Properties

Label 2280.1.t.j.1139.3
Level $2280$
Weight $1$
Character 2280.1139
Analytic conductor $1.138$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(1139,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.1139"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2280.t (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.13786822880\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.1039680.3

Embedding invariants

Embedding label 1139.3
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2280.1139
Dual form 2280.1.t.j.1139.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +1.00000 q^{5} +1.00000i q^{6} +(-0.707107 - 0.707107i) q^{8} -1.00000i q^{9} +(0.707107 - 0.707107i) q^{10} +2.00000i q^{11} +(0.707107 + 0.707107i) q^{12} +1.41421i q^{13} +(-0.707107 + 0.707107i) q^{15} -1.00000 q^{16} +(-0.707107 - 0.707107i) q^{18} +1.00000 q^{19} -1.00000i q^{20} +(1.41421 + 1.41421i) q^{22} +1.00000 q^{24} +1.00000 q^{25} +(1.00000 + 1.00000i) q^{26} +(0.707107 + 0.707107i) q^{27} +1.00000i q^{30} +(-0.707107 + 0.707107i) q^{32} +(-1.41421 - 1.41421i) q^{33} -1.00000 q^{36} -1.41421i q^{37} +(0.707107 - 0.707107i) q^{38} +(-1.00000 - 1.00000i) q^{39} +(-0.707107 - 0.707107i) q^{40} +2.00000 q^{44} -1.00000i q^{45} +(0.707107 - 0.707107i) q^{48} -1.00000 q^{49} +(0.707107 - 0.707107i) q^{50} +1.41421 q^{52} +1.41421 q^{53} +1.00000 q^{54} +2.00000i q^{55} +(-0.707107 + 0.707107i) q^{57} +(0.707107 + 0.707107i) q^{60} -2.00000i q^{61} +1.00000i q^{64} +1.41421i q^{65} -2.00000 q^{66} -1.41421 q^{67} +(-0.707107 + 0.707107i) q^{72} +(-1.00000 - 1.00000i) q^{74} +(-0.707107 + 0.707107i) q^{75} -1.00000i q^{76} -1.41421 q^{78} -1.00000 q^{80} -1.00000 q^{81} +(1.41421 - 1.41421i) q^{88} +(-0.707107 - 0.707107i) q^{90} +1.00000 q^{95} -1.00000i q^{96} +1.41421 q^{97} +(-0.707107 + 0.707107i) q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{16} + 4 q^{19} + 4 q^{24} + 4 q^{25} + 4 q^{26} - 4 q^{36} - 4 q^{39} + 8 q^{44} - 4 q^{49} + 4 q^{54} - 8 q^{66} - 4 q^{74} - 4 q^{80} - 4 q^{81} + 4 q^{95} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times\).

\(n\) \(457\) \(761\) \(1141\) \(1711\) \(1921\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.707107 0.707107i
\(3\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(4\) 1.00000i 1.00000i
\(5\) 1.00000 1.00000
\(6\) 1.00000i 1.00000i
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −0.707107 0.707107i −0.707107 0.707107i
\(9\) 1.00000i 1.00000i
\(10\) 0.707107 0.707107i 0.707107 0.707107i
\(11\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(13\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(16\) −1.00000 −1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −0.707107 0.707107i −0.707107 0.707107i
\(19\) 1.00000 1.00000
\(20\) 1.00000i 1.00000i
\(21\) 0 0
\(22\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.00000 1.00000
\(25\) 1.00000 1.00000
\(26\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(27\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 1.00000i 1.00000i
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(33\) −1.41421 1.41421i −1.41421 1.41421i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 −1.00000
\(37\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(38\) 0.707107 0.707107i 0.707107 0.707107i
\(39\) −1.00000 1.00000i −1.00000 1.00000i
\(40\) −0.707107 0.707107i −0.707107 0.707107i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 2.00000 2.00000
\(45\) 1.00000i 1.00000i
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0.707107 0.707107i 0.707107 0.707107i
\(49\) −1.00000 −1.00000
\(50\) 0.707107 0.707107i 0.707107 0.707107i
\(51\) 0 0
\(52\) 1.41421 1.41421
\(53\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 1.00000 1.00000
\(55\) 2.00000i 2.00000i
\(56\) 0 0
\(57\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(61\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000i 1.00000i
\(65\) 1.41421i 1.41421i
\(66\) −2.00000 −2.00000
\(67\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −1.00000 1.00000i −1.00000 1.00000i
\(75\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(76\) 1.00000i 1.00000i
\(77\) 0 0
\(78\) −1.41421 −1.41421
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.00000 −1.00000
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 1.41421 1.41421i 1.41421 1.41421i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −0.707107 0.707107i −0.707107 0.707107i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 1.00000
