Properties

Label 2280.1.t.f.1139.2
Level 22802280
Weight 11
Character 2280.1139
Analytic conductor 1.1381.138
Analytic rank 00
Dimension 22
Projective image D2D_{2}
CM/RM discs -15, -456, 760
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2280,1,Mod(1139,2280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2280.1139"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2280=233519 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2280.t (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,2,0,0,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.137868228801.13786822880
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D2D_{2}
Projective field: Galois closure of Q(15,114)\Q(\sqrt{-15}, \sqrt{-114})
Artin image: D4:C2D_4:C_2
Artin field: Galois closure of 8.0.1169640000.6

Embedding invariants

Embedding label 1139.2
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 2280.1139
Dual form 2280.1.t.f.1139.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq21.00000iq31.00000q4+1.00000iq5+1.00000q61.00000iq81.00000q91.00000q10+1.00000iq12+1.00000q15+1.00000q161.00000iq18+1.00000q191.00000iq20+2.00000iq231.00000q241.00000q25+1.00000iq27+1.00000iq30+2.00000q31+1.00000iq32+1.00000q36+1.00000iq38+1.00000q401.00000iq452.00000q46+2.00000iq471.00000iq481.00000q491.00000iq501.00000q541.00000iq571.00000q60+2.00000iq621.00000q64+2.00000q69+1.00000iq72+1.00000iq751.00000q76+2.00000q79+1.00000iq80+1.00000q81+1.00000q902.00000iq922.00000iq932.00000q94+1.00000iq95+1.00000q961.00000iq98+O(q100)q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000i q^{5} +1.00000 q^{6} -1.00000i q^{8} -1.00000 q^{9} -1.00000 q^{10} +1.00000i q^{12} +1.00000 q^{15} +1.00000 q^{16} -1.00000i q^{18} +1.00000 q^{19} -1.00000i q^{20} +2.00000i q^{23} -1.00000 q^{24} -1.00000 q^{25} +1.00000i q^{27} +1.00000i q^{30} +2.00000 q^{31} +1.00000i q^{32} +1.00000 q^{36} +1.00000i q^{38} +1.00000 q^{40} -1.00000i q^{45} -2.00000 q^{46} +2.00000i q^{47} -1.00000i q^{48} -1.00000 q^{49} -1.00000i q^{50} -1.00000 q^{54} -1.00000i q^{57} -1.00000 q^{60} +2.00000i q^{62} -1.00000 q^{64} +2.00000 q^{69} +1.00000i q^{72} +1.00000i q^{75} -1.00000 q^{76} +2.00000 q^{79} +1.00000i q^{80} +1.00000 q^{81} +1.00000 q^{90} -2.00000i q^{92} -2.00000i q^{93} -2.00000 q^{94} +1.00000i q^{95} +1.00000 q^{96} -1.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q4+2q62q92q10+2q15+2q16+2q192q242q25+4q31+2q36+2q404q462q492q542q602q64+4q692q76++2q96+O(q100) 2 q - 2 q^{4} + 2 q^{6} - 2 q^{9} - 2 q^{10} + 2 q^{15} + 2 q^{16} + 2 q^{19} - 2 q^{24} - 2 q^{25} + 4 q^{31} + 2 q^{36} + 2 q^{40} - 4 q^{46} - 2 q^{49} - 2 q^{54} - 2 q^{60} - 2 q^{64} + 4 q^{69} - 2 q^{76}+ \cdots + 2 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2280Z)×\left(\mathbb{Z}/2280\mathbb{Z}\right)^\times.

