Properties

Label 228.6.a.b.1.2
Level $228$
Weight $6$
Character 228.1
Self dual yes
Analytic conductor $36.568$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [228,6,Mod(1,228)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(228, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("228.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 228 = 2^{2} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 228.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-36,0,-84] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.5675109174\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 3227x^{2} + 17265x + 1197450 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-55.6309\) of defining polynomial
Character \(\chi\) \(=\) 228.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} -24.7456 q^{5} -94.5162 q^{7} +81.0000 q^{9} +658.815 q^{11} +137.434 q^{13} +222.710 q^{15} +434.528 q^{17} +361.000 q^{19} +850.646 q^{21} -2093.92 q^{23} -2512.66 q^{25} -729.000 q^{27} +5088.18 q^{29} -8041.00 q^{31} -5929.34 q^{33} +2338.86 q^{35} +5697.17 q^{37} -1236.90 q^{39} -19145.7 q^{41} +22560.1 q^{43} -2004.39 q^{45} -5051.26 q^{47} -7873.69 q^{49} -3910.76 q^{51} -14112.5 q^{53} -16302.8 q^{55} -3249.00 q^{57} -43554.9 q^{59} -35333.8 q^{61} -7655.81 q^{63} -3400.88 q^{65} -19068.1 q^{67} +18845.3 q^{69} +25159.9 q^{71} -60015.6 q^{73} +22613.9 q^{75} -62268.7 q^{77} +90721.4 q^{79} +6561.00 q^{81} -114736. q^{83} -10752.6 q^{85} -45793.6 q^{87} +24441.7 q^{89} -12989.7 q^{91} +72369.0 q^{93} -8933.15 q^{95} -135658. q^{97} +53364.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} - 84 q^{5} + 54 q^{7} + 324 q^{9} + 354 q^{11} + 46 q^{13} + 756 q^{15} + 2046 q^{17} + 1444 q^{19} - 486 q^{21} + 846 q^{23} + 4018 q^{25} - 2916 q^{27} - 7152 q^{29} + 238 q^{31} - 3186 q^{33}+ \cdots + 28674 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) −24.7456 −0.442662 −0.221331 0.975199i \(-0.571040\pi\)
−0.221331 + 0.975199i \(0.571040\pi\)
\(6\) 0 0
\(7\) −94.5162 −0.729056 −0.364528 0.931192i \(-0.618770\pi\)
−0.364528 + 0.931192i \(0.618770\pi\)
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 658.815 1.64166 0.820828 0.571176i \(-0.193512\pi\)
0.820828 + 0.571176i \(0.193512\pi\)
\(12\) 0 0
\(13\) 137.434 0.225546 0.112773 0.993621i \(-0.464027\pi\)
0.112773 + 0.993621i \(0.464027\pi\)
\(14\) 0 0
\(15\) 222.710 0.255571
\(16\) 0 0
\(17\) 434.528 0.364667 0.182333 0.983237i \(-0.441635\pi\)
0.182333 + 0.983237i \(0.441635\pi\)
\(18\) 0 0
\(19\) 361.000 0.229416
\(20\) 0 0
\(21\) 850.646 0.420921
\(22\) 0 0
\(23\) −2093.92 −0.825355 −0.412677 0.910877i \(-0.635406\pi\)
−0.412677 + 0.910877i \(0.635406\pi\)
\(24\) 0 0
\(25\) −2512.66 −0.804050
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 5088.18 1.12349 0.561743 0.827312i \(-0.310131\pi\)
0.561743 + 0.827312i \(0.310131\pi\)
\(30\) 0 0
\(31\) −8041.00 −1.50282 −0.751408 0.659838i \(-0.770625\pi\)
−0.751408 + 0.659838i \(0.770625\pi\)
\(32\) 0 0
\(33\) −5929.34 −0.947810
\(34\) 0 0
\(35\) 2338.86 0.322726
\(36\) 0 0
\(37\) 5697.17 0.684155 0.342078 0.939672i \(-0.388869\pi\)
0.342078 + 0.939672i \(0.388869\pi\)
\(38\) 0 0
\(39\) −1236.90 −0.130219
\(40\) 0 0
\(41\) −19145.7 −1.77874 −0.889368 0.457191i \(-0.848855\pi\)
−0.889368 + 0.457191i \(0.848855\pi\)
\(42\) 0 0
\(43\) 22560.1 1.86067 0.930336 0.366707i \(-0.119515\pi\)
0.930336 + 0.366707i \(0.119515\pi\)
\(44\) 0 0
\(45\) −2004.39 −0.147554
\(46\) 0 0
\(47\) −5051.26 −0.333546 −0.166773 0.985995i \(-0.553335\pi\)
−0.166773 + 0.985995i \(0.553335\pi\)
\(48\) 0 0
\(49\) −7873.69 −0.468477
\(50\) 0 0
\(51\) −3910.76 −0.210540
\(52\) 0 0
\(53\) −14112.5 −0.690104 −0.345052 0.938584i \(-0.612139\pi\)
−0.345052 + 0.938584i \(0.612139\pi\)
\(54\) 0 0
\(55\) −16302.8 −0.726699
\(56\) 0 0
\(57\) −3249.00 −0.132453
\(58\) 0 0
\(59\) −43554.9 −1.62895 −0.814474 0.580201i \(-0.802974\pi\)
−0.814474 + 0.580201i \(0.802974\pi\)
\(60\) 0 0
\(61\) −35333.8 −1.21581 −0.607906 0.794009i \(-0.707990\pi\)
−0.607906 + 0.794009i \(0.707990\pi\)
\(62\) 0 0
\(63\) −7655.81 −0.243019
\(64\) 0 0
\(65\) −3400.88 −0.0998407
\(66\) 0 0
\(67\) −19068.1 −0.518943 −0.259471 0.965751i \(-0.583548\pi\)
−0.259471 + 0.965751i \(0.583548\pi\)
\(68\) 0 0
