Properties

Label 2268.3.bg.c.2213.3
Level $2268$
Weight $3$
Character 2268.2213
Analytic conductor $61.799$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,3,Mod(701,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.701"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2268.bg (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.7985239569\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12745506816.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 55x^{4} - 72x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2213.3
Root \(1.00781 - 0.581861i\) of defining polynomial
Character \(\chi\) \(=\) 2268.2213
Dual form 2268.3.bg.c.701.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.01563 - 1.16372i) q^{5} +(-1.32288 + 2.29129i) q^{7} +(-7.70549 - 4.44876i) q^{11} +(-4.29150 - 7.43310i) q^{13} +20.1225i q^{17} +5.87451 q^{19} +(15.0540 - 8.69140i) q^{23} +(-9.79150 + 16.9594i) q^{25} +(-16.4820 - 9.51590i) q^{29} +(-2.35425 - 4.07768i) q^{31} +6.15784i q^{35} +39.7490 q^{37} +(6.04688 - 3.49117i) q^{41} +(17.8745 - 30.9596i) q^{43} +(63.5330 + 36.6808i) q^{47} +(-3.50000 - 6.06218i) q^{49} +46.6690i q^{53} -20.7085 q^{55} +(-20.8703 + 12.0495i) q^{59} +(36.6458 - 63.4723i) q^{61} +(-17.3001 - 9.98823i) q^{65} +(16.0405 + 27.7830i) q^{67} -114.843i q^{71} +41.2915 q^{73} +(20.3868 - 11.7703i) q^{77} +(13.3320 - 23.0917i) q^{79} +(117.828 + 68.0283i) q^{83} +(23.4170 + 40.5594i) q^{85} -145.753i q^{89} +22.7085 q^{91} +(11.8408 - 6.83629i) q^{95} +(32.9778 - 57.1192i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{13} - 80 q^{19} - 36 q^{25} - 40 q^{31} + 64 q^{37} + 16 q^{43} - 28 q^{49} - 208 q^{55} + 272 q^{61} - 168 q^{67} + 288 q^{73} - 232 q^{79} + 272 q^{85} + 224 q^{91} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.01563 1.16372i 0.403125 0.232744i −0.284706 0.958615i \(-0.591896\pi\)
0.687832 + 0.725870i \(0.258563\pi\)
\(6\) 0 0
\(7\) −1.32288 + 2.29129i −0.188982 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −7.70549 4.44876i −0.700499 0.404433i 0.107034 0.994255i \(-0.465864\pi\)
−0.807533 + 0.589822i \(0.799198\pi\)
\(12\) 0 0
\(13\) −4.29150 7.43310i −0.330116 0.571777i 0.652419 0.757859i \(-0.273754\pi\)
−0.982534 + 0.186082i \(0.940421\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 20.1225i 1.18368i 0.806057 + 0.591838i \(0.201598\pi\)
−0.806057 + 0.591838i \(0.798402\pi\)
\(18\) 0 0
\(19\) 5.87451 0.309185 0.154592 0.987978i \(-0.450594\pi\)
0.154592 + 0.987978i \(0.450594\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 15.0540 8.69140i 0.654520 0.377887i −0.135666 0.990755i \(-0.543317\pi\)
0.790186 + 0.612867i \(0.209984\pi\)
\(24\) 0 0
\(25\) −9.79150 + 16.9594i −0.391660 + 0.678375i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −16.4820 9.51590i −0.568346 0.328134i 0.188143 0.982142i \(-0.439753\pi\)
−0.756488 + 0.654007i \(0.773087\pi\)
\(30\) 0 0
\(31\) −2.35425 4.07768i −0.0759435 0.131538i 0.825553 0.564325i \(-0.190864\pi\)
−0.901496 + 0.432787i \(0.857530\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.15784i 0.175938i
\(36\) 0 0
\(37\) 39.7490 1.07430 0.537149 0.843487i \(-0.319501\pi\)
0.537149 + 0.843487i \(0.319501\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.04688 3.49117i 0.147485 0.0851504i −0.424442 0.905455i \(-0.639530\pi\)
0.571926 + 0.820305i \(0.306196\pi\)
\(42\) 0 0
\(43\) 17.8745 30.9596i 0.415686 0.719990i −0.579814 0.814749i \(-0.696875\pi\)
0.995500 + 0.0947592i \(0.0302081\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 63.5330 + 36.6808i 1.35177 + 0.780443i 0.988497 0.151241i \(-0.0483270\pi\)
0.363270 + 0.931684i \(0.381660\pi\)