\(96\) 1.00000i 1.00000i
\(97\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(99\) 2.00000 2.00000
\(100\) 1.00000i 1.00000i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(104\) 1.00000 1.00000i 1.00000 1.00000i
\(105\) 0 0
\(106\) 1.00000 1.00000i 1.00000 1.00000i
\(107\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0.707107 0.707107i 0.707107 0.707107i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(111\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(112\) 0 0
\(113\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 1.00000i 1.00000i
\(115\) 0 0
\(116\) 0 0
\(117\) 1.41421 1.41421
\(118\) 0 0
\(119\) 0 0
\(120\) 1.00000 1.00000
\(121\) −3.00000 −3.00000
\(122\) −1.41421 1.41421i −1.41421 1.41421i
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(128\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(129\) 0 0
\(130\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(133\) 0 0
\(134\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(135\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.82843 −2.82843
\(144\) 1.00000i 1.00000i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.707107 0.707107i 0.707107 0.707107i
\(148\) −1.41421 −1.41421
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 1.00000i 1.00000i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −0.707107 0.707107i −0.707107 0.707107i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(160\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(161\) 0 0
\(162\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −1.41421 1.41421i −1.41421 1.41421i
\(166\) 0 0
\(167\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) −1.00000 −1.00000
\(170\) 0 0
\(171\) 1.00000i 1.00000i
\(172\) 0 0
\(173\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.00000i 2.00000i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −1.00000 −1.00000
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(184\) 0 0
\(185\) 1.41421i 1.41421i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0.707107 0.707107i 0.707107 0.707107i
\(191\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(192\) −0.707107 0.707107i −0.707107 0.707107i
\(193\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 1.00000 1.00000i 1.00000 1.00000i
\(195\) −1.00000 1.00000i −1.00000 1.00000i
\(196\) 1.00000i 1.00000i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 1.41421 1.41421i 1.41421 1.41421i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.707107 0.707107i −0.707107 0.707107i
\(201\) 1.00000 1.00000i 1.00000 1.00000i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −1.00000 1.00000i −1.00000 1.00000i
\(207\) 0 0
\(208\) 1.41421i 1.41421i
\(209\) 2.00000i 2.00000i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 1.41421i 1.41421i
\(213\) 0 0
\(214\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(215\) 0 0
\(216\) 1.00000i 1.00000i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 2.00000 2.00000
\(221\) 0 0
\(222\) 1.41421 1.41421
\(223\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(227\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(228\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(229\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 1.00000 1.00000i 1.00000 1.00000i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(240\) 0.707107 0.707107i 0.707107 0.707107i
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −2.12132 + 2.12132i −2.12132 + 2.12132i
\(243\) 0.707107 0.707107i 0.707107 0.707107i
\(244\) −2.00000 −2.00000
\(245\) −1.00000 −1.00000
\(246\) 0 0
\(247\) 1.41421i 1.41421i
\(248\) 0 0
\(249\) 0 0
\(250\) 0.707107 0.707107i 0.707107 0.707107i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −1.00000 1.00000i −1.00000 1.00000i
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.41421 1.41421
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 2.00000i 2.00000i
\(265\) 1.41421 1.41421
\(266\) 0 0
\(267\) 0 0
\(268\) 1.41421i 1.41421i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 1.00000 1.00000
\(271\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000i 2.00000i
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(286\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(287\) 0 0
\(288\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(292\) 0 0
\(293\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 1.00000i 1.00000i
\(295\) 0 0
\(296\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(297\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.00000 −1.00000
