Properties

Label 2280.1.t.f.1139.2
Level $2280$
Weight $1$
Character 2280.1139
Analytic conductor $1.138$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -15, -456, 760
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(1139,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.1139"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2280.t (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,2,0,0,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.13786822880\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-15}, \sqrt{-114})\)
Artin image: $D_4:C_2$
Artin field: Galois closure of 8.0.1169640000.6

Embedding invariants

Embedding label 1139.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2280.1139
Dual form 2280.1.t.f.1139.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000i q^{5} +1.00000 q^{6} -1.00000i q^{8} -1.00000 q^{9} -1.00000 q^{10} +1.00000i q^{12} +1.00000 q^{15} +1.00000 q^{16} -1.00000i q^{18} +1.00000 q^{19} -1.00000i q^{20} +2.00000i q^{23} -1.00000 q^{24} -1.00000 q^{25} +1.00000i q^{27} +1.00000i q^{30} +2.00000 q^{31} +1.00000i q^{32} +1.00000 q^{36} +1.00000i q^{38} +1.00000 q^{40} -1.00000i q^{45} -2.00000 q^{46} +2.00000i q^{47} -1.00000i q^{48} -1.00000 q^{49} -1.00000i q^{50} -1.00000 q^{54} -1.00000i q^{57} -1.00000 q^{60} +2.00000i q^{62} -1.00000 q^{64} +2.00000 q^{69} +1.00000i q^{72} +1.00000i q^{75} -1.00000 q^{76} +2.00000 q^{79} +1.00000i q^{80} +1.00000 q^{81} +1.00000 q^{90} -2.00000i q^{92} -2.00000i q^{93} -2.00000 q^{94} +1.00000i q^{95} +1.00000 q^{96} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{6} - 2 q^{9} - 2 q^{10} + 2 q^{15} + 2 q^{16} + 2 q^{19} - 2 q^{24} - 2 q^{25} + 4 q^{31} + 2 q^{36} + 2 q^{40} - 4 q^{46} - 2 q^{49} - 2 q^{54} - 2 q^{60} - 2 q^{64} + 4 q^{69} - 2 q^{76}+ \cdots + 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times\).

\(n\) \(457\) \(761\) \(1141\) \(1711\) \(1921\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 1.00000i
\(3\) − 1.00000i − 1.00000i
\(4\) −1.00000 −1.00000
\(5\) 1.00000i 1.00000i
\(6\) 1.00000 1.00000
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) − 1.00000i − 1.00000i
\(9\) −1.00000 −1.00000
\(10\) −1.00000 −1.00000
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 1.00000i 1.00000i
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 1.00000 1.00000
\(16\) 1.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) − 1.00000i − 1.00000i
\(19\) 1.00000 1.00000
\(20\) − 1.00000i − 1.00000i
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −1.00000
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) 1.00000i 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 1.00000i 1.00000i
\(31\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 1.00000
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 1.00000i 1.00000i
\(39\) 0 0
\(40\) 1.00000 1.00000
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) − 1.00000i − 1.00000i
\(46\) −2.00000 −2.00000
\(47\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) − 1.00000i − 1.00000i
\(49\) −1.00000 −1.00000
\(50\) − 1.00000i − 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −1.00000 −1.00000
\(55\) 0 0
\(56\) 0 0
\(57\) − 1.00000i − 1.00000i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −1.00000 −1.00000
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 2.00000i 2.00000i
\(63\) 0 0
\(64\) −1.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 2.00000 2.00000
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 1.00000i 1.00000i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 1.00000i 1.00000i
\(76\) −1.00000 −1.00000
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(80\) 1.00000i 1.00000i
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 1.00000 1.00000
\(91\) 0 0
\(92\) − 2.00000i − 2.00000i
\(93\) − 2.00000i − 2.00000i
\(94\) −2.00000 −2.00000
\(95\) 1.00000i 1.00000i
\(96\) 1.00000 1.00000
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) − 1.00000i − 1.00000i
\(99\) 0 0
\(100\) 1.00000 1.00000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(108\) − 1.00000i − 1.00000i
\(109\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 1.00000 1.00000
\(115\) −2.00000 −2.00000
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) − 1.00000i − 1.00000i
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −2.00000 −2.00000
