Properties

Label 228.6.a.b.1.4
Level $228$
Weight $6$
Character 228.1
Self dual yes
Analytic conductor $36.568$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [228,6,Mod(1,228)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(228, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("228.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 228.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-36,0,-84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.5675109174\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3227x^{2} + 17265x + 1197450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(24.8468\) of defining polynomial
Character \(\chi\) \(=\) 228.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} +64.4605 q^{5} -22.7670 q^{7} +81.0000 q^{9} -164.072 q^{11} -1128.87 q^{13} -580.144 q^{15} +790.656 q^{17} +361.000 q^{19} +204.903 q^{21} +3250.07 q^{23} +1030.16 q^{25} -729.000 q^{27} -3254.56 q^{29} -351.725 q^{31} +1476.65 q^{33} -1467.57 q^{35} -7771.04 q^{37} +10159.8 q^{39} -7767.84 q^{41} -8911.96 q^{43} +5221.30 q^{45} +11149.8 q^{47} -16288.7 q^{49} -7115.91 q^{51} -26529.8 q^{53} -10576.2 q^{55} -3249.00 q^{57} -246.481 q^{59} -31878.9 q^{61} -1844.13 q^{63} -72767.3 q^{65} -57835.0 q^{67} -29250.6 q^{69} +6787.94 q^{71} +4203.82 q^{73} -9271.40 q^{75} +3735.43 q^{77} +39000.3 q^{79} +6561.00 q^{81} +25963.2 q^{83} +50966.1 q^{85} +29291.0 q^{87} -102090. q^{89} +25700.9 q^{91} +3165.52 q^{93} +23270.2 q^{95} +92058.3 q^{97} -13289.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} - 84 q^{5} + 54 q^{7} + 324 q^{9} + 354 q^{11} + 46 q^{13} + 756 q^{15} + 2046 q^{17} + 1444 q^{19} - 486 q^{21} + 846 q^{23} + 4018 q^{25} - 2916 q^{27} - 7152 q^{29} + 238 q^{31} - 3186 q^{33}+ \cdots + 28674 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 64.4605 1.15310 0.576552 0.817060i \(-0.304398\pi\)
0.576552 + 0.817060i \(0.304398\pi\)
\(6\) 0 0
\(7\) −22.7670 −0.175615 −0.0878073 0.996137i \(-0.527986\pi\)
−0.0878073 + 0.996137i \(0.527986\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) −164.072 −0.408840 −0.204420 0.978883i \(-0.565531\pi\)
−0.204420 + 0.978883i \(0.565531\pi\)
\(12\) 0 0
\(13\) −1128.87 −1.85261 −0.926305 0.376775i \(-0.877033\pi\)
−0.926305 + 0.376775i \(0.877033\pi\)
\(14\) 0 0
\(15\) −580.144 −0.665745
\(16\) 0 0
\(17\) 790.656 0.663537 0.331769 0.943361i \(-0.392355\pi\)
0.331769 + 0.943361i \(0.392355\pi\)
\(18\) 0 0
\(19\) 361.000 0.229416
\(20\) 0 0
\(21\) 204.903 0.101391
\(22\) 0 0
\(23\) 3250.07 1.28107 0.640535 0.767929i \(-0.278713\pi\)
0.640535 + 0.767929i \(0.278713\pi\)
\(24\) 0 0
\(25\) 1030.16 0.329650
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −3254.56 −0.718616 −0.359308 0.933219i \(-0.616987\pi\)
−0.359308 + 0.933219i \(0.616987\pi\)
\(30\) 0 0
\(31\) −351.725 −0.0657353 −0.0328677 0.999460i \(-0.510464\pi\)
−0.0328677 + 0.999460i \(0.510464\pi\)
\(32\) 0 0
\(33\) 1476.65 0.236044
\(34\) 0 0
\(35\) −1467.57 −0.202502
\(36\) 0 0
\(37\) −7771.04 −0.933200 −0.466600 0.884468i \(-0.654521\pi\)
−0.466600 + 0.884468i \(0.654521\pi\)
\(38\) 0 0
\(39\) 10159.8 1.06960
\(40\) 0 0
\(41\) −7767.84 −0.721673 −0.360837 0.932629i \(-0.617509\pi\)
−0.360837 + 0.932629i \(0.617509\pi\)
\(42\) 0 0
\(43\) −8911.96 −0.735025 −0.367513 0.930019i \(-0.619791\pi\)
−0.367513 + 0.930019i \(0.619791\pi\)
\(44\) 0 0
\(45\) 5221.30 0.384368
\(46\) 0 0
\(47\) 11149.8 0.736247 0.368124 0.929777i \(-0.380000\pi\)
0.368124 + 0.929777i \(0.380000\pi\)
\(48\) 0 0
\(49\) −16288.7 −0.969160
\(50\) 0 0
\(51\) −7115.91 −0.383094
\(52\) 0 0
\(53\) −26529.8 −1.29731 −0.648657 0.761081i \(-0.724669\pi\)
−0.648657 + 0.761081i \(0.724669\pi\)
\(54\) 0 0
\(55\) −10576.2 −0.471435
\(56\) 0 0
\(57\) −3249.00 −0.132453
\(58\) 0 0
\(59\) −246.481 −0.00921834 −0.00460917 0.999989i \(-0.501467\pi\)
−0.00460917 + 0.999989i \(0.501467\pi\)
\(60\) 0 0
\(61\) −31878.9 −1.09693 −0.548464 0.836174i \(-0.684787\pi\)
−0.548464 + 0.836174i \(0.684787\pi\)
\(62\) 0 0
\(63\) −1844.13 −0.0585382
\(64\) 0 0
\(65\) −72767.3 −2.13625
\(66\) 0 0
\(67\) −57835.0 −1.57400 −0.786998 0.616956i \(-0.788366\pi\)
−0.786998 + 0.616956i \(0.788366\pi\)
\(68\) 0 0
\(69\) −29250.6 −0.739626
\(70\) 0 0