\(305\) 2.00000i 2.00000i
\(306\) 0 0
\(307\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 1.41421i 1.41421i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 1.41421i 1.41421i
\(319\) 0 0
\(320\) 1.00000i 1.00000i
\(321\) −1.00000 1.00000i −1.00000 1.00000i
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000i 1.00000i
\(325\) 1.41421i 1.41421i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −2.00000 −2.00000
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −1.41421 −1.41421
\(334\) 1.00000 1.00000i 1.00000 1.00000i
\(335\) −1.41421 −1.41421
\(336\) 0 0
\(337\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(339\) −1.00000 1.00000i −1.00000 1.00000i
\(340\) 0 0
\(341\) 0 0
\(342\) −0.707107 0.707107i −0.707107 0.707107i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(352\) −1.41421 1.41421i −1.41421 1.41421i
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 2.12132 2.12132i 2.12132 2.12132i
\(364\) 0 0
\(365\) 0 0
\(366\) 2.00000 2.00000
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −1.00000 1.00000i −1.00000 1.00000i
\(371\) 0 0
\(372\) 0 0
\(373\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 1.00000i 1.00000i
\(381\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(382\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(383\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) −1.00000 −1.00000
\(385\) 0 0
\(386\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(387\) 0 0
\(388\) 1.41421i 1.41421i
\(389\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(390\) −1.41421 −1.41421
\(391\) 0 0
\(392\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 2.00000i 2.00000i
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 1.41421i 1.41421i
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −1.00000
\(406\) 0 0
\(407\) 2.82843 2.82843
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.41421 −1.41421
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −1.00000 1.00000i −1.00000 1.00000i
\(417\) 0 0
\(418\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.00000 1.00000i −1.00000 1.00000i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 1.41421 1.41421
\(429\) 2.00000 2.00000i 2.00000 2.00000i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.707107 0.707107i −0.707107 0.707107i
\(433\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 1.41421 1.41421i 1.41421 1.41421i
\(441\) 1.00000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 1.00000 1.00000i 1.00000 1.00000i
\(445\) 0 0
\(446\) −1.00000 1.00000i −1.00000 1.00000i
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) −0.707107 0.707107i −0.707107 0.707107i
\(451\) 0 0
\(452\) 1.41421 1.41421
\(453\) 0 0
\(454\) −1.00000 1.00000i −1.00000 1.00000i
\(455\) 0 0
\(456\) 1.00000 1.00000
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(459\) 0 0
\(460\) 0 0
\(461\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 1.41421i 1.41421i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1.00000 1.00000
\(476\) 0 0
\(477\) 1.41421i 1.41421i
\(478\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 1.00000i 1.00000i
\(481\) 2.00000 2.00000
\(482\) 0 0
\(483\) 0 0
\(484\) 3.00000i 3.00000i
\(485\) 1.41421 1.41421
\(486\) 1.00000i 1.00000i
\(487\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(488\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(489\) 0 0
\(490\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(495\) 2.00000 2.00000
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 1.00000i 1.00000i
\(501\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.707107 0.707107i 0.707107 0.707107i
\(508\) −1.41421 −1.41421
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.707107 0.707107i 0.707107 0.707107i
\(513\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(514\) −1.00000 1.00000i −1.00000 1.00000i
\(515\) 1.41421i 1.41421i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.00000 1.00000i 1.00000 1.00000i
\(520\) 1.00000 1.00000i 1.00000 1.00000i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(529\) 1.00000 1.00000
\(530\) 1.00000 1.00000i 1.00000 1.00000i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.41421i 1.41421i
\(536\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(537\) 0 0
\(538\) 0 0
\(539\) 2.00000i 2.00000i
\(540\) 0.707107 0.707107i 0.707107 0.707107i
\(541\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(542\) −1.41421 1.41421i −1.41421 1.41421i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) −2.00000 −2.00000