\(125\) − 1.00000i − 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) − 1.00000i − 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −1.00000
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 2.00000i 2.00000i
\(139\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(140\) 0 0
\(141\) 2.00000 2.00000
\(142\) 0 0
\(143\) 0 0
\(144\) −1.00000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 1.00000i 1.00000i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) −1.00000 −1.00000
\(151\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(152\) − 1.00000i − 1.00000i
\(153\) 0 0
\(154\) 0 0
\(155\) 2.00000i 2.00000i
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 2.00000i 2.00000i
\(159\) 0 0
\(160\) −1.00000 −1.00000
\(161\) 0 0
\(162\) 1.00000i 1.00000i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) 0 0
\(171\) −1.00000 −1.00000
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 1.00000i 1.00000i
\(181\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.00000 2.00000
\(185\) 0 0
\(186\) 2.00000 2.00000
\(187\) 0 0
\(188\) − 2.00000i − 2.00000i
\(189\) 0 0
\(190\) −1.00000 −1.00000
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.00000i 1.00000i
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 1.00000i 1.00000i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 2.00000i − 2.00000i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 2.00000 2.00000
\(215\) 0 0
\(216\) 1.00000 1.00000
\(217\) 0 0
\(218\) − 2.00000i − 2.00000i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 1.00000 1.00000
\(226\) −2.00000 −2.00000
\(227\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(228\) 1.00000i 1.00000i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) − 2.00000i − 2.00000i
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −2.00000 −2.00000
\(236\) 0 0
\(237\) − 2.00000i − 2.00000i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 1.00000 1.00000
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.00000i 1.00000i
\(243\) − 1.00000i − 1.00000i
\(244\) 0 0
\(245\) − 1.00000i − 1.00000i
\(246\) 0 0
\(247\) 0 0
\(248\) − 2.00000i − 2.00000i
\(249\) 0 0
\(250\) 1.00000 1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) − 1.00000i − 1.00000i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −2.00000 −2.00000
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 2.00000i 2.00000i
\(279\) −2.00000 −2.00000
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 2.00000i 2.00000i
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 1.00000 1.00000
\(286\) 0 0
\(287\) 0 0
\(288\) − 1.00000i − 1.00000i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −1.00000 −1.00000
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) − 1.00000i − 1.00000i
\(301\) 0 0
\(302\) − 2.00000i − 2.00000i
\(303\) 0 0
\(304\) 1.00000 1.00000
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 −2.00000
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −2.00000 −2.00000
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) − 1.00000i − 1.00000i
\(321\) −2.00000 −2.00000
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 2.00000i 2.00000i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 1.00000i 1.00000i
\(339\) 2.00000 2.00000
\(340\) 0 0
\(341\) 0 0
\(342\) − 1.00000i − 1.00000i
\(343\) 0 0
\(344\) 0 0
\(345\) 2.00000i 2.00000i
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −1.00000 −1.00000
\(361\) 1.00000 1.00000
\(362\) − 2.00000i − 2.00000i
\(363\) − 1.00000i − 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 2.00000i 2.00000i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 2.00000i 2.00000i
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) −1.00000 −1.00000
\(376\) 2.00000 2.00000
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) − 1.00000i − 1.00000i
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) −1.00000 −1.00000
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000i 1.00000i
\(393\) 0 0
\(394\) 2.00000 2.00000
\(395\) 2.00000i 2.00000i
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000i 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 2.00000 2.00000
\(415\) 0 0
\(416\) 0 0
\(417\) − 2.00000i − 2.00000i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(422\) 0 0