nn 457457 761761 11411141 17111711 19211921
χ(n)\chi(n) 1-1 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 1.00000i
33 − 1.00000i − 1.00000i
44 −1.00000 −1.00000
55 1.00000i 1.00000i
66 1.00000 1.00000
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 − 1.00000i − 1.00000i
99 −1.00000 −1.00000
1010 −1.00000 −1.00000
1111 0 0 1.00000 00
−1.00000 π\pi
1212 1.00000i 1.00000i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0 0
1515 1.00000 1.00000
1616 1.00000 1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 − 1.00000i − 1.00000i
1919 1.00000 1.00000
2020 − 1.00000i − 1.00000i
2121 0 0
2222 0 0
2323 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
2424 −1.00000 −1.00000
2525 −1.00000 −1.00000
2626 0 0
2727 1.00000i 1.00000i
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 1.00000i 1.00000i
3131 2.00000 2.00000 1.00000 00
1.00000 00
3232 1.00000i 1.00000i
3333 0 0
3434 0 0
3535 0 0
3636 1.00000 1.00000
3737 0 0 1.00000 00
−1.00000 π\pi
3838 1.00000i 1.00000i
3939 0 0
4040 1.00000 1.00000
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 − 1.00000i − 1.00000i
4646 −2.00000 −2.00000
4747 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
4848 − 1.00000i − 1.00000i
4949 −1.00000 −1.00000
5050 − 1.00000i − 1.00000i
5151 0 0
5252 0 0
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 −1.00000 −1.00000
5555 0 0
5656 0 0
5757 − 1.00000i − 1.00000i
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 −1.00000 −1.00000
6161 0 0 1.00000 00
−1.00000 π\pi
6262 2.00000i 2.00000i
6363 0 0
6464 −1.00000 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 0 0
6969 2.00000 2.00000
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 1.00000i 1.00000i
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 1.00000i 1.00000i
7676 −1.00000 −1.00000
7777 0 0
7878 0 0
7979 2.00000 2.00000 1.00000 00
1.00000 00
8080 1.00000i 1.00000i
8181 1.00000 1.00000
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 1.00000 1.00000
9191 0 0
9292 − 2.00000i − 2.00000i
9393 − 2.00000i − 2.00000i
9494 −2.00000 −2.00000
9595 1.00000i 1.00000i
9696 1.00000 1.00000
9797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9898 − 1.00000i − 1.00000i
9999 0 0
100100 1.00000 1.00000
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
108108 − 1.00000i − 1.00000i
109109 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
114114 1.00000 1.00000
115115 −2.00000 −2.00000
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 − 1.00000i − 1.00000i
121121 1.00000 1.00000
122122 0 0
123123 0 0
124124 −2.00000 −2.00000
125125 − 1.00000i − 1.00000i
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 − 1.00000i − 1.00000i
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 −1.00000 −1.00000
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 2.00000i 2.00000i
139139 2.00000 2.00000 1.00000 00
1.00000 00
140140 0 0
141141 2.00000 2.00000
142142 0 0
143143 0 0
144144 −1.00000 −1.00000
145145 0 0
146146 0 0
147147 1.00000i 1.00000i
148148 0 0
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 −1.00000 −1.00000
151151 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
152152 − 1.00000i − 1.00000i
153153 0 0
154154 0 0
155155 2.00000i 2.00000i
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 2.00000i 2.00000i
159159 0 0
160160 −1.00000 −1.00000
161161 0 0
162162 1.00000i 1.00000i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 1.00000 1.00000
170170 0 0
171171 −1.00000 −1.00000
172172 0 0
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 1.00000i 1.00000i
181181 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
182182 0 0
183183 0 0
184184 2.00000 2.00000
185185 0 0
186186 2.00000 2.00000
187187 0 0
188188 − 2.00000i − 2.00000i
189189 0 0
190190 −1.00000 −1.00000
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 1.00000i 1.00000i
193193 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
194194 0 0
195195 0 0
196196 1.00000 1.00000
197197 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 1.00000i 1.00000i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 − 2.00000i − 2.00000i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 2.00000 2.00000
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 − 2.00000i − 2.00000i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 1.00000 1.00000
226226 −2.00000 −2.00000
227227 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
228228 1.00000i 1.00000i
229229 0 0 1.00000 00
−1.00000 π\pi
230230 − 2.00000i − 2.00000i
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 −2.00000 −2.00000
236236 0 0
237237 − 2.00000i − 2.00000i
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 1.00000 1.00000
241241 0 0 1.00000 00
−1.00000 π\pi
242242 1.00000i 1.00000i
243243 − 1.00000i − 1.00000i
244244 0 0
245245 − 1.00000i − 1.00000i
246246 0 0
247247 0 0
248248 − 2.00000i − 2.00000i
249249 0 0
250250 1.00000 1.00000
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.00000 1.00000
257257 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 − 1.00000i − 1.00000i
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 −2.00000 −2.00000
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 2.00000i 2.00000i
279279 −2.00000 −2.00000
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 2.00000i 2.00000i
283283 0 0 1.00000 00
−1.00000 π\pi
284284 0 0
285285 1.00000 1.00000
286286 0 0
287287 0 0
288288 − 1.00000i − 1.00000i
