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
22848.2.a.eb | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(2\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
22848.2.a.ec | $2$ | $182.442$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(2\) | \(2\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
22848.2.a.ed | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(3\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
22848.2.a.ee | $2$ | $182.442$ | \(\Q(\sqrt{33}) \) | None | \(0\) | \(2\) | \(3\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
22848.2.a.ef | $2$ | $182.442$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(3\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
22848.2.a.eg | $2$ | $182.442$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(4\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
22848.2.a.eh | $2$ | $182.442$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(2\) | \(4\) | \(2\) | $-$ | $-$ | $-$ | $-$ | ||
22848.2.a.ei | $3$ | $182.442$ | 3.3.756.1 | None | \(0\) | \(-3\) | \(-3\) | \(-3\) | $+$ | $+$ | $+$ | $+$ | ||
22848.2.a.ej | $3$ | $182.442$ | 3.3.4764.1 | None | \(0\) | \(-3\) | \(-2\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | ||
22848.2.a.ek | $3$ | $182.442$ | 3.3.961.1 | None | \(0\) | \(-3\) | \(-2\) | \(-3\) | $-$ | $+$ | $+$ | $+$ | ||
22848.2.a.el | $3$ | $182.442$ | 3.3.316.1 | None | \(0\) | \(-3\) | \(-2\) | \(3\) | $+$ | $+$ | $-$ | $-$ | ||
22848.2.a.em | $3$ | $182.442$ | 3.3.148.1 | None | \(0\) | \(-3\) | \(-1\) | \(3\) | $-$ | $+$ | $-$ | $+$ | ||
22848.2.a.en | $3$ | $182.442$ | 3.3.148.1 | None | \(0\) | \(-3\) | \(1\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | ||
22848.2.a.eo | $3$ | $182.442$ | 3.3.316.1 | None | \(0\) | \(-3\) | \(2\) | \(-3\) | $+$ | $+$ | $+$ | $+$ | ||
22848.2.a.ep | $3$ | $182.442$ | 3.3.568.1 | None | \(0\) | \(-3\) | \(4\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | ||
22848.2.a.eq | $3$ | $182.442$ | 3.3.756.1 | None | \(0\) | \(3\) | \(-3\) | \(3\) | $+$ | $-$ | $-$ | $+$ | ||
22848.2.a.er | $3$ | $182.442$ | 3.3.316.1 | None | \(0\) | \(3\) | \(-2\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | ||
22848.2.a.es | $3$ | $182.442$ | 3.3.961.1 | None | \(0\) | \(3\) | \(-2\) | \(3\) | $+$ | $-$ | $-$ | $+$ | ||
22848.2.a.et | $3$ | $182.442$ | 3.3.4764.1 | None | \(0\) | \(3\) | \(-2\) | \(3\) | $+$ | $-$ | $-$ | $-$ | ||
22848.2.a.eu | $3$ | $182.442$ | 3.3.148.1 | None | \(0\) | \(3\) | \(-1\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | ||
22848.2.a.ev | $3$ | $182.442$ | 3.3.148.1 | None | \(0\) | \(3\) | \(1\) | \(3\) | $-$ | $-$ | $-$ | $-$ | ||
22848.2.a.ew | $3$ | $182.442$ | 3.3.316.1 | None | \(0\) | \(3\) | \(2\) | \(3\) | $-$ | $-$ | $-$ | $+$ | ||
22848.2.a.ex | $3$ | $182.442$ | 3.3.568.1 | None | \(0\) | \(3\) | \(4\) | \(3\) | $+$ | $-$ | $-$ | $-$ | ||
22848.2.a.ey | $4$ | $182.442$ | 4.4.183064.1 | None | \(0\) | \(-4\) | \(-5\) | \(4\) | $-$ | $+$ | $-$ | $-$ | ||
22848.2.a.ez | $4$ | $182.442$ | 4.4.7232.1 | None | \(0\) | \(-4\) | \(-2\) | \(4\) | $-$ | $+$ | $-$ | $-$ | ||
22848.2.a.fa | $4$ | $182.442$ | 4.4.11348.1 | None | \(0\) | \(-4\) | \(-2\) | \(4\) | $+$ | $+$ | $-$ | $-$ | ||
22848.2.a.fb | $4$ | $182.442$ | 4.4.20308.1 | None | \(0\) | \(-4\) | \(-1\) | \(4\) | $+$ | $+$ | $-$ | $+$ | ||
22848.2.a.fc | $4$ | $182.442$ | 4.4.33428.1 | None | \(0\) | \(-4\) | \(1\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | ||
22848.2.a.fd | $4$ | $182.442$ | 4.4.81416.1 | None | \(0\) | \(-4\) | \(1\) | \(-4\) | $-$ | $+$ | $+$ | $-$ | ||
22848.2.a.fe | $4$ | $182.442$ | 4.4.7232.1 | None | \(0\) | \(-4\) | \(2\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | ||
22848.2.a.ff | $4$ | $182.442$ | 4.4.78292.1 | None | \(0\) | \(-4\) | \(5\) | \(-4\) | $+$ | $+$ | $+$ | $-$ | ||
22848.2.a.fg | $4$ | $182.442$ | 4.4.183064.1 | None | \(0\) | \(4\) | \(-5\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
22848.2.a.fh | $4$ | $182.442$ | 4.4.11348.1 | None | \(0\) | \(4\) | \(-2\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
22848.2.a.fi | $4$ | $182.442$ | 4.4.7232.1 | None | \(0\) | \(4\) | \(-2\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
22848.2.a.fj | $4$ | $182.442$ | 4.4.20308.1 | None | \(0\) | \(4\) | \(-1\) | \(-4\) | $+$ | $-$ | $+$ | $+$ | ||