\(71\) 6787.94 0.159806 0.0799029 0.996803i \(-0.474539\pi\)
0.0799029 + 0.996803i \(0.474539\pi\)
\(72\) 0 0
\(73\) 4203.82 0.0923288 0.0461644 0.998934i \(-0.485300\pi\)
0.0461644 + 0.998934i \(0.485300\pi\)
\(74\) 0 0
\(75\) −9271.40 −0.190323
\(76\) 0 0
\(77\) 3735.43 0.0717982
\(78\) 0 0
\(79\) 39000.3 0.703073 0.351536 0.936174i \(-0.385659\pi\)
0.351536 + 0.936174i \(0.385659\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 25963.2 0.413679 0.206839 0.978375i \(-0.433682\pi\)
0.206839 + 0.978375i \(0.433682\pi\)
\(84\) 0 0
\(85\) 50966.1 0.765128
\(86\) 0 0
\(87\) 29291.0 0.414893
\(88\) 0 0
\(89\) −102090. −1.36618 −0.683089 0.730336i \(-0.739364\pi\)
−0.683089 + 0.730336i \(0.739364\pi\)
\(90\) 0 0
\(91\) 25700.9 0.325345
\(92\) 0 0
\(93\) 3165.52 0.0379523
\(94\) 0 0
\(95\) 23270.2 0.264540
\(96\) 0 0
\(97\) 92058.3 0.993421 0.496711 0.867916i \(-0.334541\pi\)
0.496711 + 0.867916i \(0.334541\pi\)
\(98\) 0 0
\(99\) −13289.8 −0.136280
\(100\) 0 0
\(101\) −84783.7 −0.827006 −0.413503 0.910503i \(-0.635695\pi\)
−0.413503 + 0.910503i \(0.635695\pi\)
\(102\) 0 0
\(103\) −90338.7 −0.839036 −0.419518 0.907747i \(-0.637801\pi\)
−0.419518 + 0.907747i \(0.637801\pi\)
\(104\) 0 0
\(105\) 13208.1 0.116914
\(106\) 0 0
\(107\) −219960. −1.85731 −0.928653 0.370950i \(-0.879032\pi\)
−0.928653 + 0.370950i \(0.879032\pi\)
\(108\) 0 0
\(109\) 150565. 1.21383 0.606914 0.794768i \(-0.292407\pi\)
0.606914 + 0.794768i \(0.292407\pi\)
\(110\) 0 0
\(111\) 69939.4 0.538783
\(112\) 0 0
\(113\) 51994.3 0.383053 0.191527 0.981487i \(-0.438656\pi\)
0.191527 + 0.981487i \(0.438656\pi\)
\(114\) 0 0
\(115\) 209501. 1.47721
\(116\) 0 0
\(117\) −91438.1 −0.617537
\(118\) 0 0
\(119\) −18000.9 −0.116527
\(120\) 0 0
\(121\) −134131. −0.832850
\(122\) 0 0
\(123\) 69910.6 0.416658
\(124\) 0 0
\(125\) −135035. −0.772984
\(126\) 0 0
\(127\) −111316. −0.612417 −0.306208 0.951965i \(-0.599060\pi\)
−0.306208 + 0.951965i \(0.599060\pi\)
\(128\) 0 0
\(129\) 80207.7 0.424367
\(130\) 0 0
\(131\) −64322.5 −0.327480 −0.163740 0.986504i \(-0.552356\pi\)
−0.163740 + 0.986504i \(0.552356\pi\)
\(132\) 0 0
\(133\) −8218.88 −0.0402887
\(134\) 0 0
\(135\) −46991.7 −0.221915
\(136\) 0 0
\(137\) −6624.53 −0.0301546 −0.0150773 0.999886i \(-0.504799\pi\)
−0.0150773 + 0.999886i \(0.504799\pi\)
\(138\) 0 0
\(139\) 129168. 0.567044 0.283522 0.958966i \(-0.408497\pi\)
0.283522 + 0.958966i \(0.408497\pi\)
\(140\) 0 0
\(141\) −100349. −0.425073
\(142\) 0 0
\(143\) 185216. 0.757421
\(144\) 0 0
\(145\) −209790. −0.828640
\(146\) 0 0
\(147\) 146598. 0.559545
\(148\) 0 0
\(149\) 275534. 1.01674 0.508369 0.861139i \(-0.330248\pi\)
0.508369 + 0.861139i \(0.330248\pi\)
\(150\) 0 0
\(151\) 250327. 0.893441 0.446721 0.894673i \(-0.352592\pi\)
0.446721 + 0.894673i \(0.352592\pi\)
\(152\) 0 0
\(153\) 64043.2 0.221179
\(154\) 0 0
\(155\) −22672.4 −0.0757997
\(156\) 0 0
\(157\) −353910. −1.14589 −0.572946 0.819593i \(-0.694200\pi\)
−0.572946 + 0.819593i \(0.694200\pi\)
\(158\) 0 0
\(159\) 238769. 0.749004
\(160\) 0 0
\(161\) −73994.2 −0.224974
\(162\) 0 0
\(163\) 368413. 1.08609 0.543046 0.839703i \(-0.317271\pi\)
0.543046 + 0.839703i \(0.317271\pi\)
\(164\) 0 0
\(165\) 95185.6 0.272183
\(166\) 0 0
\(167\) −234449. −0.650516 −0.325258 0.945625i \(-0.605451\pi\)
−0.325258 + 0.945625i \(0.605451\pi\)
\(168\) 0 0
\(169\) 903045. 2.43216
\(170\) 0 0
\(171\) 29241.0 0.0764719
\(172\) 0 0
\(173\) 88770.0 0.225502 0.112751 0.993623i \(-0.464034\pi\)
0.112751 + 0.993623i \(0.464034\pi\)
\(174\) 0 0
\(175\) −23453.5 −0.0578913
\(176\) 0 0
\(177\) 2218.33 0.00532221
\(178\) 0 0
\(179\) 351768. 0.820584 0.410292 0.911954i \(-0.365427\pi\)
0.410292 + 0.911954i \(0.365427\pi\)
\(180\) 0 0
\(181\) 444531. 1.00857 0.504284 0.863538i \(-0.331756\pi\)
0.504284 + 0.863538i \(0.331756\pi\)
\(182\) 0 0
\(183\) 286910. 0.633312
\(184\) 0 0
\(185\) −500925. −1.07608
\(186\) 0 0
\(187\) −129725. −0.271281
\(188\) 0 0
\(189\) 16597.1 0.0337970
\(190\) 0 0
\(191\) −659450. −1.30797 −0.653986 0.756506i \(-0.726905\pi\)
−0.653986 + 0.756506i \(0.726905\pi\)
\(192\) 0 0
\(193\) 143026. 0.276390 0.138195 0.990405i \(-0.455870\pi\)
0.138195 + 0.990405i \(0.455870\pi\)
\(194\) 0 0
\(195\) 654905. 1.23337
\(196\) 0 0
