Properties

Label 2280.1.t.j.1139.2
Level 22802280
Weight 11
Character 2280.1139
Analytic conductor 1.1381.138
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -95
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(1139,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.1139"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2280=233519 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2280.t (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.137868228801.13786822880
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.1039680.3

Embedding invariants

Embedding label 1139.2
Root 0.707107+0.707107i-0.707107 + 0.707107i of defining polynomial
Character χ\chi == 2280.1139
Dual form 2280.1.t.j.1139.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.707107+0.707107i)q2+(0.7071070.707107i)q31.00000iq4+1.00000q5+1.00000iq6+(0.707107+0.707107i)q81.00000iq9+(0.707107+0.707107i)q10+2.00000iq11+(0.7071070.707107i)q121.41421iq13+(0.7071070.707107i)q151.00000q16+(0.707107+0.707107i)q18+1.00000q191.00000iq20+(1.414211.41421i)q22+1.00000q24+1.00000q25+(1.00000+1.00000i)q26+(0.7071070.707107i)q27+1.00000iq30+(0.7071070.707107i)q32+(1.41421+1.41421i)q331.00000q36+1.41421iq37+(0.707107+0.707107i)q38+(1.000001.00000i)q39+(0.707107+0.707107i)q40+2.00000q441.00000iq45+(0.707107+0.707107i)q481.00000q49+(0.707107+0.707107i)q501.41421q521.41421q53+1.00000q54+2.00000iq55+(0.7071070.707107i)q57+(0.7071070.707107i)q602.00000iq61+1.00000iq641.41421iq652.00000q66+1.41421q67+(0.7071070.707107i)q72+(1.000001.00000i)q74+(0.7071070.707107i)q751.00000iq76+1.41421q781.00000q801.00000q81+(1.41421+1.41421i)q88+(0.707107+0.707107i)q90+1.00000q951.00000iq961.41421q97+(0.7071070.707107i)q98+2.00000q99+O(q100)q+(-0.707107 + 0.707107i) q^{2} +(0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +1.00000 q^{5} +1.00000i q^{6} +(0.707107 + 0.707107i) q^{8} -1.00000i q^{9} +(-0.707107 + 0.707107i) q^{10} +2.00000i q^{11} +(-0.707107 - 0.707107i) q^{12} -1.41421i q^{13} +(0.707107 - 0.707107i) q^{15} -1.00000 q^{16} +(0.707107 + 0.707107i) q^{18} +1.00000 q^{19} -1.00000i q^{20} +(-1.41421 - 1.41421i) q^{22} +1.00000 q^{24} +1.00000 q^{25} +(1.00000 + 1.00000i) q^{26} +(-0.707107 - 0.707107i) q^{27} +1.00000i q^{30} +(0.707107 - 0.707107i) q^{32} +(1.41421 + 1.41421i) q^{33} -1.00000 q^{36} +1.41421i q^{37} +(-0.707107 + 0.707107i) q^{38} +(-1.00000 - 1.00000i) q^{39} +(0.707107 + 0.707107i) q^{40} +2.00000 q^{44} -1.00000i q^{45} +(-0.707107 + 0.707107i) q^{48} -1.00000 q^{49} +(-0.707107 + 0.707107i) q^{50} -1.41421 q^{52} -1.41421 q^{53} +1.00000 q^{54} +2.00000i q^{55} +(0.707107 - 0.707107i) q^{57} +(-0.707107 - 0.707107i) q^{60} -2.00000i q^{61} +1.00000i q^{64} -1.41421i q^{65} -2.00000 q^{66} +1.41421 q^{67} +(0.707107 - 0.707107i) q^{72} +(-1.00000 - 1.00000i) q^{74} +(0.707107 - 0.707107i) q^{75} -1.00000i q^{76} +1.41421 q^{78} -1.00000 q^{80} -1.00000 q^{81} +(-1.41421 + 1.41421i) q^{88} +(0.707107 + 0.707107i) q^{90} +1.00000 q^{95} -1.00000i q^{96} -1.41421 q^{97} +(0.707107 - 0.707107i) q^{98} +2.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q54q16+4q19+4q24+4q25+4q264q364q39+8q444q49+4q548q664q744q804q81+4q95+8q99+O(q100) 4 q + 4 q^{5} - 4 q^{16} + 4 q^{19} + 4 q^{24} + 4 q^{25} + 4 q^{26} - 4 q^{36} - 4 q^{39} + 8 q^{44} - 4 q^{49} + 4 q^{54} - 8 q^{66} - 4 q^{74} - 4 q^{80} - 4 q^{81} + 4 q^{95} + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2280Z)×\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times.