\(550\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 1.41421i 1.41421i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 1.00000i 1.00000i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 2.82843i 2.82843i
\(573\) 1.41421 1.41421i 1.41421 1.41421i
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(579\) 1.00000 1.00000i 1.00000 1.00000i
\(580\) 0 0
\(581\) 0 0
\(582\) 1.41421i 1.41421i
\(583\) 2.82843i 2.82843i
\(584\) 0 0
\(585\) 1.41421 1.41421
\(586\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) −0.707107 0.707107i −0.707107 0.707107i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.41421i 1.41421i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 2.00000i 2.00000i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 1.00000 1.00000
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 1.41421i 1.41421i
\(604\) 0 0
\(605\) −3.00000 −3.00000
\(606\) 0 0
\(607\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(608\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(609\) 0 0
\(610\) −1.41421 1.41421i −1.41421 1.41421i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 1.41421 1.41421
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) −1.41421 1.41421i −1.41421 1.41421i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.00000 1.00000i 1.00000 1.00000i
\(635\) 1.41421i 1.41421i
\(636\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(637\) 1.41421i 1.41421i
\(638\) 0 0
\(639\) 0 0
\(640\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) −1.41421 −1.41421
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(649\) 0 0
\(650\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(667\) 0 0
\(668\) 1.41421i 1.41421i
\(669\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(670\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(671\) 4.00000 4.00000
\(672\) 0 0
\(673\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 1.00000 1.00000i 1.00000 1.00000i
\(675\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(676\) 1.00000i 1.00000i
\(677\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) −1.41421 −1.41421
\(679\) 0 0
\(680\) 0 0
\(681\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(682\) 0 0
\(683\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(684\) −1.00000 −1.00000
\(685\) 0 0
\(686\) 0 0
\(687\) −1.41421 1.41421i −1.41421 1.41421i
\(688\) 0 0
\(689\) 2.00000i 2.00000i
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 1.41421i 1.41421i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 1.41421i 1.41421i
\(703\) 1.41421i 1.41421i
\(704\) −2.00000 −2.00000
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −2.82843 −2.82843
\(716\) 0 0
\(717\) 1.41421 1.41421i 1.41421 1.41421i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 1.00000i 1.00000i
\(721\) 0 0
\(722\) 0.707107 0.707107i 0.707107 0.707107i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 3.00000i 3.00000i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 1.00000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 1.41421 1.41421i 1.41421 1.41421i
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0.707107 0.707107i 0.707107 0.707107i
\(736\) 0 0
\(737\) 2.82843i 2.82843i
\(738\) 0 0
\(739\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(740\) −1.41421 −1.41421
\(741\) −1.00000 1.00000i −1.00000 1.00000i
\(742\) 0 0
\(743\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 1.00000i 1.00000i
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.707107 0.707107i −0.707107 0.707107i
\(761\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 1.41421 1.41421
\(763\) 0 0
\(764\) 2.00000i 2.00000i
\(765\) 0 0
\(766\) 1.00000 1.00000i 1.00000 1.00000i
\(767\) 0 0
\(768\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(772\) 1.41421i 1.41421i
\(773\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.00000 1.00000i −1.00000 1.00000i
\(777\) 0 0
\(778\) 1.41421 1.41421i 1.41421 1.41421i
\(779\) 0 0
\(780\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −1.41421 1.41421i −1.41421 1.41421i
\(793\) 2.82843 2.82843
\(794\) 0 0
\(795\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(796\) 0 0
\(797\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.00000 1.00000i −1.00000 1.00000i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(814\) 2.00000 2.00000i 2.00000 2.00000i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(825\) −1.41421 1.41421i −1.41421 1.41421i