\(423\) − 2.00000i − 2.00000i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.00000i 2.00000i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 1.00000i 1.00000i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 2.00000
\(437\) 2.00000i 2.00000i
\(438\) 0 0
\(439\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 1.00000i 1.00000i
\(451\) 0 0
\(452\) − 2.00000i − 2.00000i
\(453\) 2.00000i 2.00000i
\(454\) 2.00000 2.00000
\(455\) 0 0
\(456\) −1.00000 −1.00000
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 2.00000 2.00000
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 2.00000 2.00000
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) − 2.00000i − 2.00000i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 2.00000 2.00000
\(475\) −1.00000 −1.00000
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 1.00000i 1.00000i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.00000 −1.00000
\(485\) 0 0
\(486\) 1.00000 1.00000
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 1.00000 1.00000
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 2.00000 2.00000
\(497\) 0 0
\(498\) 0 0
\(499\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(500\) 1.00000i 1.00000i
\(501\) 0 0
\(502\) 0 0
\(503\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1.00000i − 1.00000i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) 1.00000i 1.00000i
\(514\) 2.00000 2.00000
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.00000 2.00000
\(527\) 0 0
\(528\) 0 0
\(529\) −3.00000 −3.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 2.00000 2.00000
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 1.00000 1.00000
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 2.00000i 2.00000i
\(544\) 0 0
\(545\) − 2.00000i − 2.00000i
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) − 2.00000i − 2.00000i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −2.00000 −2.00000
\(557\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) − 2.00000i − 2.00000i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) −2.00000 −2.00000
\(565\) −2.00000 −2.00000
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 1.00000i 1.00000i
\(571\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 2.00000i − 2.00000i
\(576\) 1.00000 1.00000
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) − 1.00000i − 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) − 1.00000i − 1.00000i
\(589\) 2.00000 2.00000
\(590\) 0 0
\(591\) −2.00000 −2.00000
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 1.00000 1.00000
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 2.00000 2.00000
\(605\) 1.00000i 1.00000i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 1.00000i 1.00000i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(620\) − 2.00000i − 2.00000i
\(621\) −2.00000 −2.00000
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) − 2.00000i − 2.00000i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 1.00000 1.00000
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) − 2.00000i − 2.00000i
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(648\) − 1.00000i − 1.00000i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(654\) −2.00000 −2.00000
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) − 1.00000i − 1.00000i
\(676\) −1.00000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 2.00000i 2.00000i
\(679\) 0 0
\(680\) 0 0
\(681\) −2.00000 −2.00000
\(682\) 0 0
\(683\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 1.00000 1.00000
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) −2.00000 −2.00000
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000i 2.00000i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 2.00000i 2.00000i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) −2.00000 −2.00000
\(712\) 0 0
\(713\) 4.00000i 4.00000i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) − 1.00000i − 1.00000i
\(721\) 0 0
\(722\) 1.00000i 1.00000i
\(723\) 0 0
\(724\) 2.00000 2.00000
\(725\) 0 0
\(726\) 1.00000 1.00000
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) −1.00000 −1.00000
\(736\) −2.00000 −2.00000
\(737\) 0 0
\(738\) 0 0
\(739\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) −2.00000 −2.00000
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) − 1.00000i − 1.00000i