nn 457457 761761 11411141 17111711 19211921
χ(n)\chi(n) 1-1 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.707107 + 0.707107i −0.707107 + 0.707107i
33 0.707107 0.707107i 0.707107 0.707107i
44 1.00000i 1.00000i
55 1.00000 1.00000
66 1.00000i 1.00000i
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 0.707107 + 0.707107i 0.707107 + 0.707107i
99 1.00000i 1.00000i
1010 −0.707107 + 0.707107i −0.707107 + 0.707107i
1111 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
1212 −0.707107 0.707107i −0.707107 0.707107i
1313 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
1414 0 0
1515 0.707107 0.707107i 0.707107 0.707107i
1616 −1.00000 −1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0.707107 + 0.707107i 0.707107 + 0.707107i
1919 1.00000 1.00000
2020 1.00000i 1.00000i
2121 0 0
2222 −1.41421 1.41421i −1.41421 1.41421i
2323 0 0 1.00000 00
−1.00000 π\pi
2424 1.00000 1.00000
2525 1.00000 1.00000
2626 1.00000 + 1.00000i 1.00000 + 1.00000i
2727 −0.707107 0.707107i −0.707107 0.707107i
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 1.00000i 1.00000i
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0.707107 0.707107i 0.707107 0.707107i
3333 1.41421 + 1.41421i 1.41421 + 1.41421i
3434 0 0
3535 0 0
3636 −1.00000 −1.00000
3737 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3838 −0.707107 + 0.707107i −0.707107 + 0.707107i
3939 −1.00000 1.00000i −1.00000 1.00000i
4040 0.707107 + 0.707107i 0.707107 + 0.707107i
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 2.00000 2.00000
4545 1.00000i 1.00000i
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 −0.707107 + 0.707107i −0.707107 + 0.707107i
4949 −1.00000 −1.00000
5050 −0.707107 + 0.707107i −0.707107 + 0.707107i
5151 0 0
5252 −1.41421 −1.41421
5353 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
5454 1.00000 1.00000
5555 2.00000i 2.00000i
5656 0 0
5757 0.707107 0.707107i 0.707107 0.707107i
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 −0.707107 0.707107i −0.707107 0.707107i
6161 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
6262 0 0
6363 0 0
6464 1.00000i 1.00000i
6565 1.41421i 1.41421i
6666 −2.00000 −2.00000
6767 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0.707107 0.707107i 0.707107 0.707107i
7373 0 0 1.00000 00
−1.00000 π\pi
7474 −1.00000 1.00000i −1.00000 1.00000i
7575 0.707107 0.707107i 0.707107 0.707107i
7676 1.00000i 1.00000i
7777 0 0
7878 1.41421 1.41421
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 −1.00000 −1.00000
8181 −1.00000 −1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 −1.41421 + 1.41421i −1.41421 + 1.41421i
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0.707107 + 0.707107i 0.707107 + 0.707107i
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 1.00000 1.00000
9696 1.00000i 1.00000i
9797 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
9898 0.707107 0.707107i 0.707107 0.707107i
9999 2.00000 2.00000
100100 1.00000i 1.00000i
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
104104 1.00000 1.00000i 1.00000 1.00000i
105105 0 0
106106 1.00000 1.00000i 1.00000 1.00000i
107107 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
108108 −0.707107 + 0.707107i −0.707107 + 0.707107i
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 −1.41421 1.41421i −1.41421 1.41421i
111111 1.00000 + 1.00000i 1.00000 + 1.00000i
112112 0 0
113113 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
114114 1.00000i 1.00000i
115115 0 0
116116 0 0
117117 −1.41421 −1.41421
118118 0 0
119119 0 0
120120 1.00000 1.00000
121121 −3.00000 −3.00000
122122 1.41421 + 1.41421i 1.41421 + 1.41421i
123123 0 0
124124 0 0
125125 1.00000 1.00000
126126 0 0
127127 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
128128 −0.707107 0.707107i −0.707107 0.707107i
129129 0 0
130130 1.00000 + 1.00000i 1.00000 + 1.00000i
131131 0 0 1.00000 00
−1.00000 π\pi
132132 1.41421 1.41421i 1.41421 1.41421i
133133 0 0
134134 −1.00000 + 1.00000i −1.00000 + 1.00000i
135135 −0.707107 0.707107i −0.707107 0.707107i