\(197\) 315836. 0.579824 0.289912 0.957053i \(-0.406374\pi\)
0.289912 + 0.957053i \(0.406374\pi\)
\(198\) 0 0
\(199\) −257395. −0.460753 −0.230376 0.973102i \(-0.573996\pi\)
−0.230376 + 0.973102i \(0.573996\pi\)
\(200\) 0 0
\(201\) 520515. 0.908746
\(202\) 0 0
\(203\) 74096.5 0.126199
\(204\) 0 0
\(205\) −500719. −0.832165
\(206\) 0 0
\(207\) 263255. 0.427023
\(208\) 0 0
\(209\) −59230.1 −0.0937943
\(210\) 0 0
\(211\) 865762. 1.33873 0.669364 0.742934i \(-0.266567\pi\)
0.669364 + 0.742934i \(0.266567\pi\)
\(212\) 0 0
\(213\) −61091.5 −0.0922639
\(214\) 0 0
\(215\) −574469. −0.847561
\(216\) 0 0
\(217\) 8007.71 0.0115441
\(218\) 0 0
\(219\) −37834.4 −0.0533061
\(220\) 0 0
\(221\) −892545. −1.22928
\(222\) 0 0
\(223\) −736281. −0.991474 −0.495737 0.868473i \(-0.665102\pi\)
−0.495737 + 0.868473i \(0.665102\pi\)
\(224\) 0 0
\(225\) 83442.6 0.109883
\(226\) 0 0
\(227\) 944475. 1.21654 0.608269 0.793731i \(-0.291864\pi\)
0.608269 + 0.793731i \(0.291864\pi\)
\(228\) 0 0
\(229\) 294052. 0.370540 0.185270 0.982688i \(-0.440684\pi\)
0.185270 + 0.982688i \(0.440684\pi\)
\(230\) 0 0
\(231\) −33618.9 −0.0414527
\(232\) 0 0
\(233\) −1.58574e6 −1.91356 −0.956779 0.290816i \(-0.906073\pi\)
−0.956779 + 0.290816i \(0.906073\pi\)
\(234\) 0 0
\(235\) 718724. 0.848970
\(236\) 0 0
\(237\) −351003. −0.405919
\(238\) 0 0
\(239\) 1.08962e6 1.23391 0.616953 0.787000i \(-0.288367\pi\)
0.616953 + 0.787000i \(0.288367\pi\)
\(240\) 0 0
\(241\) 1.61089e6 1.78658 0.893290 0.449482i \(-0.148391\pi\)
0.893290 + 0.449482i \(0.148391\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) −1.04998e6 −1.11754
\(246\) 0 0
\(247\) −407521. −0.425018
\(248\) 0 0
\(249\) −233669. −0.238837
\(250\) 0 0
\(251\) 356237. 0.356907 0.178453 0.983948i \(-0.442891\pi\)
0.178453 + 0.983948i \(0.442891\pi\)
\(252\) 0 0
\(253\) −533245. −0.523752
\(254\) 0 0
\(255\) −458695. −0.441747
\(256\) 0 0
\(257\) 644475. 0.608658 0.304329 0.952567i \(-0.401568\pi\)
0.304329 + 0.952567i \(0.401568\pi\)
\(258\) 0 0
\(259\) 176923. 0.163883
\(260\) 0 0
\(261\) −263619. −0.239539
\(262\) 0 0
\(263\) −740703. −0.660321 −0.330160 0.943925i \(-0.607103\pi\)
−0.330160 + 0.943925i \(0.607103\pi\)
\(264\) 0 0
\(265\) −1.71013e6 −1.49594
\(266\) 0 0
\(267\) 918807. 0.788763
\(268\) 0 0
\(269\) −2.05874e6 −1.73468 −0.867342 0.497713i \(-0.834173\pi\)
−0.867342 + 0.497713i \(0.834173\pi\)
\(270\) 0 0
\(271\) 1.00713e6 0.833031 0.416515 0.909129i \(-0.363251\pi\)
0.416515 + 0.909129i \(0.363251\pi\)
\(272\) 0 0
\(273\) −231308. −0.187838
\(274\) 0 0
\(275\) −169020. −0.134774
\(276\) 0 0
\(277\) −449430. −0.351935 −0.175968 0.984396i \(-0.556305\pi\)
−0.175968 + 0.984396i \(0.556305\pi\)
\(278\) 0 0
\(279\) −28489.7 −0.0219118
\(280\) 0 0
\(281\) −2.28328e6 −1.72501 −0.862507 0.506045i \(-0.831107\pi\)
−0.862507 + 0.506045i \(0.831107\pi\)
\(282\) 0 0
\(283\) 2.38979e6 1.77376 0.886879 0.462002i \(-0.152869\pi\)
0.886879 + 0.462002i \(0.152869\pi\)
\(284\) 0 0
\(285\) −209432. −0.152732
\(286\) 0 0
\(287\) 176850. 0.126736
\(288\) 0 0
\(289\) −794720. −0.559718
\(290\) 0 0
\(291\) −828524. −0.573552
\(292\) 0 0
\(293\) 1.58266e6 1.07700 0.538502 0.842624i \(-0.318990\pi\)
0.538502 + 0.842624i \(0.318990\pi\)
\(294\) 0 0
\(295\) −15888.3 −0.0106297
\(296\) 0 0
\(297\) 119609. 0.0786813
\(298\) 0 0
\(299\) −3.66889e6 −2.37332
\(300\) 0 0
\(301\) 202898. 0.129081
\(302\) 0 0
\(303\) 763053. 0.477472
\(304\) 0 0
\(305\) −2.05493e6 −1.26487
\(306\) 0 0
\(307\) −1.26682e6 −0.767129 −0.383565 0.923514i \(-0.625304\pi\)
−0.383565 + 0.923514i \(0.625304\pi\)
\(308\) 0 0
\(309\) 813048. 0.484418
\(310\) 0 0
\(311\) 416733. 0.244319 0.122159 0.992511i \(-0.461018\pi\)
0.122159 + 0.992511i \(0.461018\pi\)
\(312\) 0 0
\(313\) −1.49763e6 −0.864062 −0.432031 0.901859i \(-0.642203\pi\)
−0.432031 + 0.901859i \(0.642203\pi\)
\(314\) 0 0
\(315\) −118873. −0.0675006
\(316\) 0 0
\(317\) 947406. 0.529527 0.264763 0.964313i \(-0.414706\pi\)
0.264763 + 0.964313i \(0.414706\pi\)
\(318\) 0 0
\(319\) 533983. 0.293799
\(320\) 0 0
\(321\) 1.97964e6 1.07232
\(322\) 0 0
\(323\) 285427. 0.152226
\(324\) 0 0
\(325\) −1.16291e6 −0.610712
\(326\) 0 0
\(327\) −1.35508e6 −0.700804
\(328\) 0 0
\(329\) −253848. −0.129296
\(330\) 0 0