\(69\) 18845.3 0.476519
\(70\) 0 0
\(71\) 25159.9 0.592329 0.296164 0.955137i \(-0.404292\pi\)
0.296164 + 0.955137i \(0.404292\pi\)
\(72\) 0 0
\(73\) −60015.6 −1.31813 −0.659063 0.752088i \(-0.729047\pi\)
−0.659063 + 0.752088i \(0.729047\pi\)
\(74\) 0 0
\(75\) 22613.9 0.464219
\(76\) 0 0
\(77\) −62268.7 −1.19686
\(78\) 0 0
\(79\) 90721.4 1.63547 0.817734 0.575597i \(-0.195230\pi\)
0.817734 + 0.575597i \(0.195230\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −114736. −1.82812 −0.914060 0.405579i \(-0.867070\pi\)
−0.914060 + 0.405579i \(0.867070\pi\)
\(84\) 0 0
\(85\) −10752.6 −0.161424
\(86\) 0 0
\(87\) −45793.6 −0.648645
\(88\) 0 0
\(89\) 24441.7 0.327082 0.163541 0.986537i \(-0.447708\pi\)
0.163541 + 0.986537i \(0.447708\pi\)
\(90\) 0 0
\(91\) −12989.7 −0.164436
\(92\) 0 0
\(93\) 72369.0 0.867651
\(94\) 0 0
\(95\) −8933.15 −0.101554
\(96\) 0 0
\(97\) −135658. −1.46391 −0.731957 0.681351i \(-0.761393\pi\)
−0.731957 + 0.681351i \(0.761393\pi\)
\(98\) 0 0
\(99\) 53364.1 0.547219
\(100\) 0 0
\(101\) 172258. 1.68026 0.840131 0.542383i \(-0.182478\pi\)
0.840131 + 0.542383i \(0.182478\pi\)
\(102\) 0 0
\(103\) 39546.8 0.367298 0.183649 0.982992i \(-0.441209\pi\)
0.183649 + 0.982992i \(0.441209\pi\)
\(104\) 0 0
\(105\) −21049.7 −0.186326
\(106\) 0 0
\(107\) −136247. −1.15045 −0.575226 0.817995i \(-0.695086\pi\)
−0.575226 + 0.817995i \(0.695086\pi\)
\(108\) 0 0
\(109\) −104857. −0.845337 −0.422668 0.906284i \(-0.638907\pi\)
−0.422668 + 0.906284i \(0.638907\pi\)
\(110\) 0 0
\(111\) −51274.5 −0.394997
\(112\) 0 0
\(113\) −137587. −1.01363 −0.506817 0.862054i \(-0.669178\pi\)
−0.506817 + 0.862054i \(0.669178\pi\)
\(114\) 0 0
\(115\) 51815.2 0.365353
\(116\) 0 0
\(117\) 11132.1 0.0751820
\(118\) 0 0
\(119\) −41070.0 −0.265862
\(120\) 0 0
\(121\) 272987. 1.69503
\(122\) 0 0
\(123\) 172311. 1.02695
\(124\) 0 0
\(125\) 139507. 0.798585
\(126\) 0 0
\(127\) 194206. 1.06845 0.534225 0.845343i \(-0.320604\pi\)
0.534225 + 0.845343i \(0.320604\pi\)
\(128\) 0 0
\(129\) −203041. −1.07426
\(130\) 0 0
\(131\) 105884. 0.539081 0.269540 0.962989i \(-0.413128\pi\)
0.269540 + 0.962989i \(0.413128\pi\)
\(132\) 0 0
\(133\) −34120.3 −0.167257
\(134\) 0 0
\(135\) 18039.5 0.0851903
\(136\) 0 0
\(137\) −274466. −1.24936 −0.624679 0.780882i \(-0.714770\pi\)
−0.624679 + 0.780882i \(0.714770\pi\)
\(138\) 0 0
\(139\) 22232.9 0.0976019 0.0488010 0.998809i \(-0.484460\pi\)
0.0488010 + 0.998809i \(0.484460\pi\)
\(140\) 0 0
\(141\) 45461.4 0.192573
\(142\) 0 0
\(143\) 90543.6 0.370269
\(144\) 0 0
\(145\) −125910. −0.497324
\(146\) 0 0
\(147\) 70863.2 0.270475
\(148\) 0 0
\(149\) −427802. −1.57862 −0.789309 0.613996i \(-0.789561\pi\)
−0.789309 + 0.613996i \(0.789561\pi\)
\(150\) 0 0
\(151\) 242128. 0.864177 0.432089 0.901831i \(-0.357777\pi\)
0.432089 + 0.901831i \(0.357777\pi\)
\(152\) 0 0
\(153\) 35196.8 0.121556
\(154\) 0 0
\(155\) 198979. 0.665239
\(156\) 0 0
\(157\) 447146. 1.44777 0.723885 0.689920i \(-0.242354\pi\)
0.723885 + 0.689920i \(0.242354\pi\)
\(158\) 0 0
\(159\) 127013. 0.398432
\(160\) 0 0
\(161\) 197909. 0.601730
\(162\) 0 0
\(163\) 19737.8 0.0581874 0.0290937 0.999577i \(-0.490738\pi\)
0.0290937 + 0.999577i \(0.490738\pi\)
\(164\) 0 0
\(165\) 146725. 0.419560
\(166\) 0 0
\(167\) −102269. −0.283762 −0.141881 0.989884i \(-0.545315\pi\)
−0.141881 + 0.989884i \(0.545315\pi\)
\(168\) 0 0
\(169\) −352405. −0.949129
\(170\) 0 0
\(171\) 29241.0 0.0764719
\(172\) 0 0
\(173\) −513999. −1.30571 −0.652855 0.757483i \(-0.726429\pi\)
−0.652855 + 0.757483i \(0.726429\pi\)
\(174\) 0 0
\(175\) 237487. 0.586198
\(176\) 0 0
\(177\) 391994. 0.940473
\(178\) 0 0
\(179\) 338975. 0.790743 0.395371 0.918521i \(-0.370616\pi\)
0.395371 + 0.918521i \(0.370616\pi\)
\(180\) 0 0
\(181\) 230824. 0.523702 0.261851 0.965108i \(-0.415667\pi\)
0.261851 + 0.965108i \(0.415667\pi\)
\(182\) 0 0
\(183\) 318005. 0.701949
\(184\) 0 0
\(185\) −140980. −0.302849
\(186\) 0 0
\(187\) 286274. 0.598657
\(188\) 0 0
\(189\) 68902.3 0.140307
\(190\) 0 0
\(191\) 120609. 0.239219 0.119610 0.992821i \(-0.461836\pi\)
0.119610 + 0.992821i \(0.461836\pi\)
\(192\) 0 0
\(193\) −203725. −0.393687 −0.196844 0.980435i \(-0.563069\pi\)
−0.196844 + 0.980435i \(0.563069\pi\)
\(194\) 0 0
\(195\) 30607.9 0.0576430
\(196\) 0 0