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0 0
142142 0 0
143143 2.82843 2.82843
144144 1.00000i 1.00000i
145145 0 0
146146 0 0
147147 −0.707107 + 0.707107i −0.707107 + 0.707107i
148148 1.41421 1.41421
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 1.00000i 1.00000i
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0.707107 + 0.707107i 0.707107 + 0.707107i
153153 0 0
154154 0 0
155155 0 0
156156 −1.00000 + 1.00000i −1.00000 + 1.00000i
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 −1.00000 + 1.00000i −1.00000 + 1.00000i
160160 0.707107 0.707107i 0.707107 0.707107i
161161 0 0
162162 0.707107 0.707107i 0.707107 0.707107i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 1.41421 + 1.41421i 1.41421 + 1.41421i
166166 0 0
167167 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
168168 0 0
169169 −1.00000 −1.00000
170170 0 0
171171 1.00000i 1.00000i
172172 0 0
173173 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
174174 0 0
175175 0 0
176176 2.00000i 2.00000i
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 −1.00000 −1.00000
181181 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
182182 0 0
183183 −1.41421 1.41421i −1.41421 1.41421i
184184 0 0
185185 1.41421i 1.41421i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 −0.707107 + 0.707107i −0.707107 + 0.707107i
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 0.707107 + 0.707107i 0.707107 + 0.707107i
193193 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
194194 1.00000 1.00000i 1.00000 1.00000i
195195 −1.00000 1.00000i −1.00000 1.00000i
196196 1.00000i 1.00000i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 −1.41421 + 1.41421i −1.41421 + 1.41421i
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0.707107 + 0.707107i 0.707107 + 0.707107i
201201 1.00000 1.00000i 1.00000 1.00000i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 −1.00000 1.00000i −1.00000 1.00000i
207207 0 0
208208 1.41421i 1.41421i
209209 2.00000i 2.00000i
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 1.41421i 1.41421i
213213 0 0
214214 1.00000 + 1.00000i 1.00000 + 1.00000i
215215 0 0
216216 1.00000i 1.00000i
217217 0 0
218218 0 0
219219 0 0
220220 2.00000 2.00000
221221 0 0
222222 −1.41421 −1.41421
223223 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
224224 0 0
225225 1.00000i 1.00000i
226226 1.00000 + 1.00000i 1.00000 + 1.00000i
227227 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 −0.707107 0.707107i −0.707107 0.707107i
229229 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 1.00000 1.00000i 1.00000 1.00000i
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
240240 −0.707107 + 0.707107i −0.707107 + 0.707107i
241241 0 0 1.00000 00
−1.00000 π\pi
242242 2.12132 2.12132i 2.12132 2.12132i
243243 −0.707107 + 0.707107i −0.707107 + 0.707107i
244244 −2.00000 −2.00000
245245 −1.00000 −1.00000
246246 0 0
247247 1.41421i 1.41421i
248248 0 0
249249 0 0
250250 −0.707107 + 0.707107i −0.707107 + 0.707107i
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 −1.00000 1.00000i −1.00000 1.00000i
255255 0 0
256256 1.00000 1.00000
257257 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
258258 0 0
259259 0 0
260260 −1.41421 −1.41421
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 2.00000i 2.00000i
265265 −1.41421 −1.41421
266266 0 0
267267 0 0
268268 1.41421i 1.41421i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 1.00000 1.00000
271271 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
272272 0 0
273273 0 0
274274 0 0
275275 2.00000i 2.00000i
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 0.707107 0.707107i 0.707107 0.707107i
286286 −2.00000 + 2.00000i −2.00000 + 2.00000i
287287 0 0
288288 −0.707107 0.707107i −0.707107 0.707107i
289289 −1.00000 −1.00000
290290 0 0
291291 −1.00000 + 1.00000i −1.00000 + 1.00000i
292292 0 0
293293 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
294294 1.00000i 1.00000i
295295 0 0
296296 −1.00000 + 1.00000i −1.00000 + 1.00000i