\(331\) −2.19902e6 −1.10321 −0.551606 0.834105i \(-0.685985\pi\)
−0.551606 + 0.834105i \(0.685985\pi\)
\(332\) 0 0
\(333\) −629454. −0.311067
\(334\) 0 0
\(335\) −3.72807e6 −1.81498
\(336\) 0 0
\(337\) 2.70835e6 1.29906 0.649531 0.760335i \(-0.274965\pi\)
0.649531 + 0.760335i \(0.274965\pi\)
\(338\) 0 0
\(339\) −467948. −0.221156
\(340\) 0 0
\(341\) 57708.3 0.0268752
\(342\) 0 0
\(343\) 753488. 0.345813
\(344\) 0 0
\(345\) −1.88551e6 −0.852865
\(346\) 0 0
\(347\) −277619. −0.123773 −0.0618864 0.998083i \(-0.519712\pi\)
−0.0618864 + 0.998083i \(0.519712\pi\)
\(348\) 0 0
\(349\) −1.60318e6 −0.704563 −0.352281 0.935894i \(-0.614594\pi\)
−0.352281 + 0.935894i \(0.614594\pi\)
\(350\) 0 0
\(351\) 822943. 0.356535
\(352\) 0 0
\(353\) −1.30752e6 −0.558485 −0.279243 0.960221i \(-0.590083\pi\)
−0.279243 + 0.960221i \(0.590083\pi\)
\(354\) 0 0
\(355\) 437554. 0.184273
\(356\) 0 0
\(357\) 162008. 0.0672768
\(358\) 0 0
\(359\) 3.81657e6 1.56292 0.781461 0.623954i \(-0.214475\pi\)
0.781461 + 0.623954i \(0.214475\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) 1.20718e6 0.480846
\(364\) 0 0
\(365\) 270980. 0.106465
\(366\) 0 0
\(367\) 1.19970e6 0.464950 0.232475 0.972602i \(-0.425318\pi\)
0.232475 + 0.972602i \(0.425318\pi\)
\(368\) 0 0
\(369\) −629195. −0.240558
\(370\) 0 0
\(371\) 604004. 0.227827
\(372\) 0 0
\(373\) −4.70268e6 −1.75014 −0.875070 0.483996i \(-0.839185\pi\)
−0.875070 + 0.483996i \(0.839185\pi\)
\(374\) 0 0
\(375\) 1.21531e6 0.446282
\(376\) 0 0
\(377\) 3.67396e6 1.33132
\(378\) 0 0
\(379\) −795027. −0.284305 −0.142152 0.989845i \(-0.545402\pi\)
−0.142152 + 0.989845i \(0.545402\pi\)
\(380\) 0 0
\(381\) 1.00184e6 0.353579
\(382\) 0 0
\(383\) 2.39395e6 0.833908 0.416954 0.908928i \(-0.363098\pi\)
0.416954 + 0.908928i \(0.363098\pi\)
\(384\) 0 0
\(385\) 240788. 0.0827908
\(386\) 0 0
\(387\) −721869. −0.245008
\(388\) 0 0
\(389\) 3.54056e6 1.18631 0.593155 0.805088i \(-0.297882\pi\)
0.593155 + 0.805088i \(0.297882\pi\)
\(390\) 0 0
\(391\) 2.56969e6 0.850037
\(392\) 0 0
\(393\) 578903. 0.189071
\(394\) 0 0
\(395\) 2.51398e6 0.810716
\(396\) 0 0
\(397\) −3.55073e6 −1.13068 −0.565342 0.824857i \(-0.691256\pi\)
−0.565342 + 0.824857i \(0.691256\pi\)
\(398\) 0 0
\(399\) 73969.9 0.0232607
\(400\) 0 0
\(401\) 5.24138e6 1.62774 0.813869 0.581048i \(-0.197357\pi\)
0.813869 + 0.581048i \(0.197357\pi\)
\(402\) 0 0
\(403\) 397050. 0.121782
\(404\) 0 0
\(405\) 422925. 0.128123
\(406\) 0 0
\(407\) 1.27501e6 0.381529
\(408\) 0 0
\(409\) 2.30813e6 0.682262 0.341131 0.940016i \(-0.389190\pi\)
0.341131 + 0.940016i \(0.389190\pi\)
\(410\) 0 0
\(411\) 59620.8 0.0174098
\(412\) 0 0
\(413\) 5611.62 0.00161887
\(414\) 0 0
\(415\) 1.67360e6 0.477015
\(416\) 0 0
\(417\) −1.16251e6 −0.327383
\(418\) 0 0
\(419\) 2.10757e6 0.586470 0.293235 0.956040i \(-0.405268\pi\)
0.293235 + 0.956040i \(0.405268\pi\)
\(420\) 0 0
\(421\) −2.15488e6 −0.592540 −0.296270 0.955104i \(-0.595743\pi\)
−0.296270 + 0.955104i \(0.595743\pi\)
\(422\) 0 0
\(423\) 903137. 0.245416
\(424\) 0 0
\(425\) 814499. 0.218735
\(426\) 0 0
\(427\) 725786. 0.192637
\(428\) 0 0
\(429\) −1.66694e6 −0.437297
\(430\) 0 0
\(431\) −6.32652e6 −1.64048 −0.820242 0.572017i \(-0.806161\pi\)
−0.820242 + 0.572017i \(0.806161\pi\)
\(432\) 0 0
\(433\) −2.03642e6 −0.521972 −0.260986 0.965343i \(-0.584048\pi\)
−0.260986 + 0.965343i \(0.584048\pi\)
\(434\) 0 0
\(435\) 1.88811e6 0.478415
\(436\) 0 0
\(437\) 1.17327e6 0.293897
\(438\) 0 0
\(439\) 1.41688e6 0.350890 0.175445 0.984489i \(-0.443864\pi\)
0.175445 + 0.984489i \(0.443864\pi\)
\(440\) 0 0
\(441\) −1.31938e6 −0.323053
\(442\) 0 0
\(443\) 1.10768e6 0.268166 0.134083 0.990970i \(-0.457191\pi\)
0.134083 + 0.990970i \(0.457191\pi\)
\(444\) 0 0
\(445\) −6.58075e6 −1.57534
\(446\) 0 0
\(447\) −2.47980e6 −0.587014
\(448\) 0 0
\(449\) 6883.75 0.00161142 0.000805710 1.00000i \(-0.499744\pi\)
0.000805710 1.00000i \(0.499744\pi\)
\(450\) 0 0
\(451\) 1.27449e6 0.295049
\(452\) 0 0
\(453\) −2.25295e6 −0.515829
\(454\) 0 0
\(455\) 1.65669e6 0.375157
\(456\) 0 0
\(457\) 2.22170e6 0.497617 0.248809 0.968553i \(-0.419961\pi\)
0.248809 + 0.968553i \(0.419961\pi\)
\(458\) 0 0
\(459\) −576388. −0.127698
\(460\) 0 0
\(461\) −750389. −0.164450 −0.0822250 0.996614i \(-0.526203\pi\)