289289 −1.00000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 −1.00000 −1.00000
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 − 1.00000i − 1.00000i
301301 0 0
302302 − 2.00000i − 2.00000i
303303 0 0
304304 1.00000 1.00000
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 −2.00000 −2.00000
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 0 0
316316 −2.00000 −2.00000
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 − 1.00000i − 1.00000i
321321 −2.00000 −2.00000
322322 0 0
323323 0 0
324324 −1.00000 −1.00000
325325 0 0
326326 0 0
327327 2.00000i 2.00000i
328328 0 0
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 1.00000i 1.00000i
339339 2.00000 2.00000
340340 0 0
341341 0 0
342342 − 1.00000i − 1.00000i
343343 0 0
344344 0 0
345345 2.00000i 2.00000i
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 −1.00000 −1.00000
361361 1.00000 1.00000
362362 − 2.00000i − 2.00000i
363363 − 1.00000i − 1.00000i
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 2.00000i 2.00000i
369369 0 0
370370 0 0
371371 0 0
372372 2.00000i 2.00000i
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 −1.00000 −1.00000
376376 2.00000 2.00000
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 − 1.00000i − 1.00000i
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 −1.00000 −1.00000
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 1.00000i 1.00000i
393393 0 0
394394 2.00000 2.00000
395395 2.00000i 2.00000i
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 0 0
404404 0 0
405405 1.00000i 1.00000i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 2.00000 2.00000
415415 0 0
416416 0 0
417417 − 2.00000i − 2.00000i
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 2.00000 2.00000 1.00000 00
1.00000 00
422422 0 0
423423 − 2.00000i − 2.00000i
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 2.00000i 2.00000i
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 1.00000i 1.00000i
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 2.00000 2.00000
437437 2.00000i 2.00000i
438438 0 0
439439 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
440440 0 0
441441 1.00000 1.00000
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 1.00000i 1.00000i
451451 0 0
452452 − 2.00000i − 2.00000i
453453 2.00000i 2.00000i
454454 2.00000 2.00000
455455 0 0
456456 −1.00000 −1.00000
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 2.00000 2.00000
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 0 0
465465 2.00000 2.00000
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 − 2.00000i − 2.00000i
471471 0 0
472472 0 0
473473 0 0
474474 2.00000 2.00000
475475 −1.00000 −1.00000
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 1.00000i 1.00000i
481481 0 0
482482 0 0
483483 0 0
484484 −1.00000 −1.00000
485485 0 0
486486 1.00000 1.00000
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 1.00000 1.00000
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 2.00000 2.00000
497497 0 0
498498 0 0
499499 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
500500 1.00000i 1.00000i
501501 0 0
502502 0 0
503503 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 1.00000i − 1.00000i
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 1.00000i 1.00000i
514514 2.00000 2.00000
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 2.00000 2.00000
527527 0 0
528528 0 0
529529 −3.00000 −3.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 2.00000 2.00000
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 1.00000 1.00000
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 2.00000i 2.00000i
544544 0 0
545545 − 2.00000i − 2.00000i
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 − 2.00000i − 2.00000i
553553 0 0
554554 0 0
555555 0 0
556556 −2.00000 −2.00000
557557 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
558558 − 2.00000i − 2.00000i
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
564564 −2.00000 −2.00000
565565 −2.00000 −2.00000
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 1.00000i 1.00000i
571571 2.00000 2.00000 1.00000 00
1.00000 00
572572 0 0
573573 0 0
574574 0 0
575575 − 2.00000i − 2.00000i
576576 1.00000 1.00000
577577 0 0 1.00000 00
−1.00000 π\pi
578578 − 1.00000i − 1.00000i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 − 1.00000i − 1.00000i
589589 2.00000 2.00000
590590 0 0
591591 −2.00000 −2.00000
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 1.00000 1.00000
601601 0 0 1.00000 00
−1.00000 π\pi
602602 0 0
603603 0 0
604604 2.00000 2.00000
605605 1.00000i 1.00000i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 1.00000i 1.00000i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 2.00000 2.00000 1.00000 00
1.00000 00
620620 − 2.00000i − 2.00000i
621621 −2.00000 −2.00000
622622 0 0
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 − 2.00000i − 2.00000i
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 1.00000 1.00000
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 − 2.00000i − 2.00000i
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
648648 − 1.00000i − 1.00000i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
654654 −2.00000 −2.00000
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
674674 0 0
675675 − 1.00000i − 1.00000i
676676 −1.00000 −1.00000
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 2.00000i 2.00000i
679679 0 0
680680 0 0
681681 −2.00000 −2.00000
682682 0 0