\(197\) −377358. −0.692768 −0.346384 0.938093i \(-0.612591\pi\)
−0.346384 + 0.938093i \(0.612591\pi\)
\(198\) 0 0
\(199\) 669459. 1.19837 0.599186 0.800610i \(-0.295491\pi\)
0.599186 + 0.800610i \(0.295491\pi\)
\(200\) 0 0
\(201\) 171612. 0.299612
\(202\) 0 0
\(203\) −480915. −0.819084
\(204\) 0 0
\(205\) 473771. 0.787379
\(206\) 0 0
\(207\) −169608. −0.275118
\(208\) 0 0
\(209\) 237832. 0.376622
\(210\) 0 0
\(211\) −470731. −0.727891 −0.363946 0.931420i \(-0.618571\pi\)
−0.363946 + 0.931420i \(0.618571\pi\)
\(212\) 0 0
\(213\) −226439. −0.341981
\(214\) 0 0
\(215\) −558262. −0.823649
\(216\) 0 0
\(217\) 760005. 1.09564
\(218\) 0 0
\(219\) 540140. 0.761020
\(220\) 0 0
\(221\) 59718.9 0.0822491
\(222\) 0 0
\(223\) 1.11952e6 1.50754 0.753769 0.657139i \(-0.228234\pi\)
0.753769 + 0.657139i \(0.228234\pi\)
\(224\) 0 0
\(225\) −203525. −0.268017
\(226\) 0 0
\(227\) −473873. −0.610376 −0.305188 0.952292i \(-0.598719\pi\)
−0.305188 + 0.952292i \(0.598719\pi\)
\(228\) 0 0
\(229\) 738423. 0.930500 0.465250 0.885179i \(-0.345964\pi\)
0.465250 + 0.885179i \(0.345964\pi\)
\(230\) 0 0
\(231\) 560419. 0.691007
\(232\) 0 0
\(233\) 694.225 0.000837742 0 0.000418871 1.00000i \(-0.499867\pi\)
0.000418871 1.00000i \(0.499867\pi\)
\(234\) 0 0
\(235\) 124996. 0.147648
\(236\) 0 0
\(237\) −816492. −0.944238
\(238\) 0 0
\(239\) −833340. −0.943686 −0.471843 0.881682i \(-0.656411\pi\)
−0.471843 + 0.881682i \(0.656411\pi\)
\(240\) 0 0
\(241\) 96678.1 0.107222 0.0536112 0.998562i \(-0.482927\pi\)
0.0536112 + 0.998562i \(0.482927\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 194839. 0.207377
\(246\) 0 0
\(247\) 49613.6 0.0517438
\(248\) 0 0
\(249\) 1.03262e6 1.05547
\(250\) 0 0
\(251\) 537911. 0.538922 0.269461 0.963011i \(-0.413154\pi\)
0.269461 + 0.963011i \(0.413154\pi\)
\(252\) 0 0
\(253\) −1.37951e6 −1.35495
\(254\) 0 0
\(255\) 96773.8 0.0931982
\(256\) 0 0
\(257\) −708849. −0.669454 −0.334727 0.942315i \(-0.608644\pi\)
−0.334727 + 0.942315i \(0.608644\pi\)
\(258\) 0 0
\(259\) −538474. −0.498788
\(260\) 0 0
\(261\) 412143. 0.374495
\(262\) 0 0
\(263\) −951984. −0.848672 −0.424336 0.905505i \(-0.639493\pi\)
−0.424336 + 0.905505i \(0.639493\pi\)
\(264\) 0 0
\(265\) 349222. 0.305483
\(266\) 0 0
\(267\) −219976. −0.188841
\(268\) 0 0
\(269\) −658815. −0.555115 −0.277558 0.960709i \(-0.589525\pi\)
−0.277558 + 0.960709i \(0.589525\pi\)
\(270\) 0 0
\(271\) −1.98273e6 −1.63999 −0.819995 0.572370i \(-0.806024\pi\)
−0.819995 + 0.572370i \(0.806024\pi\)
\(272\) 0 0
\(273\) 116908. 0.0949371
\(274\) 0 0
\(275\) −1.65538e6 −1.31997
\(276\) 0 0
\(277\) −1.65627e6 −1.29697 −0.648486 0.761227i \(-0.724597\pi\)
−0.648486 + 0.761227i \(0.724597\pi\)
\(278\) 0 0
\(279\) −651321. −0.500939
\(280\) 0 0
\(281\) −1.29006e6 −0.974641 −0.487321 0.873223i \(-0.662026\pi\)
−0.487321 + 0.873223i \(0.662026\pi\)
\(282\) 0 0
\(283\) 528290. 0.392109 0.196054 0.980593i \(-0.437187\pi\)
0.196054 + 0.980593i \(0.437187\pi\)
\(284\) 0 0
\(285\) 80398.3 0.0586320
\(286\) 0 0
\(287\) 1.80958e6 1.29680
\(288\) 0 0
\(289\) −1.23104e6 −0.867018
\(290\) 0 0
\(291\) 1.22092e6 0.845191
\(292\) 0 0
\(293\) −2.58910e6 −1.76189 −0.880947 0.473214i \(-0.843094\pi\)
−0.880947 + 0.473214i \(0.843094\pi\)
\(294\) 0 0
\(295\) 1.07779e6 0.721073
\(296\) 0 0
\(297\) −480276. −0.315937
\(298\) 0 0
\(299\) −287776. −0.186156
\(300\) 0 0
\(301\) −2.13230e6 −1.35654
\(302\) 0 0
\(303\) −1.55033e6 −0.970100
\(304\) 0 0
\(305\) 874356. 0.538194
\(306\) 0 0
\(307\) −2.88263e6 −1.74559 −0.872796 0.488086i \(-0.837695\pi\)
−0.872796 + 0.488086i \(0.837695\pi\)
\(308\) 0 0
\(309\) −355921. −0.212059
\(310\) 0 0
\(311\) 2.30024e6 1.34857 0.674284 0.738472i \(-0.264452\pi\)
0.674284 + 0.738472i \(0.264452\pi\)
\(312\) 0 0
\(313\) −681327. −0.393093 −0.196546 0.980495i \(-0.562973\pi\)
−0.196546 + 0.980495i \(0.562973\pi\)
\(314\) 0 0
\(315\) 189447. 0.107575
\(316\) 0 0
\(317\) −508450. −0.284184 −0.142092 0.989853i \(-0.545383\pi\)
−0.142092 + 0.989853i \(0.545383\pi\)
\(318\) 0 0
\(319\) 3.35217e6 1.84438
\(320\) 0 0
\(321\) 1.22623e6 0.664214
\(322\) 0 0
\(323\) 156865. 0.0836602
\(324\) 0 0
\(325\) −345324. −0.181350
\(326\) 0 0
\(327\) 943710. 0.488055
\(328\) 0 0
\(329\) 477426. 0.243174
\(330\) 0 0