−0.0822250 + 0.996614i \(0.526203\pi\)
\(462\) 0 0
\(463\) 8.31618e6 1.80290 0.901450 0.432883i \(-0.142504\pi\)
0.901450 + 0.432883i \(0.142504\pi\)
\(464\) 0 0
\(465\) 204051. 0.0437630
\(466\) 0 0
\(467\) −6.63371e6 −1.40755 −0.703775 0.710423i \(-0.748504\pi\)
−0.703775 + 0.710423i \(0.748504\pi\)
\(468\) 0 0
\(469\) 1.31673e6 0.276416
\(470\) 0 0
\(471\) 3.18519e6 0.661582
\(472\) 0 0
\(473\) 1.46221e6 0.300508
\(474\) 0 0
\(475\) 371886. 0.0756268
\(476\) 0 0
\(477\) −2.14892e6 −0.432438
\(478\) 0 0
\(479\) 6.52856e6 1.30011 0.650053 0.759889i \(-0.274747\pi\)
0.650053 + 0.759889i \(0.274747\pi\)
\(480\) 0 0
\(481\) 8.77246e6 1.72886
\(482\) 0 0
\(483\) 665948. 0.129889
\(484\) 0 0
\(485\) 5.93412e6 1.14552
\(486\) 0 0
\(487\) 644478. 0.123136 0.0615681 0.998103i \(-0.480390\pi\)
0.0615681 + 0.998103i \(0.480390\pi\)
\(488\) 0 0
\(489\) −3.31572e6 −0.627055
\(490\) 0 0
\(491\) −3.74928e6 −0.701849 −0.350925 0.936404i \(-0.614133\pi\)
−0.350925 + 0.936404i \(0.614133\pi\)
\(492\) 0 0
\(493\) −2.57324e6 −0.476829
\(494\) 0 0
\(495\) −856670. −0.157145
\(496\) 0 0
\(497\) −154541. −0.0280642
\(498\) 0 0
\(499\) −2.07642e6 −0.373304 −0.186652 0.982426i \(-0.559764\pi\)
−0.186652 + 0.982426i \(0.559764\pi\)
\(500\) 0 0
\(501\) 2.11005e6 0.375576
\(502\) 0 0
\(503\) 8.25513e6 1.45480 0.727401 0.686212i \(-0.240728\pi\)
0.727401 + 0.686212i \(0.240728\pi\)
\(504\) 0 0
\(505\) −5.46520e6 −0.953624
\(506\) 0 0
\(507\) −8.12741e6 −1.40421
\(508\) 0 0
\(509\) 3.83581e6 0.656240 0.328120 0.944636i \(-0.393585\pi\)
0.328120 + 0.944636i \(0.393585\pi\)
\(510\) 0 0
\(511\) −95708.3 −0.0162143
\(512\) 0 0
\(513\) −263169. −0.0441511
\(514\) 0 0
\(515\) −5.82328e6 −0.967496
\(516\) 0 0
\(517\) −1.82938e6 −0.301007
\(518\) 0 0
\(519\) −798930. −0.130194
\(520\) 0 0
\(521\) 6.85680e6 1.10669 0.553346 0.832951i \(-0.313351\pi\)
0.553346 + 0.832951i \(0.313351\pi\)
\(522\) 0 0
\(523\) 4.27671e6 0.683684 0.341842 0.939757i \(-0.388949\pi\)
0.341842 + 0.939757i \(0.388949\pi\)
\(524\) 0 0
\(525\) 211082. 0.0334235
\(526\) 0 0
\(527\) −278093. −0.0436178
\(528\) 0 0
\(529\) 4.12658e6 0.641138
\(530\) 0 0
\(531\) −19964.9 −0.00307278
\(532\) 0 0
\(533\) 8.76885e6 1.33698
\(534\) 0 0
\(535\) −1.41787e7 −2.14167
\(536\) 0 0
\(537\) −3.16591e6 −0.473765
\(538\) 0 0
\(539\) 2.67252e6 0.396231
\(540\) 0 0
\(541\) 2.56801e6 0.377227 0.188614 0.982051i \(-0.439601\pi\)
0.188614 + 0.982051i \(0.439601\pi\)
\(542\) 0 0
\(543\) −4.00078e6 −0.582297
\(544\) 0 0
\(545\) 9.70548e6 1.39967
\(546\) 0 0
\(547\) −2.21579e6 −0.316636 −0.158318 0.987388i \(-0.550607\pi\)
−0.158318 + 0.987388i \(0.550607\pi\)
\(548\) 0 0
\(549\) −2.58219e6 −0.365643
\(550\) 0 0
\(551\) −1.17490e6 −0.164862
\(552\) 0 0
\(553\) −887919. −0.123470
\(554\) 0 0
\(555\) 4.50833e6 0.621273
\(556\) 0 0
\(557\) −2.58631e6 −0.353218 −0.176609 0.984281i \(-0.556513\pi\)
−0.176609 + 0.984281i \(0.556513\pi\)
\(558\) 0 0
\(559\) 1.00604e7 1.36171
\(560\) 0 0
\(561\) 1.16752e6 0.156624
\(562\) 0 0
\(563\) 6.77457e6 0.900763 0.450382 0.892836i \(-0.351288\pi\)
0.450382 + 0.892836i \(0.351288\pi\)
\(564\) 0 0
\(565\) 3.35158e6 0.441701
\(566\) 0 0
\(567\) −149374. −0.0195127
\(568\) 0 0
\(569\) 2.12014e6 0.274526 0.137263 0.990535i \(-0.456170\pi\)
0.137263 + 0.990535i \(0.456170\pi\)
\(570\) 0 0
\(571\) −1.64115e6 −0.210648 −0.105324 0.994438i \(-0.533588\pi\)
−0.105324 + 0.994438i \(0.533588\pi\)
\(572\) 0 0
\(573\) 5.93505e6 0.755158
\(574\) 0 0
\(575\) 3.34807e6 0.422304
\(576\) 0 0
\(577\) −1.31588e7 −1.64542 −0.822710 0.568461i \(-0.807539\pi\)
−0.822710 + 0.568461i \(0.807539\pi\)
\(578\) 0 0
\(579\) −1.28723e6 −0.159574
\(580\) 0 0
\(581\) −591104. −0.0726480
\(582\) 0 0
\(583\) 4.35281e6 0.530393
\(584\) 0 0
\(585\) −5.89415e6 −0.712084
\(586\) 0 0
\(587\) −2.09243e6 −0.250643 −0.125321 0.992116i \(-0.539996\pi\)
−0.125321 + 0.992116i \(0.539996\pi\)
\(588\) 0 0
\(589\) −126973. −0.0150807
\(590\) 0 0
\(591\) −2.84252e6 −0.334761
\(592\) 0 0
\(593\) 4.29249e6 0.501271 0.250635 0.968082i \(-0.419361\pi\)
0.250635 + 0.968082i \(0.419361\pi\)
\(594\) 0 0
\(595\) −1.16034e6 −0.134368
\(596\) 0 0
\(597\) 2.31656e6 0.266016
\(598\) 0 0
\(599\) −7.06864e6 −0.804949 −0.402475 0.915431i \(-0.631850\pi\)