297297 1.41421 1.41421i 1.41421 1.41421i
298298 0 0
299299 0 0
300300 −0.707107 0.707107i −0.707107 0.707107i
301301 0 0
302302 0 0
303303 0 0
304304 −1.00000 −1.00000
305305 2.00000i 2.00000i
306306 0 0
307307 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
308308 0 0
309309 1.00000 + 1.00000i 1.00000 + 1.00000i
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 1.41421i 1.41421i
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 0 0
317317 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
318318 1.41421i 1.41421i
319319 0 0
320320 1.00000i 1.00000i
321321 −1.00000 1.00000i −1.00000 1.00000i
322322 0 0
323323 0 0
324324 1.00000i 1.00000i
325325 1.41421i 1.41421i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 −2.00000 −2.00000
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 1.41421 1.41421
334334 1.00000 1.00000i 1.00000 1.00000i
335335 1.41421 1.41421
336336 0 0
337337 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
338338 0.707107 0.707107i 0.707107 0.707107i
339339 −1.00000 1.00000i −1.00000 1.00000i
340340 0 0
341341 0 0
342342 0.707107 + 0.707107i 0.707107 + 0.707107i
343343 0 0
344344 0 0
345345 0 0
346346 −1.00000 + 1.00000i −1.00000 + 1.00000i
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 −1.00000 + 1.00000i −1.00000 + 1.00000i
352352 1.41421 + 1.41421i 1.41421 + 1.41421i
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0.707107 0.707107i 0.707107 0.707107i
361361 1.00000 1.00000
362362 0 0
363363 −2.12132 + 2.12132i −2.12132 + 2.12132i
364364 0 0
365365 0 0
366366 2.00000 2.00000
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 0 0
370370 −1.00000 1.00000i −1.00000 1.00000i
371371 0 0
372372 0 0
373373 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
374374 0 0
375375 0.707107 0.707107i 0.707107 0.707107i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 1.00000i 1.00000i
381381 1.00000 + 1.00000i 1.00000 + 1.00000i
382382 1.41421 1.41421i 1.41421 1.41421i
383383 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
384384 −1.00000 −1.00000
385385 0 0
386386 −1.00000 + 1.00000i −1.00000 + 1.00000i
387387 0 0
388388 1.41421i 1.41421i
389389 2.00000 2.00000 1.00000 00
1.00000 00
390390 1.41421 1.41421
391391 0 0
392392 −0.707107 0.707107i −0.707107 0.707107i
393393 0 0
394394 0 0
395395 0 0
396396 2.00000i 2.00000i
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 1.41421i 1.41421i
403403 0 0
404404 0 0
405405 −1.00000 −1.00000
406406 0 0
407407 −2.82843 −2.82843
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 1.41421 1.41421
413413 0 0
414414 0 0
415415 0 0
416416 −1.00000 1.00000i −1.00000 1.00000i
417417 0 0
418418 −1.41421 1.41421i −1.41421 1.41421i
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
422422 0 0
423423 0 0
424424 −1.00000 1.00000i −1.00000 1.00000i
425425 0 0
426426 0 0
427427 0 0
428428 −1.41421 −1.41421
429429 2.00000 2.00000i 2.00000 2.00000i
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0.707107 + 0.707107i 0.707107 + 0.707107i
433433 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
440440 −1.41421 + 1.41421i −1.41421 + 1.41421i
441441 1.00000i 1.00000i
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 1.00000 1.00000i 1.00000 1.00000i
445445 0 0
446446 −1.00000 1.00000i −1.00000 1.00000i
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0.707107 + 0.707107i 0.707107 + 0.707107i
451451 0 0
452452 −1.41421 −1.41421
453453 0 0
454454 −1.00000 1.00000i −1.00000 1.00000i
455455 0 0
456456 1.00000 1.00000
457457 0 0 1.00000 00
−1.00000 π\pi
458458 −1.41421 1.41421i −1.41421 1.41421i
459459 0 0
460460 0 0
461461 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 1.41421i 1.41421i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 1.00000 1.00000
476476 0 0
477477 1.41421i 1.41421i
478478 1.41421 1.41421i 1.41421 1.41421i
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 1.00000i 1.00000i
481481 2.00000 2.00000
482482 0 0
483483 0 0
484484 3.00000i 3.00000i