\(331\) 2.62164e6 1.31523 0.657617 0.753352i \(-0.271564\pi\)
0.657617 + 0.753352i \(0.271564\pi\)
\(332\) 0 0
\(333\) 461470. 0.228052
\(334\) 0 0
\(335\) 471850. 0.229716
\(336\) 0 0
\(337\) −721890. −0.346255 −0.173128 0.984899i \(-0.555387\pi\)
−0.173128 + 0.984899i \(0.555387\pi\)
\(338\) 0 0
\(339\) 1.23828e6 0.585221
\(340\) 0 0
\(341\) −5.29753e6 −2.46711
\(342\) 0 0
\(343\) 2.33272e6 1.07060
\(344\) 0 0
\(345\) −466337. −0.210937
\(346\) 0 0
\(347\) 647898. 0.288857 0.144428 0.989515i \(-0.453866\pi\)
0.144428 + 0.989515i \(0.453866\pi\)
\(348\) 0 0
\(349\) −1.00852e6 −0.443220 −0.221610 0.975135i \(-0.571131\pi\)
−0.221610 + 0.975135i \(0.571131\pi\)
\(350\) 0 0
\(351\) −100189. −0.0434064
\(352\) 0 0
\(353\) 53568.7 0.0228810 0.0114405 0.999935i \(-0.496358\pi\)
0.0114405 + 0.999935i \(0.496358\pi\)
\(354\) 0 0
\(355\) −622595. −0.262201
\(356\) 0 0
\(357\) 369630. 0.153496
\(358\) 0 0
\(359\) −3.68653e6 −1.50967 −0.754835 0.655914i \(-0.772283\pi\)
−0.754835 + 0.655914i \(0.772283\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 0 0
\(363\) −2.45688e6 −0.978628
\(364\) 0 0
\(365\) 1.48512e6 0.583484
\(366\) 0 0
\(367\) −1.03597e6 −0.401496 −0.200748 0.979643i \(-0.564337\pi\)
−0.200748 + 0.979643i \(0.564337\pi\)
\(368\) 0 0
\(369\) −1.55080e6 −0.592912
\(370\) 0 0
\(371\) 1.33386e6 0.503125
\(372\) 0 0
\(373\) 3.28124e6 1.22114 0.610571 0.791962i \(-0.290940\pi\)
0.610571 + 0.791962i \(0.290940\pi\)
\(374\) 0 0
\(375\) −1.25556e6 −0.461063
\(376\) 0 0
\(377\) 699288. 0.253398
\(378\) 0 0
\(379\) 4.81519e6 1.72193 0.860964 0.508665i \(-0.169861\pi\)
0.860964 + 0.508665i \(0.169861\pi\)
\(380\) 0 0
\(381\) −1.74786e6 −0.616870
\(382\) 0 0
\(383\) −1.68869e6 −0.588239 −0.294120 0.955769i \(-0.595026\pi\)
−0.294120 + 0.955769i \(0.595026\pi\)
\(384\) 0 0
\(385\) 1.54087e6 0.529804
\(386\) 0 0
\(387\) 1.82737e6 0.620224
\(388\) 0 0
\(389\) 3.02387e6 1.01318 0.506592 0.862186i \(-0.330905\pi\)
0.506592 + 0.862186i \(0.330905\pi\)
\(390\) 0 0
\(391\) −909868. −0.300979
\(392\) 0 0
\(393\) −952960. −0.311239
\(394\) 0 0
\(395\) −2.24495e6 −0.723959
\(396\) 0 0
\(397\) −1.89205e6 −0.602499 −0.301250 0.953545i \(-0.597404\pi\)
−0.301250 + 0.953545i \(0.597404\pi\)
\(398\) 0 0
\(399\) 307083. 0.0965659
\(400\) 0 0
\(401\) 1.61806e6 0.502496 0.251248 0.967923i \(-0.419159\pi\)
0.251248 + 0.967923i \(0.419159\pi\)
\(402\) 0 0
\(403\) −1.10511e6 −0.338954
\(404\) 0 0
\(405\) −162356. −0.0491847
\(406\) 0 0
\(407\) 3.75338e6 1.12315
\(408\) 0 0
\(409\) −4.29421e6 −1.26933 −0.634666 0.772787i \(-0.718862\pi\)
−0.634666 + 0.772787i \(0.718862\pi\)
\(410\) 0 0
\(411\) 2.47019e6 0.721317
\(412\) 0 0
\(413\) 4.11664e6 1.18759
\(414\) 0 0
\(415\) 2.83921e6 0.809239
\(416\) 0 0
\(417\) −200096. −0.0563505
\(418\) 0 0
\(419\) 324278. 0.0902366 0.0451183 0.998982i \(-0.485634\pi\)
0.0451183 + 0.998982i \(0.485634\pi\)
\(420\) 0 0
\(421\) −3.20973e6 −0.882599 −0.441299 0.897360i \(-0.645482\pi\)
−0.441299 + 0.897360i \(0.645482\pi\)
\(422\) 0 0
\(423\) −409152. −0.111182
\(424\) 0 0
\(425\) −1.09182e6 −0.293210
\(426\) 0 0
\(427\) 3.33962e6 0.886395
\(428\) 0 0
\(429\) −814892. −0.213775
\(430\) 0 0
\(431\) 4.83335e6 1.25330 0.626650 0.779301i \(-0.284426\pi\)
0.626650 + 0.779301i \(0.284426\pi\)
\(432\) 0 0
\(433\) 3.81696e6 0.978358 0.489179 0.872183i \(-0.337296\pi\)
0.489179 + 0.872183i \(0.337296\pi\)
\(434\) 0 0
\(435\) 1.13319e6 0.287130
\(436\) 0 0
\(437\) −755905. −0.189349
\(438\) 0 0
\(439\) 1.69417e6 0.419561 0.209781 0.977748i \(-0.432725\pi\)
0.209781 + 0.977748i \(0.432725\pi\)
\(440\) 0 0
\(441\) −637769. −0.156159
\(442\) 0 0
\(443\) 6.75042e6 1.63426 0.817131 0.576452i \(-0.195563\pi\)
0.817131 + 0.576452i \(0.195563\pi\)
\(444\) 0 0
\(445\) −604825. −0.144787
\(446\) 0 0
\(447\) 3.85022e6 0.911415
\(448\) 0 0
\(449\) −3.29004e6 −0.770168 −0.385084 0.922881i \(-0.625828\pi\)
−0.385084 + 0.922881i \(0.625828\pi\)
\(450\) 0 0
\(451\) −1.26135e7 −2.92007
\(452\) 0 0
\(453\) −2.17915e6 −0.498933
\(454\) 0 0
\(455\) 321438. 0.0727895
\(456\) 0 0
\(457\) 4.33168e6 0.970210 0.485105 0.874456i \(-0.338781\pi\)
0.485105 + 0.874456i \(0.338781\pi\)
\(458\) 0 0
\(459\) −316771. −0.0701801
\(460\) 0 0
\(461\) 3.48683e6 0.764150 0.382075 0.924131i \(-0.375210\pi\)