−0.402475 + 0.915431i \(0.631850\pi\)
\(600\) 0 0
\(601\) 5.59587e6 0.631948 0.315974 0.948768i \(-0.397669\pi\)
0.315974 + 0.948768i \(0.397669\pi\)
\(602\) 0 0
\(603\) −4.68463e6 −0.524665
\(604\) 0 0
\(605\) −8.64617e6 −0.960363
\(606\) 0 0
\(607\) −1.58098e7 −1.74162 −0.870812 0.491617i \(-0.836406\pi\)
−0.870812 + 0.491617i \(0.836406\pi\)
\(608\) 0 0
\(609\) −666868. −0.0728613
\(610\) 0 0
\(611\) −1.25867e7 −1.36398
\(612\) 0 0
\(613\) −9.30798e6 −1.00047 −0.500235 0.865889i \(-0.666753\pi\)
−0.500235 + 0.865889i \(0.666753\pi\)
\(614\) 0 0
\(615\) 4.50647e6 0.480451
\(616\) 0 0
\(617\) −1.30711e7 −1.38229 −0.691145 0.722716i \(-0.742893\pi\)
−0.691145 + 0.722716i \(0.742893\pi\)
\(618\) 0 0
\(619\) −9.29042e6 −0.974560 −0.487280 0.873246i \(-0.662011\pi\)
−0.487280 + 0.873246i \(0.662011\pi\)
\(620\) 0 0
\(621\) −2.36930e6 −0.246542
\(622\) 0 0
\(623\) 2.32427e6 0.239920
\(624\) 0 0
\(625\) −1.19236e7 −1.22098
\(626\) 0 0
\(627\) 533071. 0.0541522
\(628\) 0 0
\(629\) −6.14422e6 −0.619213
\(630\) 0 0
\(631\) 952359. 0.0952198 0.0476099 0.998866i \(-0.484840\pi\)
0.0476099 + 0.998866i \(0.484840\pi\)
\(632\) 0 0
\(633\) −7.79186e6 −0.772915
\(634\) 0 0
\(635\) −7.17546e6 −0.706180
\(636\) 0 0
\(637\) 1.83877e7 1.79547
\(638\) 0 0
\(639\) 549823. 0.0532686
\(640\) 0 0
\(641\) 5.98948e6 0.575763 0.287882 0.957666i \(-0.407049\pi\)
0.287882 + 0.957666i \(0.407049\pi\)
\(642\) 0 0
\(643\) −1.65895e7 −1.58236 −0.791180 0.611583i \(-0.790533\pi\)
−0.791180 + 0.611583i \(0.790533\pi\)
\(644\) 0 0
\(645\) 5.17022e6 0.489339
\(646\) 0 0
\(647\) −3.02741e6 −0.284322 −0.142161 0.989844i \(-0.545405\pi\)
−0.142161 + 0.989844i \(0.545405\pi\)
\(648\) 0 0
\(649\) 40440.6 0.00376883
\(650\) 0 0
\(651\) −72069.4 −0.00666497
\(652\) 0 0
\(653\) 546890. 0.0501899 0.0250950 0.999685i \(-0.492011\pi\)
0.0250950 + 0.999685i \(0.492011\pi\)
\(654\) 0 0
\(655\) −4.14626e6 −0.377619
\(656\) 0 0
\(657\) 340510. 0.0307763
\(658\) 0 0
\(659\) −1.62616e7 −1.45865 −0.729324 0.684169i \(-0.760165\pi\)
−0.729324 + 0.684169i \(0.760165\pi\)
\(660\) 0 0
\(661\) −6.26193e6 −0.557448 −0.278724 0.960371i \(-0.589912\pi\)
−0.278724 + 0.960371i \(0.589912\pi\)
\(662\) 0 0
\(663\) 8.03291e6 0.709723
\(664\) 0 0
\(665\) −529793. −0.0464571
\(666\) 0 0
\(667\) −1.05775e7 −0.920597
\(668\) 0 0
\(669\) 6.62653e6 0.572428
\(670\) 0 0
\(671\) 5.23044e6 0.448468
\(672\) 0 0
\(673\) 1.21608e7 1.03496 0.517479 0.855696i \(-0.326870\pi\)
0.517479 + 0.855696i \(0.326870\pi\)
\(674\) 0 0
\(675\) −750983. −0.0634411
\(676\) 0 0
\(677\) 1.27621e7 1.07016 0.535081 0.844801i \(-0.320281\pi\)
0.535081 + 0.844801i \(0.320281\pi\)
\(678\) 0 0
\(679\) −2.09589e6 −0.174459
\(680\) 0 0
\(681\) −8.50027e6 −0.702368
\(682\) 0 0
\(683\) −2.36289e7 −1.93817 −0.969084 0.246733i \(-0.920643\pi\)
−0.969084 + 0.246733i \(0.920643\pi\)
\(684\) 0 0
\(685\) −427020. −0.0347714
\(686\) 0 0
\(687\) −2.64647e6 −0.213931
\(688\) 0 0
\(689\) 2.99486e7 2.40342
\(690\) 0 0
\(691\) −2.19421e7 −1.74817 −0.874085 0.485774i \(-0.838538\pi\)
−0.874085 + 0.485774i \(0.838538\pi\)
\(692\) 0 0
\(693\) 302570. 0.0239327
\(694\) 0 0
\(695\) 8.32620e6 0.653860
\(696\) 0 0
\(697\) −6.14169e6 −0.478857
\(698\) 0 0
\(699\) 1.42716e7 1.10479
\(700\) 0 0
\(701\) 2.39662e7 1.84206 0.921029 0.389494i \(-0.127350\pi\)
0.921029 + 0.389494i \(0.127350\pi\)
\(702\) 0 0
\(703\) −2.80535e6 −0.214091
\(704\) 0 0
\(705\) −6.46851e6 −0.490153
\(706\) 0 0
\(707\) 1.93027e6 0.145234
\(708\) 0 0
\(709\) 1.08716e7 0.812227 0.406114 0.913823i \(-0.366884\pi\)
0.406114 + 0.913823i \(0.366884\pi\)
\(710\) 0 0
\(711\) 3.15902e6 0.234358
\(712\) 0 0
\(713\) −1.14313e6 −0.0842115
\(714\) 0 0
\(715\) 1.19391e7 0.873385
\(716\) 0 0
\(717\) −9.80662e6 −0.712396
\(718\) 0 0
\(719\) −1.20672e7 −0.870528 −0.435264 0.900303i \(-0.643345\pi\)
−0.435264 + 0.900303i \(0.643345\pi\)
\(720\) 0 0
\(721\) 2.05674e6 0.147347
\(722\) 0 0
\(723\) −1.44980e7 −1.03148
\(724\) 0 0
\(725\) −3.35270e6 −0.236892
\(726\) 0 0
\(727\) −3.82452e6 −0.268374 −0.134187 0.990956i \(-0.542842\pi\)
−0.134187 + 0.990956i \(0.542842\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −7.04630e6 −0.487717
\(732\) 0 0
\(733\) −7.95102e6 −0.546591 −0.273296 0.961930i \(-0.588114\pi\)
