Properties

Label 2280.2.f
Level $2280$
Weight $2$
Character orbit 2280.f
Rep. character $\chi_{2280}(229,\cdot)$
Character field $\Q$
Dimension $216$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 488 216 272
Cusp forms 472 216 256
Eisenstein series 16 0 16

Trace form

\( 216q + 216q^{9} + O(q^{10}) \) \( 216q + 216q^{9} + 8q^{10} + 16q^{14} - 8q^{25} + 16q^{26} - 24q^{30} - 48q^{34} + 32q^{39} + 4q^{40} + 16q^{41} - 32q^{44} + 8q^{46} - 216q^{49} + 36q^{50} + 32q^{55} - 104q^{56} + 20q^{60} + 48q^{64} + 48q^{65} - 16q^{66} - 76q^{70} - 64q^{71} - 40q^{74} + 80q^{80} + 216q^{81} + 32q^{84} + 32q^{86} + 80q^{89} + 8q^{90} + 16q^{94} + 40q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)