0.382075 + 0.924131i \(0.375210\pi\)
\(462\) 0 0
\(463\) −2.62867e6 −0.569879 −0.284940 0.958545i \(-0.591974\pi\)
−0.284940 + 0.958545i \(0.591974\pi\)
\(464\) 0 0
\(465\) −1.79081e6 −0.384076
\(466\) 0 0
\(467\) −3.21047e6 −0.681204 −0.340602 0.940208i \(-0.610631\pi\)
−0.340602 + 0.940208i \(0.610631\pi\)
\(468\) 0 0
\(469\) 1.80224e6 0.378338
\(470\) 0 0
\(471\) −4.02431e6 −0.835871
\(472\) 0 0
\(473\) 1.48629e7 3.05458
\(474\) 0 0
\(475\) −907069. −0.184462
\(476\) 0 0
\(477\) −1.14311e6 −0.230035
\(478\) 0 0
\(479\) 8.61671e6 1.71594 0.857972 0.513697i \(-0.171725\pi\)
0.857972 + 0.513697i \(0.171725\pi\)
\(480\) 0 0
\(481\) 782983. 0.154309
\(482\) 0 0
\(483\) −1.78118e6 −0.347409
\(484\) 0 0
\(485\) 3.35693e6 0.648019
\(486\) 0 0
\(487\) −1.01040e7 −1.93051 −0.965256 0.261307i \(-0.915846\pi\)
−0.965256 + 0.261307i \(0.915846\pi\)
\(488\) 0 0
\(489\) −177640. −0.0335945
\(490\) 0 0
\(491\) 1.39338e6 0.260835 0.130418 0.991459i \(-0.458368\pi\)
0.130418 + 0.991459i \(0.458368\pi\)
\(492\) 0 0
\(493\) 2.21096e6 0.409698
\(494\) 0 0
\(495\) −1.32052e6 −0.242233
\(496\) 0 0
\(497\) −2.37802e6 −0.431841
\(498\) 0 0
\(499\) 4.06131e6 0.730154 0.365077 0.930977i \(-0.381043\pi\)
0.365077 + 0.930977i \(0.381043\pi\)
\(500\) 0 0
\(501\) 920424. 0.163830
\(502\) 0 0
\(503\) −1.55388e6 −0.273841 −0.136920 0.990582i \(-0.543720\pi\)
−0.136920 + 0.990582i \(0.543720\pi\)
\(504\) 0 0
\(505\) −4.26263e6 −0.743788
\(506\) 0 0
\(507\) 3.17164e6 0.547980
\(508\) 0 0
\(509\) 6.04592e6 1.03435 0.517176 0.855879i \(-0.326983\pi\)
0.517176 + 0.855879i \(0.326983\pi\)
\(510\) 0 0
\(511\) 5.67245e6 0.960988
\(512\) 0 0
\(513\) −263169. −0.0441511
\(514\) 0 0
\(515\) −978608. −0.162589
\(516\) 0 0
\(517\) −3.32785e6 −0.547567
\(518\) 0 0
\(519\) 4.62599e6 0.753853
\(520\) 0 0
\(521\) 1.81343e6 0.292690 0.146345 0.989234i \(-0.453249\pi\)
0.146345 + 0.989234i \(0.453249\pi\)
\(522\) 0 0
\(523\) 1.02245e7 1.63451 0.817257 0.576273i \(-0.195494\pi\)
0.817257 + 0.576273i \(0.195494\pi\)
\(524\) 0 0
\(525\) −2.13738e6 −0.338442
\(526\) 0 0
\(527\) −3.49404e6 −0.548027
\(528\) 0 0
\(529\) −2.05184e6 −0.318790
\(530\) 0 0
\(531\) −3.52795e6 −0.542982
\(532\) 0 0
\(533\) −2.63127e6 −0.401187
\(534\) 0 0
\(535\) 3.37152e6 0.509261
\(536\) 0 0
\(537\) −3.05078e6 −0.456536
\(538\) 0 0
\(539\) −5.18731e6 −0.769078
\(540\) 0 0
\(541\) 4.43625e6 0.651663 0.325832 0.945428i \(-0.394356\pi\)
0.325832 + 0.945428i \(0.394356\pi\)
\(542\) 0 0
\(543\) −2.07742e6 −0.302360
\(544\) 0 0
\(545\) 2.59474e6 0.374198
\(546\) 0 0
\(547\) −5.73672e6 −0.819776 −0.409888 0.912136i \(-0.634432\pi\)
−0.409888 + 0.912136i \(0.634432\pi\)
\(548\) 0 0
\(549\) −2.86204e6 −0.405271
\(550\) 0 0
\(551\) 1.83683e6 0.257745
\(552\) 0 0
\(553\) −8.57464e6 −1.19235
\(554\) 0 0
\(555\) 1.26882e6 0.174850
\(556\) 0 0
\(557\) 5.14777e6 0.703042 0.351521 0.936180i \(-0.385665\pi\)
0.351521 + 0.936180i \(0.385665\pi\)
\(558\) 0 0
\(559\) 3.10052e6 0.419668
\(560\) 0 0
\(561\) −2.57647e6 −0.345635
\(562\) 0 0
\(563\) −1.19950e7 −1.59489 −0.797444 0.603393i \(-0.793815\pi\)
−0.797444 + 0.603393i \(0.793815\pi\)
\(564\) 0 0
\(565\) 3.40466e6 0.448697
\(566\) 0 0
\(567\) −620121. −0.0810063
\(568\) 0 0
\(569\) 1.15979e6 0.150176 0.0750879 0.997177i \(-0.476076\pi\)
0.0750879 + 0.997177i \(0.476076\pi\)
\(570\) 0 0
\(571\) −1.09686e7 −1.40787 −0.703935 0.710264i \(-0.748575\pi\)
−0.703935 + 0.710264i \(0.748575\pi\)
\(572\) 0 0
\(573\) −1.08548e6 −0.138113
\(574\) 0 0
\(575\) 5.26130e6 0.663627
\(576\) 0 0
\(577\) 5.93291e6 0.741871 0.370935 0.928659i \(-0.379037\pi\)
0.370935 + 0.928659i \(0.379037\pi\)
\(578\) 0 0
\(579\) 1.83353e6 0.227295
\(580\) 0 0
\(581\) 1.08444e7 1.33280
\(582\) 0 0
\(583\) −9.29754e6 −1.13291
\(584\) 0 0
\(585\) −275471. −0.0332802
\(586\) 0 0
\(587\) −8.15129e6 −0.976408 −0.488204 0.872730i \(-0.662348\pi\)
−0.488204 + 0.872730i \(0.662348\pi\)
\(588\) 0 0
\(589\) −2.90280e6 −0.344770
\(590\) 0 0
\(591\) 3.39622e6 0.399970
\(592\) 0 0
\(593\) 9.40914e6 1.09879 0.549393 0.835564i \(-0.314859\pi\)
0.549393 + 0.835564i \(0.314859\pi\)
\(594\) 0 0
\(595\) 1.01630e6 0.117687
\(596\) 0 0
\(597\) −6.02513e6 −0.691880
\(598\) 0 0
\(599\) −7.54781e6 −0.859516 −0.429758 0.902944i \(-0.641401\pi\)