485485 −1.41421 −1.41421
486486 1.00000i 1.00000i
487487 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
488488 1.41421 1.41421i 1.41421 1.41421i
489489 0 0
490490 0.707107 0.707107i 0.707107 0.707107i
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 1.00000 + 1.00000i 1.00000 + 1.00000i
495495 2.00000 2.00000
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 1.00000i 1.00000i
501501 −1.00000 + 1.00000i −1.00000 + 1.00000i
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 −0.707107 + 0.707107i −0.707107 + 0.707107i
508508 1.41421 1.41421
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −0.707107 + 0.707107i −0.707107 + 0.707107i
513513 −0.707107 0.707107i −0.707107 0.707107i
514514 −1.00000 1.00000i −1.00000 1.00000i
515515 1.41421i 1.41421i
516516 0 0
517517 0 0
518518 0 0
519519 1.00000 1.00000i 1.00000 1.00000i
520520 1.00000 1.00000i 1.00000 1.00000i
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 −1.41421 1.41421i −1.41421 1.41421i
529529 1.00000 1.00000
530530 1.00000 1.00000i 1.00000 1.00000i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 1.41421i 1.41421i
536536 1.00000 + 1.00000i 1.00000 + 1.00000i
537537 0 0
538538 0 0
539539 2.00000i 2.00000i
540540 −0.707107 + 0.707107i −0.707107 + 0.707107i
541541 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
542542 1.41421 + 1.41421i 1.41421 + 1.41421i
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
548548 0 0
549549 −2.00000 −2.00000
550550 −1.41421 1.41421i −1.41421 1.41421i
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 1.00000 + 1.00000i 1.00000 + 1.00000i
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
564564 0 0
565565 1.41421i 1.41421i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 1.00000i 1.00000i
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 2.82843i 2.82843i
573573 −1.41421 + 1.41421i −1.41421 + 1.41421i
574574 0 0
575575 0 0
576576 1.00000 1.00000
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.707107 0.707107i 0.707107 0.707107i
579579 1.00000 1.00000i 1.00000 1.00000i
580580 0 0
581581 0 0
582582 1.41421i 1.41421i
583583 2.82843i 2.82843i
584584 0 0
585585 −1.41421 −1.41421
586586 −1.00000 + 1.00000i −1.00000 + 1.00000i
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0.707107 + 0.707107i 0.707107 + 0.707107i
589589 0 0
590590 0 0
591591 0 0
592592 1.41421i 1.41421i
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 2.00000i 2.00000i
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 1.00000 1.00000
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 1.41421i 1.41421i
604604 0 0
605605 −3.00000 −3.00000
606606 0 0
607607 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 0.707107 0.707107i 0.707107 0.707107i
609609 0 0
610610 1.41421 + 1.41421i 1.41421 + 1.41421i
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 −1.00000 + 1.00000i −1.00000 + 1.00000i
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 −1.41421 −1.41421
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 1.00000 + 1.00000i 1.00000 + 1.00000i
625625 1.00000 1.00000
626626 0 0
627627 1.41421 + 1.41421i 1.41421 + 1.41421i
628628 0 0
629629 0 0
630630 0 0
631631 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
632632 0 0
633633 0 0
634634 1.00000 1.00000i 1.00000 1.00000i
635635 1.41421i 1.41421i
636636 1.00000 + 1.00000i 1.00000 + 1.00000i
637637 1.41421i 1.41421i
638638 0 0
639639 0 0
640640 −0.707107 0.707107i −0.707107 0.707107i
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 1.41421 1.41421
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 −0.707107 0.707107i −0.707107 0.707107i
649649 0 0
650650 1.00000 + 1.00000i 1.00000 + 1.00000i
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 1.41421 1.41421i 1.41421 1.41421i
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −1.00000 + 1.00000i −1.00000 + 1.00000i
667667 0 0
668668 1.41421i 1.41421i
669669 1.00000 + 1.00000i 1.00000 + 1.00000i
670670 −1.00000 + 1.00000i −1.00000 + 1.00000i
671671 4.00000 4.00000