\(48\) 0 0
\(49\) −3.50000 6.06218i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 46.6690i 0.880548i 0.897863 + 0.440274i \(0.145119\pi\)
−0.897863 + 0.440274i \(0.854881\pi\)
\(54\) 0 0
\(55\) −20.7085 −0.376518
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −20.8703 + 12.0495i −0.353734 + 0.204228i −0.666328 0.745658i \(-0.732135\pi\)
0.312595 + 0.949887i \(0.398802\pi\)
\(60\) 0 0
\(61\) 36.6458 63.4723i 0.600750 1.04053i −0.391958 0.919983i \(-0.628202\pi\)
0.992708 0.120546i \(-0.0384646\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17.3001 9.98823i −0.266156 0.153665i
\(66\) 0 0
\(67\) 16.0405 + 27.7830i 0.239411 + 0.414672i 0.960545 0.278123i \(-0.0897124\pi\)
−0.721135 + 0.692795i \(0.756379\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 114.843i 1.61751i −0.588144 0.808756i \(-0.700141\pi\)
0.588144 0.808756i \(-0.299859\pi\)
\(72\) 0 0
\(73\) 41.2915 0.565637 0.282819 0.959173i \(-0.408731\pi\)
0.282819 + 0.959173i \(0.408731\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 20.3868 11.7703i 0.264764 0.152861i
\(78\) 0 0
\(79\) 13.3320 23.0917i 0.168760 0.292300i −0.769224 0.638979i \(-0.779357\pi\)
0.937984 + 0.346678i \(0.112690\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 117.828 + 68.0283i 1.41962 + 0.819618i 0.996265 0.0863461i \(-0.0275191\pi\)
0.423355 + 0.905964i \(0.360852\pi\)
\(84\) 0 0
\(85\) 23.4170 + 40.5594i 0.275494 + 0.477170i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 145.753i 1.63767i −0.574028 0.818836i \(-0.694620\pi\)
0.574028 0.818836i \(-0.305380\pi\)
\(90\) 0 0
\(91\) 22.7085 0.249544
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 11.8408 6.83629i 0.124640 0.0719610i
\(96\) 0 0
\(97\) 32.9778 57.1192i 0.339977 0.588857i −0.644451 0.764646i \(-0.722914\pi\)
0.984428 + 0.175788i \(0.0562474\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −80.2456 46.3298i −0.794511 0.458711i 0.0470373 0.998893i \(-0.485022\pi\)
−0.841548 + 0.540182i \(0.818355\pi\)
\(102\) 0 0
\(103\) 96.5608 + 167.248i 0.937483 + 1.62377i 0.770145 + 0.637869i \(0.220184\pi\)
0.167339 + 0.985899i \(0.446483\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 47.2015i 0.441135i 0.975372 + 0.220568i \(0.0707910\pi\)
−0.975372 + 0.220568i \(0.929209\pi\)
\(108\) 0 0
\(109\) 208.162 1.90974 0.954872 0.297018i \(-0.0959921\pi\)
0.954872 + 0.297018i \(0.0959921\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −107.981 + 62.3428i −0.955583 + 0.551706i −0.894811 0.446446i \(-0.852690\pi\)
−0.0607721 + 0.998152i \(0.519356\pi\)
\(114\) 0 0
\(115\) 20.2288 35.0372i 0.175902 0.304672i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −46.1064 26.6196i −0.387449 0.223694i
\(120\) 0 0
\(121\) −20.9170 36.2293i −0.172868 0.299416i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 103.764i 0.830116i
\(126\) 0 0
\(127\) 51.5791 0.406134 0.203067 0.979165i \(-0.434909\pi\)
0.203067 + 0.979165i \(0.434909\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −153.604 + 88.6832i −1.17255 + 0.676971i −0.954279 0.298918i \(-0.903374\pi\)
−0.218269 + 0.975889i \(0.570041\pi\)
\(132\) 0 0
\(133\) −7.77124 + 13.4602i −0.0584304 + 0.101204i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −139.264 80.4040i −1.01652 0.586891i −0.103429 0.994637i \(-0.532982\pi\)
−0.913095 + 0.407746i \(0.866315\pi\)
\(138\) 0 0
\(139\) 37.4170 + 64.8081i 0.269187 + 0.466246i 0.968652 0.248421i \(-0.0799117\pi\)
−0.699465 + 0.714667i \(0.746578\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 76.3675i 0.534039i
\(144\) 0 0
\(145\) −44.2954 −0.305486