−0.273296 + 0.961930i \(0.588114\pi\)
\(734\) 0 0
\(735\) 9.44978e6 0.645213
\(736\) 0 0
\(737\) 9.48911e6 0.643512
\(738\) 0 0
\(739\) −1.40289e7 −0.944956 −0.472478 0.881343i \(-0.656640\pi\)
−0.472478 + 0.881343i \(0.656640\pi\)
\(740\) 0 0
\(741\) 3.66769e6 0.245384
\(742\) 0 0
\(743\) −2.00451e7 −1.33210 −0.666048 0.745909i \(-0.732015\pi\)
−0.666048 + 0.745909i \(0.732015\pi\)
\(744\) 0 0
\(745\) 1.77610e7 1.17241
\(746\) 0 0
\(747\) 2.10302e6 0.137893
\(748\) 0 0
\(749\) 5.00782e6 0.326170
\(750\) 0 0
\(751\) 1.97350e7 1.27684 0.638420 0.769688i \(-0.279588\pi\)
0.638420 + 0.769688i \(0.279588\pi\)
\(752\) 0 0
\(753\) −3.20613e6 −0.206060
\(754\) 0 0
\(755\) 1.61362e7 1.03023
\(756\) 0 0
\(757\) 4.67156e6 0.296293 0.148147 0.988965i \(-0.452669\pi\)
0.148147 + 0.988965i \(0.452669\pi\)
\(758\) 0 0
\(759\) 4.79921e6 0.302388
\(760\) 0 0
\(761\) −2.01453e6 −0.126099 −0.0630496 0.998010i \(-0.520083\pi\)
−0.0630496 + 0.998010i \(0.520083\pi\)
\(762\) 0 0
\(763\) −3.42791e6 −0.213166
\(764\) 0 0
\(765\) 4.12825e6 0.255043
\(766\) 0 0
\(767\) 278244. 0.0170780
\(768\) 0 0
\(769\) 2.21316e7 1.34957 0.674786 0.738013i \(-0.264236\pi\)
0.674786 + 0.738013i \(0.264236\pi\)
\(770\) 0 0
\(771\) −5.80027e6 −0.351409
\(772\) 0 0
\(773\) 5.60195e6 0.337202 0.168601 0.985684i \(-0.446075\pi\)
0.168601 + 0.985684i \(0.446075\pi\)
\(774\) 0 0
\(775\) −362331. −0.0216696
\(776\) 0 0
\(777\) −1.59231e6 −0.0946182
\(778\) 0 0
\(779\) −2.80419e6 −0.165563
\(780\) 0 0
\(781\) −1.11371e6 −0.0653350
\(782\) 0 0
\(783\) 2.37257e6 0.138298
\(784\) 0 0
\(785\) −2.28132e7 −1.32133
\(786\) 0 0
\(787\) 2.56606e7 1.47683 0.738415 0.674347i \(-0.235575\pi\)
0.738415 + 0.674347i \(0.235575\pi\)
\(788\) 0 0
\(789\) 6.66633e6 0.381236
\(790\) 0 0
\(791\) −1.18375e6 −0.0672697
\(792\) 0 0
\(793\) 3.59870e7 2.03218
\(794\) 0 0
\(795\) 1.53911e7 0.863680
\(796\) 0 0
\(797\) −2.84932e7 −1.58890 −0.794449 0.607331i \(-0.792240\pi\)
−0.794449 + 0.607331i \(0.792240\pi\)
\(798\) 0 0
\(799\) 8.81569e6 0.488528
\(800\) 0 0
\(801\) −8.26927e6 −0.455392
\(802\) 0 0
\(803\) −689730. −0.0377477
\(804\) 0 0
\(805\) −4.76970e6 −0.259419
\(806\) 0 0
\(807\) 1.85286e7 1.00152
\(808\) 0 0
\(809\) −2.40603e7 −1.29250 −0.646250 0.763126i \(-0.723664\pi\)
−0.646250 + 0.763126i \(0.723664\pi\)
\(810\) 0 0
\(811\) 2.30755e7 1.23197 0.615984 0.787759i \(-0.288759\pi\)
0.615984 + 0.787759i \(0.288759\pi\)
\(812\) 0 0
\(813\) −9.06414e6 −0.480950
\(814\) 0 0
\(815\) 2.37481e7 1.25238
\(816\) 0 0
\(817\) −3.21722e6 −0.168626
\(818\) 0 0
\(819\) 2.08177e6 0.108448
\(820\) 0 0
\(821\) 1.65486e7 0.856848 0.428424 0.903578i \(-0.359069\pi\)
0.428424 + 0.903578i \(0.359069\pi\)
\(822\) 0 0
\(823\) 1.87603e7 0.965476 0.482738 0.875765i \(-0.339642\pi\)
0.482738 + 0.875765i \(0.339642\pi\)
\(824\) 0 0
\(825\) 1.52118e6 0.0778118
\(826\) 0 0
\(827\) −2.85918e7 −1.45371 −0.726854 0.686792i \(-0.759018\pi\)
−0.726854 + 0.686792i \(0.759018\pi\)
\(828\) 0 0
\(829\) −2.29133e7 −1.15798 −0.578989 0.815335i \(-0.696553\pi\)
−0.578989 + 0.815335i \(0.696553\pi\)
\(830\) 0 0
\(831\) 4.04487e6 0.203190
\(832\) 0 0
\(833\) −1.28787e7 −0.643074
\(834\) 0 0
\(835\) −1.51127e7 −0.750113
\(836\) 0 0
\(837\) 256407. 0.0126508
\(838\) 0 0
\(839\) −2.25680e7 −1.10685 −0.553423 0.832900i \(-0.686679\pi\)
−0.553423 + 0.832900i \(0.686679\pi\)
\(840\) 0 0
\(841\) −9.91899e6 −0.483590
\(842\) 0 0
\(843\) 2.05495e7 0.995937
\(844\) 0 0
\(845\) 5.82107e7 2.80454
\(846\) 0 0
\(847\) 3.05377e6 0.146261
\(848\) 0 0
\(849\) −2.15081e7 −1.02408
\(850\) 0 0
\(851\) −2.52564e7 −1.19549
\(852\) 0 0
\(853\) 5.53978e6 0.260687 0.130344 0.991469i \(-0.458392\pi\)
0.130344 + 0.991469i \(0.458392\pi\)
\(854\) 0 0
\(855\) 1.88489e6 0.0881801
\(856\) 0 0
\(857\) −1.11939e7 −0.520629 −0.260315 0.965524i \(-0.583826\pi\)
−0.260315 + 0.965524i \(0.583826\pi\)
\(858\) 0 0
\(859\) −1.33501e7 −0.617306 −0.308653 0.951175i \(-0.599878\pi\)
−0.308653 + 0.951175i \(0.599878\pi\)
\(860\) 0 0
\(861\) −1.59165e6 −0.0731712
\(862\) 0 0
\(863\) −1.58707e7 −0.725387 −0.362693 0.931909i \(-0.618143\pi\)
−0.362693 + 0.931909i \(0.618143\pi\)
\(864\) 0 0
\(865\) 5.72216e6 0.260028
\(866\) 0 0
\(867\) 7.15248e6 0.323153
\(868\) 0 0