−0.429758 + 0.902944i \(0.641401\pi\)
\(600\) 0 0
\(601\) 7.57114e6 0.855018 0.427509 0.904011i \(-0.359391\pi\)
0.427509 + 0.904011i \(0.359391\pi\)
\(602\) 0 0
\(603\) −1.54451e6 −0.172981
\(604\) 0 0
\(605\) −6.75521e6 −0.750327
\(606\) 0 0
\(607\) −9.98970e6 −1.10048 −0.550238 0.835008i \(-0.685463\pi\)
−0.550238 + 0.835008i \(0.685463\pi\)
\(608\) 0 0
\(609\) 4.32824e6 0.472899
\(610\) 0 0
\(611\) −694214. −0.0752299
\(612\) 0 0
\(613\) −374884. −0.0402945 −0.0201472 0.999797i \(-0.506413\pi\)
−0.0201472 + 0.999797i \(0.506413\pi\)
\(614\) 0 0
\(615\) −4.26394e6 −0.454594
\(616\) 0 0
\(617\) 1.11186e7 1.17581 0.587904 0.808931i \(-0.299953\pi\)
0.587904 + 0.808931i \(0.299953\pi\)
\(618\) 0 0
\(619\) −1.16852e7 −1.22578 −0.612888 0.790170i \(-0.709992\pi\)
−0.612888 + 0.790170i \(0.709992\pi\)
\(620\) 0 0
\(621\) 1.52647e6 0.158840
\(622\) 0 0
\(623\) −2.31014e6 −0.238462
\(624\) 0 0
\(625\) 4.39988e6 0.450547
\(626\) 0 0
\(627\) −2.14049e6 −0.217443
\(628\) 0 0
\(629\) 2.47558e6 0.249488
\(630\) 0 0
\(631\) 6.37053e6 0.636946 0.318473 0.947932i \(-0.396830\pi\)
0.318473 + 0.947932i \(0.396830\pi\)
\(632\) 0 0
\(633\) 4.23658e6 0.420248
\(634\) 0 0
\(635\) −4.80574e6 −0.472962
\(636\) 0 0
\(637\) −1.08211e6 −0.105663
\(638\) 0 0
\(639\) 2.03795e6 0.197443
\(640\) 0 0
\(641\) 1.61501e6 0.155250 0.0776249 0.996983i \(-0.475266\pi\)
0.0776249 + 0.996983i \(0.475266\pi\)
\(642\) 0 0
\(643\) 5.41614e6 0.516610 0.258305 0.966063i \(-0.416836\pi\)
0.258305 + 0.966063i \(0.416836\pi\)
\(644\) 0 0
\(645\) 5.02436e6 0.475534
\(646\) 0 0
\(647\) 39577.9 0.00371700 0.00185850 0.999998i \(-0.499408\pi\)
0.00185850 + 0.999998i \(0.499408\pi\)
\(648\) 0 0
\(649\) −2.86946e7 −2.67417
\(650\) 0 0
\(651\) −6.84004e6 −0.632567
\(652\) 0 0
\(653\) −3.35304e6 −0.307720 −0.153860 0.988093i \(-0.549171\pi\)
−0.153860 + 0.988093i \(0.549171\pi\)
\(654\) 0 0
\(655\) −2.62017e6 −0.238631
\(656\) 0 0
\(657\) −4.86126e6 −0.439375
\(658\) 0 0
\(659\) −9.89931e6 −0.887956 −0.443978 0.896038i \(-0.646433\pi\)
−0.443978 + 0.896038i \(0.646433\pi\)
\(660\) 0 0
\(661\) −1.64933e7 −1.46827 −0.734133 0.679006i \(-0.762411\pi\)
−0.734133 + 0.679006i \(0.762411\pi\)
\(662\) 0 0
\(663\) −537470. −0.0474865
\(664\) 0 0
\(665\) 844327. 0.0740383
\(666\) 0 0
\(667\) −1.06542e7 −0.927274
\(668\) 0 0
\(669\) −1.00757e7 −0.870378
\(670\) 0 0
\(671\) −2.32785e7 −1.99594
\(672\) 0 0
\(673\) 624782. 0.0531730 0.0265865 0.999647i \(-0.491536\pi\)
0.0265865 + 0.999647i \(0.491536\pi\)
\(674\) 0 0
\(675\) 1.83173e6 0.154740
\(676\) 0 0
\(677\) −2.19049e6 −0.183683 −0.0918417 0.995774i \(-0.529275\pi\)
−0.0918417 + 0.995774i \(0.529275\pi\)
\(678\) 0 0
\(679\) 1.28219e7 1.06728
\(680\) 0 0
\(681\) 4.26486e6 0.352400
\(682\) 0 0
\(683\) −6.09670e6 −0.500084 −0.250042 0.968235i \(-0.580444\pi\)
−0.250042 + 0.968235i \(0.580444\pi\)
\(684\) 0 0
\(685\) 6.79181e6 0.553043
\(686\) 0 0
\(687\) −6.64581e6 −0.537225
\(688\) 0 0
\(689\) −1.93954e6 −0.155650
\(690\) 0 0
\(691\) 1.99498e7 1.58944 0.794718 0.606979i \(-0.207619\pi\)
0.794718 + 0.606979i \(0.207619\pi\)
\(692\) 0 0
\(693\) −5.04377e6 −0.398953
\(694\) 0 0
\(695\) −550165. −0.0432047
\(696\) 0 0
\(697\) −8.31935e6 −0.648646
\(698\) 0 0
\(699\) −6248.02 −0.000483671 0
\(700\) 0 0
\(701\) 1.25829e7 0.967135 0.483567 0.875307i \(-0.339341\pi\)
0.483567 + 0.875307i \(0.339341\pi\)
\(702\) 0 0
\(703\) 2.05668e6 0.156956
\(704\) 0 0
\(705\) −1.12497e6 −0.0852446
\(706\) 0 0
\(707\) −1.62812e7 −1.22501
\(708\) 0 0
\(709\) −1.51910e7 −1.13493 −0.567467 0.823396i \(-0.692077\pi\)
−0.567467 + 0.823396i \(0.692077\pi\)
\(710\) 0 0
\(711\) 7.34843e6 0.545156
\(712\) 0 0
\(713\) 1.68372e7 1.24036
\(714\) 0 0
\(715\) −2.24055e6 −0.163904
\(716\) 0 0
\(717\) 7.50006e6 0.544838
\(718\) 0 0
\(719\) 1.41889e7 1.02359 0.511797 0.859107i \(-0.328980\pi\)
0.511797 + 0.859107i \(0.328980\pi\)
\(720\) 0 0
\(721\) −3.73781e6 −0.267781
\(722\) 0 0
\(723\) −870103. −0.0619049
\(724\) 0 0
\(725\) −1.27849e7 −0.903339
\(726\) 0 0
\(727\) −1.18392e7 −0.830781 −0.415391 0.909643i \(-0.636355\pi\)
−0.415391 + 0.909643i \(0.636355\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 9.80301e6 0.678525
\(732\) 0 0