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 227.490 131.342i 1.52678 0.881487i 0.527286 0.849688i \(-0.323209\pi\)
0.999494 0.0317997i \(-0.0101239\pi\)
\(150\) 0 0
\(151\) −16.9595 + 29.3747i −0.112314 + 0.194534i −0.916703 0.399569i \(-0.869160\pi\)
0.804389 + 0.594104i \(0.202493\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.49057 5.47938i −0.0612295 0.0353508i
\(156\) 0 0
\(157\) −81.8118 141.702i −0.521094 0.902561i −0.999699 0.0245310i \(-0.992191\pi\)
0.478605 0.878030i \(-0.341143\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 45.9906i 0.285656i
\(162\) 0 0
\(163\) 280.745 1.72236 0.861181 0.508298i \(-0.169725\pi\)
0.861181 + 0.508298i \(0.169725\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −65.8833 + 38.0377i −0.394511 + 0.227771i −0.684113 0.729376i \(-0.739810\pi\)
0.289602 + 0.957147i \(0.406477\pi\)
\(168\) 0 0
\(169\) 47.6660 82.5600i 0.282047 0.488520i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 133.321 + 76.9730i 0.770642 + 0.444930i 0.833104 0.553117i \(-0.186562\pi\)
−0.0624615 + 0.998047i \(0.519895\pi\)
\(174\) 0 0
\(175\) −25.9059 44.8703i −0.148034 0.256402i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 265.689i 1.48430i 0.670236 + 0.742148i \(0.266193\pi\)
−0.670236 + 0.742148i \(0.733807\pi\)
\(180\) 0 0
\(181\) 203.328 1.12336 0.561680 0.827355i \(-0.310155\pi\)
0.561680 + 0.827355i \(0.310155\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 80.1191 46.2568i 0.433076 0.250037i
\(186\) 0 0
\(187\) 89.5203 155.054i 0.478718 0.829164i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −184.783 106.684i −0.967449 0.558557i −0.0689915 0.997617i \(-0.521978\pi\)
−0.898458 + 0.439060i \(0.855311\pi\)
\(192\) 0 0
\(193\) −8.25098 14.2911i −0.0427512 0.0740473i 0.843858 0.536567i \(-0.180279\pi\)
−0.886609 + 0.462519i \(0.846946\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 57.0437i 0.289562i −0.989464 0.144781i \(-0.953752\pi\)
0.989464 0.144781i \(-0.0462477\pi\)
\(198\) 0 0
\(199\) 302.243 1.51881 0.759405 0.650618i \(-0.225490\pi\)
0.759405 + 0.650618i \(0.225490\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 43.6073 25.1767i 0.214814 0.124023i
\(204\) 0 0
\(205\) 8.12549 14.0738i 0.0396365 0.0686525i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −45.2659 26.1343i −0.216583 0.125044i
\(210\) 0 0
\(211\) 71.4980 + 123.838i 0.338853 + 0.586911i 0.984217 0.176964i \(-0.0566277\pi\)
−0.645364 + 0.763875i \(0.723294\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 83.2038i 0.386995i
\(216\) 0 0
\(217\) 12.4575 0.0574079
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 149.573 86.3558i 0.676799 0.390750i
\(222\) 0 0
\(223\) 83.8745 145.275i 0.376119 0.651457i −0.614375 0.789014i \(-0.710592\pi\)
0.990494 + 0.137557i \(0.0439251\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −53.1203 30.6690i −0.234010 0.135106i 0.378411 0.925638i \(-0.376471\pi\)
−0.612421 + 0.790532i \(0.709804\pi\)
\(228\) 0 0
\(229\) 22.7935 + 39.4795i 0.0995348 + 0.172399i 0.911492 0.411317i \(-0.134931\pi\)
−0.811957 + 0.583717i \(0.801598\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 299.390i 1.28494i −0.766313 0.642468i \(-0.777911\pi\)
0.766313 0.642468i \(-0.222089\pi\)
\(234\) 0 0
\(235\) 170.745 0.726575
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 127.215 73.4476i 0.532280 0.307312i −0.209664 0.977773i \(-0.567237\pi\)
0.741944 + 0.670461i \(0.233904\pi\)
\(240\) 0 0
\(241\) 176.808 306.240i 0.733642 1.27071i −0.221674 0.975121i \(-0.571152\pi\)
0.955316 0.295585i \(-0.0955146\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.1094 8.14605i −0.0575893 0.0332492i
\(246\) 0 0