683683 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
684684 1.00000 1.00000
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 −2.00000 −2.00000
691691 2.00000 2.00000 1.00000 00
1.00000 00
692692 0 0
693693 0 0
694694 0 0
695695 2.00000i 2.00000i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 0 0
704704 0 0
705705 2.00000i 2.00000i
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 −2.00000 −2.00000
712712 0 0
713713 4.00000i 4.00000i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 − 1.00000i − 1.00000i
721721 0 0
722722 1.00000i 1.00000i
723723 0 0
724724 2.00000 2.00000
725725 0 0
726726 1.00000 1.00000
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 −1.00000 −1.00000
736736 −2.00000 −2.00000
737737 0 0
738738 0 0
739739 2.00000 2.00000 1.00000 00
1.00000 00
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 −2.00000 −2.00000
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 − 1.00000i − 1.00000i
751751 2.00000 2.00000 1.00000 00
1.00000 00
752752 2.00000i 2.00000i
753753 0 0
754754 0 0
755755 − 2.00000i − 2.00000i
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 1.00000 1.00000
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 − 1.00000i − 1.00000i
769769 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
770770 0 0
771771 −2.00000 −2.00000
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 −2.00000 −2.00000
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1.00000 −1.00000
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 2.00000i 2.00000i
789789 −2.00000 −2.00000
790790 −2.00000 −2.00000
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 − 1.00000i − 1.00000i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 −1.00000 −1.00000
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
828828 2.00000i 2.00000i
829829 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 2.00000 2.00000
835835 0 0
836836 0 0
837837 2.00000i 2.00000i
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.00000 1.00000
842842 2.00000i 2.00000i
843843 0 0
844844 0 0
845845 1.00000i 1.00000i
846846 2.00000 2.00000
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 − 1.00000i − 1.00000i
856856 −2.00000 −2.00000
857857 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
858858 0 0
859859 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 −1.00000 −1.00000
865865 0 0
866866 0 0
867867 1.00000i 1.00000i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 2.00000i 2.00000i
873873 0 0
874874 −2.00000 −2.00000
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 − 2.00000i − 2.00000i
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 1.00000i 1.00000i
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 2.00000i 2.00000i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −1.00000 −1.00000
901901 0 0
902902 0 0
903903 0 0
904904 2.00000 2.00000
905905 − 2.00000i − 2.00000i
906906 −2.00000 −2.00000
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 2.00000i 2.00000i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 − 1.00000i − 1.00000i
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 2.00000i 2.00000i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 2.00000i 2.00000i
931931 −1.00000 −1.00000
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 2.00000 2.00000
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 2.00000i 2.00000i
949949 0 0
950950 − 1.00000i − 1.00000i
951951 0 0
952952 0 0
953953 − 2.00000i − 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 −1.00000 −1.00000
961961 3.00000 3.00000
962962 0 0
963963 2.00000i 2.00000i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 − 1.00000i − 1.00000i
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 1.00000i 1.00000i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 1.00000i 1.00000i
981981 2.00000 2.00000
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 2.00000 2.00000
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 2.00000 2.00000 1.00000 00
1.00000 00
992992 2.00000i 2.00000i
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 − 2.00000i − 2.00000i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2280.1.t.f.1139.2 yes 2
3.2 odd 2 inner 2280.1.t.f.1139.1 2
5.4 even 2 inner 2280.1.t.f.1139.1 2
8.3 odd 2 2280.1.t.g.1139.2 yes 2
15.14 odd 2 CM 2280.1.t.f.1139.2 yes 2
19.18 odd 2 2280.1.t.g.1139.1 yes 2
24.11 even 2 2280.1.t.g.1139.1 yes 2
40.19 odd 2 2280.1.t.g.1139.1 yes 2
57.56 even 2 2280.1.t.g.1139.2 yes 2
95.94 odd 2 2280.1.t.g.1139.2 yes 2
120.59 even 2 2280.1.t.g.1139.2 yes 2
152.75 even 2 inner 2280.1.t.f.1139.1 2
285.284 even 2 2280.1.t.g.1139.1 yes 2
456.227 odd 2 CM 2280.1.t.f.1139.2 yes 2
760.379 even 2 RM 2280.1.t.f.1139.2 yes 2
2280.1139 odd 2 inner 2280.1.t.f.1139.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2280.1.t.f.1139.1 2 3.2 odd 2 inner
2280.1.t.f.1139.1 2 5.4 even 2 inner
2280.1.t.f.1139.1 2 152.75 even 2 inner
2280.1.t.f.1139.1 2 2280.1139 odd 2 inner
2280.1.t.f.1139.2 yes 2 1.1 even 1 trivial
2280.1.t.f.1139.2 yes 2 15.14 odd 2 CM
2280.1.t.f.1139.2 yes 2 456.227 odd 2 CM
2280.1.t.f.1139.2 yes 2 760.379 even 2 RM
2280.1.t.g.1139.1 yes 2 19.18 odd 2
2280.1.t.g.1139.1 yes 2 24.11 even 2
2280.1.t.g.1139.1 yes 2 40.19 odd 2
2280.1.t.g.1139.1 yes 2 285.284 even 2
2280.1.t.g.1139.2 yes 2 8.3 odd 2
2280.1.t.g.1139.2 yes 2 57.56 even 2
2280.1.t.g.1139.2 yes 2 95.94 odd 2
2280.1.t.g.1139.2 yes 2 120.59 even 2