672672 0 0
673673 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
674674 1.00000 1.00000i 1.00000 1.00000i
675675 −0.707107 0.707107i −0.707107 0.707107i
676676 1.00000i 1.00000i
677677 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
678678 1.41421 1.41421
679679 0 0
680680 0 0
681681 1.00000 + 1.00000i 1.00000 + 1.00000i
682682 0 0
683683 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
684684 −1.00000 −1.00000
685685 0 0
686686 0 0
687687 1.41421 + 1.41421i 1.41421 + 1.41421i
688688 0 0
689689 2.00000i 2.00000i
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 1.41421i 1.41421i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 1.41421i 1.41421i
703703 1.41421i 1.41421i
704704 −2.00000 −2.00000
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 2.82843 2.82843
716716 0 0
717717 −1.41421 + 1.41421i −1.41421 + 1.41421i
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 1.00000i 1.00000i
721721 0 0
722722 −0.707107 + 0.707107i −0.707107 + 0.707107i
723723 0 0
724724 0 0
725725 0 0
726726 3.00000i 3.00000i
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 1.00000i 1.00000i
730730 0 0
731731 0 0
732732 −1.41421 + 1.41421i −1.41421 + 1.41421i
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 −0.707107 + 0.707107i −0.707107 + 0.707107i
736736 0 0
737737 2.82843i 2.82843i
738738 0 0
739739 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
740740 1.41421 1.41421
741741 −1.00000 1.00000i −1.00000 1.00000i
742742 0 0
743743 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 1.00000 + 1.00000i 1.00000 + 1.00000i
747747 0 0
748748 0 0
749749 0 0
750750 1.00000i 1.00000i
751751 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 0.707107 + 0.707107i 0.707107 + 0.707107i
761761 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
762762 −1.41421 −1.41421
763763 0 0
764764 2.00000i 2.00000i
765765 0 0
766766 1.00000 1.00000i 1.00000 1.00000i
767767 0 0
768768 0.707107 0.707107i 0.707107 0.707107i
769769 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
770770 0 0
771771 1.00000 + 1.00000i 1.00000 + 1.00000i
772772 1.41421i 1.41421i
773773 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
774774 0 0
775775 0 0
776776 −1.00000 1.00000i −1.00000 1.00000i
777777 0 0
778778 −1.41421 + 1.41421i −1.41421 + 1.41421i
779779 0 0
780780 −1.00000 + 1.00000i −1.00000 + 1.00000i
781781 0 0
782782 0 0
783783 0 0
784784 1.00000 1.00000
785785 0 0
786786 0 0
787787 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 1.41421 + 1.41421i 1.41421 + 1.41421i
793793 −2.82843 −2.82843
794794 0 0
795795 −1.00000 + 1.00000i −1.00000 + 1.00000i
796796 0 0
797797 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
798798 0 0
799799 0 0
800800 0.707107 0.707107i 0.707107 0.707107i
801801 0 0
802802 0 0
803803 0 0
804804 −1.00000 1.00000i −1.00000 1.00000i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0.707107 0.707107i 0.707107 0.707107i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 −1.41421 1.41421i −1.41421 1.41421i
814814 2.00000 2.00000i 2.00000 2.00000i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 2.00000 2.00000 1.00000 00
1.00000 00
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 −1.00000 + 1.00000i −1.00000 + 1.00000i
825825 1.41421 + 1.41421i 1.41421 + 1.41421i
826826 0 0
827827 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 1.41421 1.41421
833833 0 0
834834 0 0
835835 −1.41421 −1.41421
836836 2.00000 2.00000
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 −1.00000 −1.00000
846846 0 0
847847 0 0
848848 1.41421 1.41421
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 1.00000i 1.00000i
856856 1.00000 1.00000i 1.00000 1.00000i
857857 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
858858 2.82843i 2.82843i
859859 2.00000 2.00000 1.00000 00
1.00000 00
860860 0 0
861861 0 0
862862 0 0
863863 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
864864 −1.00000 −1.00000
865865 1.41421 1.41421
866866 1.00000 1.00000i 1.00000 1.00000i