22848.2.a.fk | $4$ | $182.442$ | 4.4.81416.1 | None | \(0\) | \(4\) | \(1\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
22848.2.a.fl | $4$ | $182.442$ | 4.4.33428.1 | None | \(0\) | \(4\) | \(1\) | \(4\) | $-$ | $-$ | $-$ | $+$ | ||
22848.2.a.fm | $4$ | $182.442$ | 4.4.7232.1 | None | \(0\) | \(4\) | \(2\) | \(4\) | $+$ | $-$ | $-$ | $+$ | ||
22848.2.a.fn | $4$ | $182.442$ | 4.4.78292.1 | None | \(0\) | \(4\) | \(5\) | \(4\) | $+$ | $-$ | $-$ | $-$ | ||
22848.2.a.fo | $5$ | $182.442$ | 5.5.14050576.1 | None | \(0\) | \(-5\) | \(-1\) | \(5\) | $+$ | $+$ | $-$ | $+$ | ||
22848.2.a.fp | $5$ | $182.442$ | 5.5.3035380.1 | None | \(0\) | \(-5\) | \(5\) | \(5\) | $-$ | $+$ | $-$ | $-$ | ||
22848.2.a.fq | $5$ | $182.442$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(0\) | \(-5\) | \(6\) | \(5\) | $+$ | $+$ | $-$ | $+$ | ||
22848.2.a.fr | $5$ | $182.442$ | 5.5.14050576.1 | None | \(0\) | \(5\) | \(-1\) | \(-5\) | $-$ | $-$ | $+$ | $+$ | ||
22848.2.a.fs | $5$ | $182.442$ | 5.5.3035380.1 | None | \(0\) | \(5\) | \(5\) | \(-5\) | $-$ | $-$ | $+$ | $-$ | ||
22848.2.a.ft | $5$ | $182.442$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(0\) | \(5\) | \(6\) | \(-5\) | $+$ | $-$ | $+$ | $+$ | ||
22848.2.a.fu | $6$ | $182.442$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-6\) | \(-5\) | \(-6\) | $-$ | $+$ | $+$ | $-$ | ||
22848.2.a.fv | $6$ | $182.442$ | 6.6.306050884.1 | None | \(0\) | \(-6\) | \(-4\) | \(6\) | $+$ | $+$ | $-$ | $-$ | ||
22848.2.a.fw | $6$ | $182.442$ | 6.6.97623076.1 | None | \(0\) | \(-6\) | \(-2\) | \(-6\) | $+$ | $+$ | $+$ | $+$ | ||
22848.2.a.fx | $6$ | $182.442$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(6\) | \(-5\) | \(6\) | $-$ | $-$ | $-$ | $-$ | ||
22848.2.a.fy | $6$ | $182.442$ | 6.6.306050884.1 | None | \(0\) | \(6\) | \(-4\) | \(-6\) | $+$ | $-$ | $+$ | $-$ | ||
22848.2.a.fz | $6$ | $182.442$ | 6.6.97623076.1 | None | \(0\) | \(6\) | \(-2\) | \(6\) | $+$ | $-$ | $-$ | $+$ | ||
22848.2.a.ga | $7$ | $182.442$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-7\) | \(-1\) | \(7\) | $-$ | $+$ | $-$ | $+$ | ||
22848.2.a.gb | $7$ | $182.442$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-7\) | \(4\) | \(-7\) | $+$ | $+$ | $+$ | $-$ | ||
22848.2.a.gc | $7$ | $182.442$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(7\) | \(-1\) | \(-7\) | $-$ | $-$ | $+$ | $+$ | ||
22848.2.a.gd | $7$ | $182.442$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(7\) | \(4\) | \(7\) | $+$ | $-$ | $-$ | $-$ | ||
22848.2.a.ge | $8$ | $182.442$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-8\) | \(-1\) | \(8\) | $-$ | $+$ | $-$ | $-$ | ||
22848.2.a.gf | $8$ | $182.442$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-8\) | \(1\) | \(-8\) | $-$ | $+$ | $+$ | $+$ | ||
22848.2.a.gg | $8$ | $182.442$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(8\) | \(-1\) | \(-8\) | $-$ | $-$ | $+$ | $-$ | ||
22848.2.a.gh | $8$ | $182.442$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(8\) | \(1\) | \(8\) | $-$ | $-$ | $-$ | $+$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(22848))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(22848)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 28}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(224))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(238))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(336))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(448))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(476))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(544))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(672))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(714))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(816))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(952))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1088))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1344))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1428))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1632))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1904))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2856))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3264))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3808))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5712))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7616))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(11424))\)\(^{\oplus 2}\)