Properties

Label 22848.2.a.dc
Level $22848$
Weight $2$
Character orbit 22848.a
Self dual yes
Analytic conductor $182.442$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [22848,2,Mod(1,22848)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22848, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("22848.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 22848 = 2^{6} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 22848.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-4,0,2,0,2,0,0,0,4,0,4,0,-2,0,0,0,-2,0,-8,0,-2,0,-2, 0,-4,0,0,0,0,0,-4,0,4,0,-4,0,-4,0,-8,0,-4,0,-16,0,2,0,2,0,-12,0,0,0,0, 0,8,0,-20,0,2,0,-8,0,8,0,8,0,8,0,-4,0,2,0,0,0,0,0,2,0,24,0,4,0,4,0,-4, 0,4,0,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(182.442198538\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q - 2 q^{3} - 4 q^{5} + 2 q^{7} + 2 q^{9} + 4 q^{13} + 4 q^{15} - 2 q^{17} - 2 q^{21} - 8 q^{23} - 2 q^{25} - 2 q^{27} - 4 q^{29} - 4 q^{35} + 4 q^{37} - 4 q^{39} - 4 q^{41} - 8 q^{43} - 4 q^{45} - 16 q^{47}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.