\(247\) −25.2105 43.6658i −0.102067 0.176785i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 289.908i 1.15501i −0.816386 0.577506i \(-0.804026\pi\)
0.816386 0.577506i \(-0.195974\pi\)
\(252\) 0 0
\(253\) −154.664 −0.611320
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −420.001 + 242.488i −1.63425 + 0.943532i −0.651482 + 0.758664i \(0.725852\pi\)
−0.982763 + 0.184867i \(0.940814\pi\)
\(258\) 0 0
\(259\) −52.5830 + 91.0764i −0.203023 + 0.351646i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 181.719 + 104.915i 0.690945 + 0.398917i 0.803966 0.594675i \(-0.202719\pi\)
−0.113021 + 0.993593i \(0.536053\pi\)
\(264\) 0 0
\(265\) 54.3098 + 94.0673i 0.204943 + 0.354971i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 157.004i 0.583656i 0.956471 + 0.291828i \(0.0942636\pi\)
−0.956471 + 0.291828i \(0.905736\pi\)
\(270\) 0 0
\(271\) 159.203 0.587463 0.293732 0.955888i \(-0.405103\pi\)
0.293732 + 0.955888i \(0.405103\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 150.897 87.1202i 0.548715 0.316801i
\(276\) 0 0
\(277\) −13.7530 + 23.8208i −0.0496496 + 0.0859957i −0.889782 0.456385i \(-0.849144\pi\)
0.840133 + 0.542381i \(0.182477\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 435.643 + 251.518i 1.55033 + 0.895083i 0.998114 + 0.0613811i \(0.0195505\pi\)
0.552215 + 0.833702i \(0.313783\pi\)
\(282\) 0 0
\(283\) 101.225 + 175.327i 0.357685 + 0.619528i 0.987574 0.157157i \(-0.0502329\pi\)
−0.629889 + 0.776685i \(0.716900\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.4735i 0.0643676i
\(288\) 0 0
\(289\) −115.915 −0.401090
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.86998 + 5.69844i −0.0336860 + 0.0194486i −0.516748 0.856137i \(-0.672858\pi\)
0.483062 + 0.875586i \(0.339524\pi\)
\(294\) 0 0
\(295\) −28.0445 + 48.5744i −0.0950660 + 0.164659i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −129.208 74.5984i −0.432134 0.249493i
\(300\) 0 0
\(301\) 47.2915 + 81.9113i 0.157115 + 0.272131i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 170.582i 0.559285i
\(306\) 0 0
\(307\) −9.96342 −0.0324541 −0.0162271 0.999868i \(-0.505165\pi\)
−0.0162271 + 0.999868i \(0.505165\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −132.317 + 76.3934i −0.425457 + 0.245638i −0.697410 0.716673i \(-0.745664\pi\)
0.271952 + 0.962311i \(0.412331\pi\)
\(312\) 0 0
\(313\) 254.535 440.867i 0.813210 1.40852i −0.0973968 0.995246i \(-0.531052\pi\)
0.910606 0.413275i \(-0.135615\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 228.413 + 131.874i 0.720544 + 0.416006i 0.814953 0.579527i \(-0.196763\pi\)
−0.0944088 + 0.995534i \(0.530096\pi\)
\(318\) 0 0
\(319\) 84.6680 + 146.649i 0.265417 + 0.459715i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 118.210i 0.365975i
\(324\) 0 0
\(325\) 168.081 0.517172
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −168.093 + 97.0483i −0.510920 + 0.294980i
\(330\) 0 0
\(331\) 48.2510 83.5732i 0.145773 0.252487i −0.783888 0.620902i \(-0.786766\pi\)
0.929661 + 0.368416i \(0.120100\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 64.6634 + 37.3334i 0.193025 + 0.111443i
\(336\) 0 0
\(337\) 106.708 + 184.825i 0.316642 + 0.548441i 0.979785 0.200052i \(-0.0641111\pi\)
−0.663143 + 0.748493i \(0.730778\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 41.8940i 0.122856i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −111.298 + 64.2580i −0.320744 + 0.185182i −0.651724 0.758456i \(-0.725954\pi\)
0.330980 + 0.943638i \(0.392621\pi\)
\(348\) 0 0
\(349\) −186.520 + 323.063i −0.534442 + 0.925681i 0.464748 + 0.885443i \(0.346145\pi\)
−0.999190 + 0.0402378i \(0.987188\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 348.658 + 201.298i 0.987701 + 0.570249i 0.904586 0.426291i \(-0.140180\pi\)