\(751\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(752\) 2.00000i 2.00000i
\(753\) 0 0
\(754\) 0 0
\(755\) − 2.00000i − 2.00000i
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 1.00000 1.00000
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) − 1.00000i − 1.00000i
\(769\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −2.00000 −2.00000
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −2.00000 −2.00000
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 −1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 2.00000i 2.00000i
\(789\) −2.00000 −2.00000
\(790\) −2.00000 −2.00000
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) − 1.00000i − 1.00000i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −1.00000 −1.00000
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(828\) 2.00000i 2.00000i
\(829\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 2.00000 2.00000
\(835\) 0 0
\(836\) 0 0
\(837\) 2.00000i 2.00000i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 2.00000i 2.00000i
\(843\) 0 0
\(844\) 0 0
\(845\) 1.00000i 1.00000i
\(846\) 2.00000 2.00000
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) − 1.00000i − 1.00000i
\(856\) −2.00000 −2.00000
\(857\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(858\) 0 0
\(859\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) −1.00000 −1.00000
\(865\) 0 0
\(866\) 0 0
\(867\) 1.00000i 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 2.00000i 2.00000i
\(873\) 0 0
\(874\) −2.00000 −2.00000
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) − 2.00000i − 2.00000i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.00000i 1.00000i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.00000i 2.00000i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.00000 −1.00000
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 2.00000 2.00000
\(905\) − 2.00000i − 2.00000i
\(906\) −2.00000 −2.00000
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 2.00000i 2.00000i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) − 1.00000i − 1.00000i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 2.00000i 2.00000i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 2.00000i 2.00000i
\(931\) −1.00000 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.00000 2.00000
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 2.00000i 2.00000i
\(949\) 0 0
\(950\) − 1.00000i − 1.00000i
\(951\) 0 0
\(952\) 0 0
\(953\) − 2.00000i − 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −1.00000 −1.00000
\(961\) 3.00000 3.00000
\(962\) 0 0
\(963\) 2.00000i 2.00000i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) − 1.00000i − 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 1.00000i 1.00000i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.00000i 1.00000i
\(981\) 2.00000 2.00000
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 2.00000 2.00000
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(992\) 2.00000i 2.00000i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) − 2.00000i − 2.00000i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.t.f.1139.2 yes 2
3.2 odd 2 inner 2280.1.t.f.1139.1 2
5.4 even 2 inner 2280.1.t.f.1139.1 2
8.3 odd 2 2280.1.t.g.1139.2 yes 2
15.14 odd 2 CM 2280.1.t.f.1139.2 yes 2
19.18 odd 2 2280.1.t.g.1139.1 yes 2
24.11 even 2 2280.1.t.g.1139.1 yes 2
40.19 odd 2 2280.1.t.g.1139.1 yes 2
57.56 even 2 2280.1.t.g.1139.2 yes 2
95.94 odd 2 2280.1.t.g.1139.2 yes 2
120.59 even 2 2280.1.t.g.1139.2 yes 2
152.75 even 2 inner 2280.1.t.f.1139.1 2
285.284 even 2 2280.1.t.g.1139.1 yes 2
456.227 odd 2 CM 2280.1.t.f.1139.2 yes 2
760.379 even 2 RM 2280.1.t.f.1139.2 yes 2
2280.1139 odd 2 inner 2280.1.t.f.1139.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.t.f.1139.1 2 3.2 odd 2 inner
2280.1.t.f.1139.1 2 5.4 even 2 inner
2280.1.t.f.1139.1 2 152.75 even 2 inner
2280.1.t.f.1139.1 2 2280.1139 odd 2 inner
2280.1.t.f.1139.2 yes 2 1.1 even 1 trivial
2280.1.t.f.1139.2 yes 2 15.14 odd 2 CM
2280.1.t.f.1139.2 yes 2 456.227 odd 2 CM
2280.1.t.f.1139.2 yes 2 760.379 even 2 RM
2280.1.t.g.1139.1 yes 2 19.18 odd 2
2280.1.t.g.1139.1 yes 2 24.11 even 2
2280.1.t.g.1139.1 yes 2 40.19 odd 2
2280.1.t.g.1139.1 yes 2 285.284 even 2
2280.1.t.g.1139.2 yes 2 8.3 odd 2
2280.1.t.g.1139.2 yes 2 57.56 even 2
2280.1.t.g.1139.2 yes 2 95.94 odd 2
2280.1.t.g.1139.2 yes 2 120.59 even 2