\(869\) −6.39886e6 −0.287444
\(870\) 0 0
\(871\) 6.52879e7 2.91600
\(872\) 0 0
\(873\) 7.45672e6 0.331140
\(874\) 0 0
\(875\) 3.07433e6 0.135747
\(876\) 0 0
\(877\) 1.79695e7 0.788928 0.394464 0.918911i \(-0.370930\pi\)
0.394464 + 0.918911i \(0.370930\pi\)
\(878\) 0 0
\(879\) −1.42439e7 −0.621809
\(880\) 0 0
\(881\) −2.17141e6 −0.0942546 −0.0471273 0.998889i \(-0.515007\pi\)
−0.0471273 + 0.998889i \(0.515007\pi\)
\(882\) 0 0
\(883\) 3.12727e7 1.34978 0.674891 0.737918i \(-0.264191\pi\)
0.674891 + 0.737918i \(0.264191\pi\)
\(884\) 0 0
\(885\) 142994. 0.00613707
\(886\) 0 0
\(887\) −3.48499e7 −1.48728 −0.743640 0.668580i \(-0.766903\pi\)
−0.743640 + 0.668580i \(0.766903\pi\)
\(888\) 0 0
\(889\) 2.53432e6 0.107549
\(890\) 0 0
\(891\) −1.07648e6 −0.0454267
\(892\) 0 0
\(893\) 4.02509e6 0.168907
\(894\) 0 0
\(895\) 2.26751e7 0.946220
\(896\) 0 0
\(897\) 3.30200e7 1.37024
\(898\) 0 0
\(899\) 1.14471e6 0.0472385
\(900\) 0 0
\(901\) −2.09760e7 −0.860816
\(902\) 0 0
\(903\) −1.82609e6 −0.0745250
\(904\) 0 0
\(905\) 2.86547e7 1.16298
\(906\) 0 0
\(907\) 2.15663e7 0.870478 0.435239 0.900315i \(-0.356664\pi\)
0.435239 + 0.900315i \(0.356664\pi\)
\(908\) 0 0
\(909\) −6.86748e6 −0.275669
\(910\) 0 0
\(911\) 3.67371e7 1.46659 0.733295 0.679911i \(-0.237981\pi\)
0.733295 + 0.679911i \(0.237981\pi\)
\(912\) 0 0
\(913\) −4.25984e6 −0.169128
\(914\) 0 0
\(915\) 1.84943e7 0.730275
\(916\) 0 0
\(917\) 1.46443e6 0.0575102
\(918\) 0 0
\(919\) 1.77809e7 0.694487 0.347243 0.937775i \(-0.387118\pi\)
0.347243 + 0.937775i \(0.387118\pi\)
\(920\) 0 0
\(921\) 1.14014e7 0.442902
\(922\) 0 0
\(923\) −7.66268e6 −0.296058
\(924\) 0 0
\(925\) −8.00538e6 −0.307629
\(926\) 0 0
\(927\) −7.31743e6 −0.279679
\(928\) 0 0
\(929\) 1.87505e7 0.712811 0.356405 0.934331i \(-0.384002\pi\)
0.356405 + 0.934331i \(0.384002\pi\)
\(930\) 0 0
\(931\) −5.88021e6 −0.222340
\(932\) 0 0
\(933\) −3.75059e6 −0.141057
\(934\) 0 0
\(935\) −8.36212e6 −0.312815
\(936\) 0 0
\(937\) −4.46179e7 −1.66020 −0.830100 0.557615i \(-0.811717\pi\)
−0.830100 + 0.557615i \(0.811717\pi\)
\(938\) 0 0
\(939\) 1.34787e7 0.498866
\(940\) 0 0
\(941\) 9.58472e6 0.352862 0.176431 0.984313i \(-0.443545\pi\)
0.176431 + 0.984313i \(0.443545\pi\)
\(942\) 0 0
\(943\) −2.52460e7 −0.924514
\(944\) 0 0
\(945\) 1.06986e6 0.0389715
\(946\) 0 0
\(947\) 1.51375e7 0.548505 0.274252 0.961658i \(-0.411570\pi\)
0.274252 + 0.961658i \(0.411570\pi\)
\(948\) 0 0
\(949\) −4.74555e6 −0.171049
\(950\) 0 0
\(951\) −8.52665e6 −0.305722
\(952\) 0 0
\(953\) −7.77412e6 −0.277280 −0.138640 0.990343i \(-0.544273\pi\)
−0.138640 + 0.990343i \(0.544273\pi\)
\(954\) 0 0
\(955\) −4.25085e7 −1.50823
\(956\) 0 0
\(957\) −4.80584e6 −0.169625
\(958\) 0 0
\(959\) 150821. 0.00529558
\(960\) 0 0
\(961\) −2.85054e7 −0.995679
\(962\) 0 0
\(963\) −1.78167e7 −0.619102
\(964\) 0 0
\(965\) 9.21953e6 0.318706
\(966\) 0 0
\(967\) −5.37793e6 −0.184948 −0.0924738 0.995715i \(-0.529477\pi\)
−0.0924738 + 0.995715i \(0.529477\pi\)
\(968\) 0 0
\(969\) −2.56884e6 −0.0878877
\(970\) 0 0
\(971\) −9.19800e6 −0.313073 −0.156536 0.987672i \(-0.550033\pi\)
−0.156536 + 0.987672i \(0.550033\pi\)
\(972\) 0 0
\(973\) −2.94076e6 −0.0995811
\(974\) 0 0
\(975\) 1.04662e7 0.352595
\(976\) 0 0
\(977\) −4.28018e7 −1.43458 −0.717292 0.696773i \(-0.754619\pi\)
−0.717292 + 0.696773i \(0.754619\pi\)
\(978\) 0 0
\(979\) 1.67501e7 0.558548
\(980\) 0 0
\(981\) 1.21957e7 0.404609
\(982\) 0 0
\(983\) 2.14081e7 0.706633 0.353317 0.935504i \(-0.385054\pi\)
0.353317 + 0.935504i \(0.385054\pi\)
\(984\) 0 0
\(985\) 2.03589e7 0.668597
\(986\) 0 0
\(987\) 2.28463e6 0.0746489
\(988\) 0 0
\(989\) −2.89645e7 −0.941618
\(990\) 0 0
\(991\) −3.45241e7 −1.11670 −0.558352 0.829604i \(-0.688566\pi\)
−0.558352 + 0.829604i \(0.688566\pi\)
\(992\) 0 0
\(993\) 1.97912e7 0.636940
\(994\) 0 0
\(995\) −1.65918e7 −0.531296
\(996\) 0 0
\(997\) 1.24237e7 0.395833 0.197917 0.980219i \(-0.436582\pi\)
0.197917 + 0.980219i \(0.436582\pi\)
\(998\) 0 0
\(999\) 5.66509e6 0.179594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 228.6.a.b.1.4 4
3.2 odd 2 684.6.a.d.1.1 4
4.3 odd 2 912.6.a.p.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.6.a.b.1.4 4 1.1 even 1 trivial
684.6.a.d.1.1 4 3.2 odd 2
912.6.a.p.1.4 4 4.3 odd 2