\(826\) 0 0
\(827\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.41421 −1.41421
\(833\) 0 0
\(834\) 0 0
\(835\) 1.41421 1.41421
\(836\) 2.00000 2.00000
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.00000 −1.00000
\(846\) 0 0
\(847\) 0 0
\(848\) −1.41421 −1.41421
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 1.00000i 1.00000i
\(856\) 1.00000 1.00000i 1.00000 1.00000i
\(857\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(858\) 2.82843i 2.82843i
\(859\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) −1.00000 −1.00000
\(865\) −1.41421 −1.41421
\(866\) 1.00000 1.00000i 1.00000 1.00000i
\(867\) 0.707107 0.707107i 0.707107 0.707107i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 2.00000i 2.00000i
\(872\) 0 0
\(873\) 1.41421i 1.41421i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 1.00000 1.00000i 1.00000 1.00000i
\(880\) 2.00000i 2.00000i
\(881\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(882\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 1.41421i 1.41421i
\(889\) 0 0
\(890\) 0 0
\(891\) 2.00000i 2.00000i
\(892\) −1.41421 −1.41421
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.00000 −1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 1.00000 1.00000i 1.00000 1.00000i
\(905\) 0 0
\(906\) 0 0
\(907\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) −1.41421 −1.41421
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0.707107 0.707107i 0.707107 0.707107i
\(913\) 0 0
\(914\) 0 0
\(915\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(916\) 2.00000 2.00000
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 1.00000 1.00000i 1.00000 1.00000i
\(922\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(923\) 0 0
\(924\) 0 0
\(925\) 1.41421i 1.41421i
\(926\) 0 0
\(927\) −1.41421 −1.41421
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −1.00000 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −1.00000 1.00000i −1.00000 1.00000i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.707107 0.707107i 0.707107 0.707107i
\(951\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(952\) 0 0
\(953\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(954\) −1.00000 1.00000i −1.00000 1.00000i
\(955\) −2.00000 −2.00000
\(956\) 2.00000i 2.00000i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.707107 0.707107i −0.707107 0.707107i
\(961\) −1.00000 −1.00000
\(962\) 1.41421 1.41421i 1.41421 1.41421i
\(963\) 1.41421 1.41421
\(964\) 0 0
\(965\) −1.41421 −1.41421
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 2.12132 + 2.12132i 2.12132 + 2.12132i
\(969\) 0 0
\(970\) 1.00000 1.00000i 1.00000 1.00000i
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −0.707107 0.707107i −0.707107 0.707107i
\(973\) 0 0
\(974\) −1.00000 1.00000i −1.00000 1.00000i
\(975\) −1.00000 1.00000i −1.00000 1.00000i
\(976\) 2.00000i 2.00000i
\(977\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.00000i 1.00000i
\(981\) 0 0
\(982\) 0 0
\(983\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 1.41421 1.41421
\(989\) 0 0
\(990\) 1.41421 1.41421i 1.41421 1.41421i
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 1.00000 1.00000i 1.00000 1.00000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.t.j.1139.3 yes 4
3.2 odd 2 2280.1.t.i.1139.2 yes 4
5.4 even 2 inner 2280.1.t.j.1139.2 yes 4
8.3 odd 2 2280.1.t.i.1139.1 4
15.14 odd 2 2280.1.t.i.1139.3 yes 4
19.18 odd 2 inner 2280.1.t.j.1139.2 yes 4
24.11 even 2 inner 2280.1.t.j.1139.4 yes 4
40.19 odd 2 2280.1.t.i.1139.4 yes 4
57.56 even 2 2280.1.t.i.1139.3 yes 4
95.94 odd 2 CM 2280.1.t.j.1139.3 yes 4
120.59 even 2 inner 2280.1.t.j.1139.1 yes 4
152.75 even 2 2280.1.t.i.1139.4 yes 4
285.284 even 2 2280.1.t.i.1139.2 yes 4
456.227 odd 2 inner 2280.1.t.j.1139.1 yes 4
760.379 even 2 2280.1.t.i.1139.1 4
2280.1139 odd 2 inner 2280.1.t.j.1139.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.t.i.1139.1 4 8.3 odd 2
2280.1.t.i.1139.1 4 760.379 even 2
2280.1.t.i.1139.2 yes 4 3.2 odd 2
2280.1.t.i.1139.2 yes 4 285.284 even 2
2280.1.t.i.1139.3 yes 4 15.14 odd 2
2280.1.t.i.1139.3 yes 4 57.56 even 2
2280.1.t.i.1139.4 yes 4 40.19 odd 2
2280.1.t.i.1139.4 yes 4 152.75 even 2
2280.1.t.j.1139.1 yes 4 120.59 even 2 inner
2280.1.t.j.1139.1 yes 4 456.227 odd 2 inner
2280.1.t.j.1139.2 yes 4 5.4 even 2 inner
2280.1.t.j.1139.2 yes 4 19.18 odd 2 inner
2280.1.t.j.1139.3 yes 4 1.1 even 1 trivial
2280.1.t.j.1139.3 yes 4 95.94 odd 2 CM
2280.1.t.j.1139.4 yes 4 24.11 even 2 inner
2280.1.t.j.1139.4 yes 4 2280.1139 odd 2 inner