0.0831146 + 0.996540i \(0.473513\pi\)
\(354\) 0 0
\(355\) −133.646 231.481i −0.376467 0.652060i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 379.296i 1.05653i 0.849078 + 0.528267i \(0.177158\pi\)
−0.849078 + 0.528267i \(0.822842\pi\)
\(360\) 0 0
\(361\) −326.490 −0.904405
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 83.2282 48.0518i 0.228022 0.131649i
\(366\) 0 0
\(367\) 82.8784 143.550i 0.225827 0.391144i −0.730740 0.682655i \(-0.760825\pi\)
0.956567 + 0.291512i \(0.0941583\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −106.932 61.7373i −0.288227 0.166408i
\(372\) 0 0
\(373\) 42.1660 + 73.0337i 0.113046 + 0.195801i 0.916997 0.398895i \(-0.130606\pi\)
−0.803951 + 0.594695i \(0.797273\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 163.350i 0.433289i
\(378\) 0 0
\(379\) 537.652 1.41861 0.709304 0.704903i \(-0.249009\pi\)
0.709304 + 0.704903i \(0.249009\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 364.567 210.483i 0.951873 0.549564i 0.0582107 0.998304i \(-0.481460\pi\)
0.893662 + 0.448740i \(0.148127\pi\)
\(384\) 0 0
\(385\) 27.3948 47.4491i 0.0711552 0.123244i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −276.118 159.417i −0.709816 0.409812i 0.101177 0.994868i \(-0.467739\pi\)
−0.810993 + 0.585056i \(0.801072\pi\)
\(390\) 0 0
\(391\) 174.893 + 302.923i 0.447296 + 0.774740i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 62.0591i 0.157112i
\(396\) 0 0
\(397\) 135.712 0.341845 0.170922 0.985284i \(-0.445325\pi\)
0.170922 + 0.985284i \(0.445325\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −369.417 + 213.283i −0.921239 + 0.531877i −0.884030 0.467430i \(-0.845180\pi\)
−0.0372086 + 0.999308i \(0.511847\pi\)
\(402\) 0 0
\(403\) −20.2065 + 34.9987i −0.0501403 + 0.0868455i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −306.285 176.834i −0.752544 0.434482i
\(408\) 0 0
\(409\) −270.557 468.618i −0.661508 1.14577i −0.980219 0.197914i \(-0.936583\pi\)
0.318711 0.947852i \(-0.396750\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 63.7598i 0.154382i
\(414\) 0 0
\(415\) 316.664 0.763046
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 292.392 168.813i 0.697833 0.402894i −0.108707 0.994074i \(-0.534671\pi\)
0.806540 + 0.591180i \(0.201338\pi\)
\(420\) 0 0
\(421\) −183.162 + 317.246i −0.435064 + 0.753553i −0.997301 0.0734229i \(-0.976608\pi\)
0.562237 + 0.826976i \(0.309941\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −341.265 197.030i −0.802977 0.463599i
\(426\) 0 0
\(427\) 96.9555 + 167.932i 0.227062 + 0.393283i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 301.760i 0.700139i −0.936724 0.350069i \(-0.886158\pi\)
0.936724 0.350069i \(-0.113842\pi\)
\(432\) 0 0
\(433\) −40.2431 −0.0929402 −0.0464701 0.998920i \(-0.514797\pi\)
−0.0464701 + 0.998920i \(0.514797\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 88.4346 51.0577i 0.202367 0.116837i
\(438\) 0 0
\(439\) −395.409 + 684.869i −0.900704 + 1.56007i −0.0741221 + 0.997249i \(0.523615\pi\)
−0.826582 + 0.562816i \(0.809718\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 166.813 + 96.3098i 0.376554 + 0.217404i 0.676318 0.736610i \(-0.263575\pi\)
−0.299764 + 0.954013i \(0.596908\pi\)
\(444\) 0 0
\(445\) −169.616 293.783i −0.381159 0.660186i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 196.690i 0.438063i 0.975718 + 0.219032i \(0.0702897\pi\)
−0.975718 + 0.219032i \(0.929710\pi\)
\(450\) 0 0
\(451\) −62.1255 −0.137751
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 45.7718 26.4264i 0.100597 0.0580799i
\(456\) 0 0
