# Properties

 Label 2280.2.es Level $2280$ Weight $2$ Character orbit 2280.es Rep. character $\chi_{2280}(709,\cdot)$ Character field $\Q(\zeta_{18})$ Dimension $1440$ Sturm bound $960$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2280.es (of order $$18$$ and degree $$6$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$760$$ Character field: $$\Q(\zeta_{18})$$ Sturm bound: $$960$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(2280, [\chi])$$.

Total New Old
Modular forms 2928 1440 1488
Cusp forms 2832 1440 1392
Eisenstein series 96 0 96

## Trace form

 $$1440q - 6q^{4} + 6q^{6} + O(q^{10})$$ $$1440q - 6q^{4} + 6q^{6} + 18q^{10} + 36q^{14} - 6q^{16} + 60q^{20} + 144q^{31} - 6q^{34} - 6q^{36} + 54q^{40} + 720q^{49} - 18q^{50} + 6q^{54} + 6q^{64} + 36q^{70} + 96q^{74} + 36q^{76} - 102q^{80} + 36q^{84} - 120q^{86} + 18q^{90} - 144q^{94} - 120q^{95} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(2280, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of $$S_{2}^{\mathrm{old}}(2280, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(2280, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(760, [\chi])$$$$^{\oplus 2}$$