867867 −0.707107 + 0.707107i −0.707107 + 0.707107i
868868 0 0
869869 0 0
870870 0 0
871871 2.00000i 2.00000i
872872 0 0
873873 1.41421i 1.41421i
874874 0 0
875875 0 0
876876 0 0
877877 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
878878 0 0
879879 1.00000 1.00000i 1.00000 1.00000i
880880 2.00000i 2.00000i
881881 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
882882 −0.707107 0.707107i −0.707107 0.707107i
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
888888 1.41421i 1.41421i
889889 0 0
890890 0 0
891891 2.00000i 2.00000i
892892 1.41421 1.41421
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −1.00000 −1.00000
901901 0 0
902902 0 0
903903 0 0
904904 1.00000 1.00000i 1.00000 1.00000i
905905 0 0
906906 0 0
907907 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
908908 1.41421 1.41421
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −0.707107 + 0.707107i −0.707107 + 0.707107i
913913 0 0
914914 0 0
915915 −1.41421 1.41421i −1.41421 1.41421i
916916 2.00000 2.00000
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 1.00000 1.00000i 1.00000 1.00000i
922922 1.41421 1.41421i 1.41421 1.41421i
923923 0 0
924924 0 0
925925 1.41421i 1.41421i
926926 0 0
927927 1.41421 1.41421
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 −1.00000 −1.00000
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 −1.00000 1.00000i −1.00000 1.00000i
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 −0.707107 + 0.707107i −0.707107 + 0.707107i
951951 −1.00000 + 1.00000i −1.00000 + 1.00000i
952952 0 0
953953 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
954954 −1.00000 1.00000i −1.00000 1.00000i
955955 −2.00000 −2.00000
956956 2.00000i 2.00000i
957957 0 0
958958 0 0
959959 0 0
960960 0.707107 + 0.707107i 0.707107 + 0.707107i
961961 −1.00000 −1.00000
962962 −1.41421 + 1.41421i −1.41421 + 1.41421i
963963 −1.41421 −1.41421
964964 0 0
965965 1.41421 1.41421
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 −2.12132 2.12132i −2.12132 2.12132i
969969 0 0
970970 1.00000 1.00000i 1.00000 1.00000i
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0.707107 + 0.707107i 0.707107 + 0.707107i
973973 0 0
974974 −1.00000 1.00000i −1.00000 1.00000i
975975 −1.00000 1.00000i −1.00000 1.00000i
976976 2.00000i 2.00000i
977977 1.41421i 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
978978 0 0
979979 0 0
980980 1.00000i 1.00000i
981981 0 0
982982 0 0
983983 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 −1.41421 −1.41421
989989 0 0
990990 −1.41421 + 1.41421i −1.41421 + 1.41421i
991991 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 1.00000 1.00000i 1.00000 1.00000i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.t.j.1139.2 yes 4
3.2 odd 2 2280.1.t.i.1139.3 yes 4
5.4 even 2 inner 2280.1.t.j.1139.3 yes 4
8.3 odd 2 2280.1.t.i.1139.4 yes 4
15.14 odd 2 2280.1.t.i.1139.2 yes 4
19.18 odd 2 inner 2280.1.t.j.1139.3 yes 4
24.11 even 2 inner 2280.1.t.j.1139.1 yes 4
40.19 odd 2 2280.1.t.i.1139.1 4
57.56 even 2 2280.1.t.i.1139.2 yes 4
95.94 odd 2 CM 2280.1.t.j.1139.2 yes 4
120.59 even 2 inner 2280.1.t.j.1139.4 yes 4
152.75 even 2 2280.1.t.i.1139.1 4
285.284 even 2 2280.1.t.i.1139.3 yes 4
456.227 odd 2 inner 2280.1.t.j.1139.4 yes 4
760.379 even 2 2280.1.t.i.1139.4 yes 4
2280.1139 odd 2 inner 2280.1.t.j.1139.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.t.i.1139.1 4 40.19 odd 2
2280.1.t.i.1139.1 4 152.75 even 2
2280.1.t.i.1139.2 yes 4 15.14 odd 2
2280.1.t.i.1139.2 yes 4 57.56 even 2
2280.1.t.i.1139.3 yes 4 3.2 odd 2
2280.1.t.i.1139.3 yes 4 285.284 even 2
2280.1.t.i.1139.4 yes 4 8.3 odd 2
2280.1.t.i.1139.4 yes 4 760.379 even 2
2280.1.t.j.1139.1 yes 4 24.11 even 2 inner
2280.1.t.j.1139.1 yes 4 2280.1139 odd 2 inner
2280.1.t.j.1139.2 yes 4 1.1 even 1 trivial
2280.1.t.j.1139.2 yes 4 95.94 odd 2 CM
2280.1.t.j.1139.3 yes 4 5.4 even 2 inner
2280.1.t.j.1139.3 yes 4 19.18 odd 2 inner
2280.1.t.j.1139.4 yes 4 120.59 even 2 inner
2280.1.t.j.1139.4 yes 4 456.227 odd 2 inner