\(733\) 2.22934e7 1.53256 0.766278 0.642509i \(-0.222106\pi\)
0.766278 + 0.642509i \(0.222106\pi\)
\(734\) 0 0
\(735\) −1.75355e6 −0.119729
\(736\) 0 0
\(737\) −1.25623e7 −0.851925
\(738\) 0 0
\(739\) 1.92718e7 1.29811 0.649055 0.760742i \(-0.275165\pi\)
0.649055 + 0.760742i \(0.275165\pi\)
\(740\) 0 0
\(741\) −446523. −0.0298743
\(742\) 0 0
\(743\) 2.74570e6 0.182466 0.0912328 0.995830i \(-0.470919\pi\)
0.0912328 + 0.995830i \(0.470919\pi\)
\(744\) 0 0
\(745\) 1.05862e7 0.698794
\(746\) 0 0
\(747\) −9.29362e6 −0.609373
\(748\) 0 0
\(749\) 1.28776e7 0.838744
\(750\) 0 0
\(751\) 7.13715e6 0.461769 0.230885 0.972981i \(-0.425838\pi\)
0.230885 + 0.972981i \(0.425838\pi\)
\(752\) 0 0
\(753\) −4.84120e6 −0.311147
\(754\) 0 0
\(755\) −5.99159e6 −0.382538
\(756\) 0 0
\(757\) −7.91712e6 −0.502143 −0.251072 0.967969i \(-0.580783\pi\)
−0.251072 + 0.967969i \(0.580783\pi\)
\(758\) 0 0
\(759\) 1.24156e7 0.782280
\(760\) 0 0
\(761\) 2.50924e7 1.57066 0.785329 0.619079i \(-0.212494\pi\)
0.785329 + 0.619079i \(0.212494\pi\)
\(762\) 0 0
\(763\) 9.91065e6 0.616298
\(764\) 0 0
\(765\) −870965. −0.0538080
\(766\) 0 0
\(767\) −5.98592e6 −0.367403
\(768\) 0 0
\(769\) 1.40171e7 0.854759 0.427379 0.904072i \(-0.359437\pi\)
0.427379 + 0.904072i \(0.359437\pi\)
\(770\) 0 0
\(771\) 6.37964e6 0.386509
\(772\) 0 0
\(773\) 1.05759e7 0.636602 0.318301 0.947990i \(-0.396888\pi\)
0.318301 + 0.947990i \(0.396888\pi\)
\(774\) 0 0
\(775\) 2.02043e7 1.20834
\(776\) 0 0
\(777\) 4.84627e6 0.287975
\(778\) 0 0
\(779\) −6.91160e6 −0.408070
\(780\) 0 0
\(781\) 1.65757e7 0.972400
\(782\) 0 0
\(783\) −3.70928e6 −0.216215
\(784\) 0 0
\(785\) −1.10649e7 −0.640873
\(786\) 0 0
\(787\) −2.39638e7 −1.37917 −0.689587 0.724203i \(-0.742208\pi\)
−0.689587 + 0.724203i \(0.742208\pi\)
\(788\) 0 0
\(789\) 8.56785e6 0.489981
\(790\) 0 0
\(791\) 1.30042e7 0.738996
\(792\) 0 0
\(793\) −4.85607e6 −0.274222
\(794\) 0 0
\(795\) −3.14300e6 −0.176371
\(796\) 0 0
\(797\) −2.38767e7 −1.33146 −0.665730 0.746193i \(-0.731880\pi\)
−0.665730 + 0.746193i \(0.731880\pi\)
\(798\) 0 0
\(799\) −2.19492e6 −0.121633
\(800\) 0 0
\(801\) 1.97978e6 0.109027
\(802\) 0 0
\(803\) −3.95392e7 −2.16391
\(804\) 0 0
\(805\) −4.89738e6 −0.266363
\(806\) 0 0
\(807\) 5.92934e6 0.320496
\(808\) 0 0
\(809\) −2.72754e7 −1.46521 −0.732605 0.680655i \(-0.761695\pi\)
−0.732605 + 0.680655i \(0.761695\pi\)
\(810\) 0 0
\(811\) −1.08456e7 −0.579030 −0.289515 0.957173i \(-0.593494\pi\)
−0.289515 + 0.957173i \(0.593494\pi\)
\(812\) 0 0
\(813\) 1.78446e7 0.946849
\(814\) 0 0
\(815\) −488422. −0.0257573
\(816\) 0 0
\(817\) 8.14420e6 0.426868
\(818\) 0 0
\(819\) −1.05217e6 −0.0548119
\(820\) 0 0
\(821\) 3.00464e7 1.55573 0.777865 0.628432i \(-0.216303\pi\)
0.777865 + 0.628432i \(0.216303\pi\)
\(822\) 0 0
\(823\) 8.61101e6 0.443154 0.221577 0.975143i \(-0.428880\pi\)
0.221577 + 0.975143i \(0.428880\pi\)
\(824\) 0 0
\(825\) 1.48984e7 0.762087
\(826\) 0 0
\(827\) 1.89682e7 0.964411 0.482205 0.876058i \(-0.339836\pi\)
0.482205 + 0.876058i \(0.339836\pi\)
\(828\) 0 0
\(829\) 1.66045e7 0.839152 0.419576 0.907720i \(-0.362179\pi\)
0.419576 + 0.907720i \(0.362179\pi\)
\(830\) 0 0
\(831\) 1.49064e7 0.748807
\(832\) 0 0
\(833\) −3.42134e6 −0.170838
\(834\) 0 0
\(835\) 2.53071e6 0.125611
\(836\) 0 0
\(837\) 5.86189e6 0.289217
\(838\) 0 0
\(839\) −1.11312e7 −0.545931 −0.272966 0.962024i \(-0.588005\pi\)
−0.272966 + 0.962024i \(0.588005\pi\)
\(840\) 0 0
\(841\) 5.37843e6 0.262220
\(842\) 0 0
\(843\) 1.16106e7 0.562709
\(844\) 0 0
\(845\) 8.72046e6 0.420143
\(846\) 0 0
\(847\) −2.58017e7 −1.23578
\(848\) 0 0
\(849\) −4.75461e6 −0.226384
\(850\) 0 0
\(851\) −1.19294e7 −0.564671
\(852\) 0 0
\(853\) 3.57571e7 1.68263 0.841316 0.540543i \(-0.181781\pi\)
0.841316 + 0.540543i \(0.181781\pi\)
\(854\) 0 0
\(855\) −723585. −0.0338512
\(856\) 0 0
\(857\) −1.04845e6 −0.0487634 −0.0243817 0.999703i \(-0.507762\pi\)
−0.0243817 + 0.999703i \(0.507762\pi\)
\(858\) 0 0
\(859\) 2.89884e7 1.34042 0.670212 0.742170i \(-0.266203\pi\)
0.670212 + 0.742170i \(0.266203\pi\)
\(860\) 0 0
\(861\) −1.62862e7 −0.748707
\(862\) 0 0
\(863\) 1.95329e7 0.892771 0.446386 0.894841i \(-0.352711\pi\)
0.446386 + 0.894841i \(0.352711\pi\)
\(864\) 0 0
\(865\) 1.27192e7 0.577989
\(866\) 0 0
\(867\) 1.10794e7 0.500573
\(868\) 0 0
