Properties

Label 2280.2.es
Level $2280$
Weight $2$
Character orbit 2280.es
Rep. character $\chi_{2280}(709,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $1440$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2280.es (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 760 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2280, [\chi])\).

Total New Old
Modular forms 2928 1440 1488
Cusp forms 2832 1440 1392
Eisenstein series 96 0 96

Trace form

\( 1440q - 6q^{4} + 6q^{6} + O(q^{10}) \) \( 1440q - 6q^{4} + 6q^{6} + 18q^{10} + 36q^{14} - 6q^{16} + 60q^{20} + 144q^{31} - 6q^{34} - 6q^{36} + 54q^{40} + 720q^{49} - 18q^{50} + 6q^{54} + 6q^{64} + 36q^{70} + 96q^{74} + 36q^{76} - 102q^{80} + 36q^{84} - 120q^{86} + 18q^{90} - 144q^{94} - 120q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2280, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2280, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2280, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)