\(869\) 5.97687e7 2.68487
\(870\) 0 0
\(871\) −2.62060e6 −0.117045
\(872\) 0 0
\(873\) −1.09883e7 −0.487971
\(874\) 0 0
\(875\) −1.31857e7 −0.582213
\(876\) 0 0
\(877\) 1.97678e7 0.867879 0.433940 0.900942i \(-0.357123\pi\)
0.433940 + 0.900942i \(0.357123\pi\)
\(878\) 0 0
\(879\) 2.33019e7 1.01723
\(880\) 0 0
\(881\) 1.18863e6 0.0515950 0.0257975 0.999667i \(-0.491787\pi\)
0.0257975 + 0.999667i \(0.491787\pi\)
\(882\) 0 0
\(883\) −2.65395e7 −1.14549 −0.572744 0.819734i \(-0.694121\pi\)
−0.572744 + 0.819734i \(0.694121\pi\)
\(884\) 0 0
\(885\) −9.70011e6 −0.416312
\(886\) 0 0
\(887\) 677347. 0.0289069 0.0144535 0.999896i \(-0.495399\pi\)
0.0144535 + 0.999896i \(0.495399\pi\)
\(888\) 0 0
\(889\) −1.83556e7 −0.778960
\(890\) 0 0
\(891\) 4.32249e6 0.182406
\(892\) 0 0
\(893\) −1.82351e6 −0.0765206
\(894\) 0 0
\(895\) −8.38813e6 −0.350032
\(896\) 0 0
\(897\) 2.58998e6 0.107477
\(898\) 0 0
\(899\) −4.09141e7 −1.68839
\(900\) 0 0
\(901\) −6.13229e6 −0.251658
\(902\) 0 0
\(903\) 1.91907e7 0.783196
\(904\) 0 0
\(905\) −5.71187e6 −0.231823
\(906\) 0 0
\(907\) 3.80294e7 1.53497 0.767487 0.641064i \(-0.221507\pi\)
0.767487 + 0.641064i \(0.221507\pi\)
\(908\) 0 0
\(909\) 1.39529e7 0.560087
\(910\) 0 0
\(911\) −2.88019e7 −1.14981 −0.574904 0.818221i \(-0.694961\pi\)
−0.574904 + 0.818221i \(0.694961\pi\)
\(912\) 0 0
\(913\) −7.55899e7 −3.00114
\(914\) 0 0
\(915\) −7.86920e6 −0.310726
\(916\) 0 0
\(917\) −1.00078e7 −0.393020
\(918\) 0 0
\(919\) 2.34690e7 0.916656 0.458328 0.888783i \(-0.348449\pi\)
0.458328 + 0.888783i \(0.348449\pi\)
\(920\) 0 0
\(921\) 2.59436e7 1.00782
\(922\) 0 0
\(923\) 3.45782e6 0.133597
\(924\) 0 0
\(925\) −1.43150e7 −0.550095
\(926\) 0 0
\(927\) 3.20329e6 0.122433
\(928\) 0 0
\(929\) −3.78887e7 −1.44036 −0.720179 0.693789i \(-0.755940\pi\)
−0.720179 + 0.693789i \(0.755940\pi\)
\(930\) 0 0
\(931\) −2.84240e6 −0.107476
\(932\) 0 0
\(933\) −2.07022e7 −0.778596
\(934\) 0 0
\(935\) −7.08401e6 −0.265003
\(936\) 0 0
\(937\) 2.20817e7 0.821642 0.410821 0.911716i \(-0.365242\pi\)
0.410821 + 0.911716i \(0.365242\pi\)
\(938\) 0 0
\(939\) 6.13194e6 0.226952
\(940\) 0 0
\(941\) −2.31653e7 −0.852834 −0.426417 0.904527i \(-0.640224\pi\)
−0.426417 + 0.904527i \(0.640224\pi\)
\(942\) 0 0
\(943\) 4.00896e7 1.46809
\(944\) 0 0
\(945\) −1.70503e6 −0.0621086
\(946\) 0 0
\(947\) 1.73951e7 0.630305 0.315153 0.949041i \(-0.397944\pi\)
0.315153 + 0.949041i \(0.397944\pi\)
\(948\) 0 0
\(949\) −8.24817e6 −0.297298
\(950\) 0 0
\(951\) 4.57605e6 0.164074
\(952\) 0 0
\(953\) −1.59515e7 −0.568943 −0.284472 0.958684i \(-0.591818\pi\)
−0.284472 + 0.958684i \(0.591818\pi\)
\(954\) 0 0
\(955\) −2.98454e6 −0.105893
\(956\) 0 0
\(957\) −3.01695e7 −1.06485
\(958\) 0 0
\(959\) 2.59415e7 0.910852
\(960\) 0 0
\(961\) 3.60285e7 1.25846
\(962\) 0 0
\(963\) −1.10360e7 −0.383484
\(964\) 0 0
\(965\) 5.04129e6 0.174270
\(966\) 0 0
\(967\) 3.70532e7 1.27426 0.637132 0.770754i \(-0.280120\pi\)
0.637132 + 0.770754i \(0.280120\pi\)
\(968\) 0 0
\(969\) −1.41178e6 −0.0483013
\(970\) 0 0
\(971\) −5.35847e7 −1.82387 −0.911933 0.410338i \(-0.865411\pi\)
−0.911933 + 0.410338i \(0.865411\pi\)
\(972\) 0 0
\(973\) −2.10137e6 −0.0711573
\(974\) 0 0
\(975\) 3.10792e6 0.104703
\(976\) 0 0
\(977\) 1.45719e7 0.488403 0.244202 0.969724i \(-0.421474\pi\)
0.244202 + 0.969724i \(0.421474\pi\)
\(978\) 0 0
\(979\) 1.61026e7 0.536957
\(980\) 0 0
\(981\) −8.49339e6 −0.281779
\(982\) 0 0
\(983\) −1.50226e7 −0.495864 −0.247932 0.968777i \(-0.579751\pi\)
−0.247932 + 0.968777i \(0.579751\pi\)
\(984\) 0 0
\(985\) 9.33793e6 0.306662
\(986\) 0 0
\(987\) −4.29683e6 −0.140396
\(988\) 0 0
\(989\) −4.72391e7 −1.53571
\(990\) 0 0
\(991\) −7.45464e6 −0.241125 −0.120563 0.992706i \(-0.538470\pi\)
−0.120563 + 0.992706i \(0.538470\pi\)
\(992\) 0 0
\(993\) −2.35948e7 −0.759351
\(994\) 0 0
\(995\) −1.65661e7 −0.530474
\(996\) 0 0
\(997\) 4.85048e7 1.54542 0.772710 0.634759i \(-0.218901\pi\)
0.772710 + 0.634759i \(0.218901\pi\)
\(998\) 0 0
\(999\) −4.15323e6 −0.131666
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 228.6.a.b.1.2 4
3.2 odd 2 684.6.a.d.1.3 4
4.3 odd 2 912.6.a.p.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.6.a.b.1.2 4 1.1 even 1 trivial
684.6.a.d.1.3 4 3.2 odd 2
912.6.a.p.1.2 4 4.3 odd 2