\(457\) 324.664 562.335i 0.710425 1.23049i −0.254273 0.967132i \(-0.581836\pi\)
0.964698 0.263359i \(-0.0848304\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −732.876 423.126i −1.58975 0.917844i −0.993347 0.115161i \(-0.963261\pi\)
−0.596406 0.802683i \(-0.703405\pi\)
\(462\) 0 0
\(463\) −1.95948 3.39392i −0.00423214 0.00733028i 0.863902 0.503661i \(-0.168014\pi\)
−0.868134 + 0.496330i \(0.834680\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 835.199i 1.78844i 0.447632 + 0.894218i \(0.352267\pi\)
−0.447632 + 0.894218i \(0.647733\pi\)
\(468\) 0 0
\(469\) −84.8784 −0.180977
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −275.464 + 159.039i −0.582375 + 0.336235i
\(474\) 0 0
\(475\) −57.5203 + 99.6280i −0.121095 + 0.209743i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −353.530 204.111i −0.738059 0.426118i 0.0833043 0.996524i \(-0.473453\pi\)
−0.821363 + 0.570406i \(0.806786\pi\)
\(480\) 0 0
\(481\) −170.583 295.458i −0.354642 0.614259i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 153.508i 0.316511i
\(486\) 0 0
\(487\) −373.255 −0.766437 −0.383219 0.923658i \(-0.625184\pi\)
−0.383219 + 0.923658i \(0.625184\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 284.299 164.140i 0.579021 0.334298i −0.181723 0.983350i \(-0.558167\pi\)
0.760744 + 0.649052i \(0.224834\pi\)
\(492\) 0 0
\(493\) 191.484 331.659i 0.388405 0.672737i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 263.139 + 151.924i 0.529455 + 0.305681i
\(498\) 0 0
\(499\) −143.203 248.034i −0.286979 0.497062i 0.686108 0.727500i \(-0.259318\pi\)
−0.973087 + 0.230437i \(0.925984\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 798.493i 1.58746i −0.608270 0.793730i \(-0.708136\pi\)
0.608270 0.793730i \(-0.291864\pi\)
\(504\) 0 0
\(505\) −215.660 −0.427050
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 732.921 423.152i 1.43992 0.831340i 0.442080 0.896976i \(-0.354241\pi\)
0.997844 + 0.0656358i \(0.0209076\pi\)
\(510\) 0 0
\(511\) −54.6235 + 94.6107i −0.106895 + 0.185148i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 389.261 + 224.740i 0.755846 + 0.436388i
\(516\) 0 0
\(517\) −326.369 565.287i −0.631274 1.09340i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 256.938i 0.493162i −0.969122 0.246581i \(-0.920693\pi\)
0.969122 0.246581i \(-0.0793072\pi\)
\(522\) 0 0
\(523\) 43.5138 0.0832003 0.0416002 0.999134i \(-0.486754\pi\)
0.0416002 + 0.999134i \(0.486754\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 82.0531 47.3734i 0.155698 0.0898925i
\(528\) 0 0
\(529\) −113.419 + 196.447i −0.214403 + 0.371356i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −51.9004 29.9647i −0.0973741 0.0562189i
\(534\) 0 0
\(535\) 54.9294 + 95.1405i 0.102672 + 0.177833i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 62.2827i 0.115552i
\(540\) 0 0
\(541\) −609.660 −1.12691 −0.563457 0.826146i \(-0.690529\pi\)
−0.563457 + 0.826146i \(0.690529\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 419.577 242.243i 0.769866 0.444482i
\(546\) 0 0
\(547\) −501.915 + 869.342i −0.917578 + 1.58929i −0.114495 + 0.993424i \(0.536525\pi\)
−0.803083 + 0.595867i \(0.796808\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −96.8238 55.9012i −0.175724 0.101454i
\(552\) 0 0
\(553\) 35.2732 + 61.0950i 0.0637852 + 0.110479i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.4948i 0.0188416i −0.999956 0.00942081i \(-0.997001\pi\)
0.999956 0.00942081i \(-0.00299878\pi\)
\(558\) 0 0
\(559\) −306.834 −0.548898
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −833.992 + 481.505i −1.48134 + 0.855250i −0.999776 0.0211638i \(-0.993263\pi\)
−0.481560 + 0.876413i \(0.659930\pi\)
\(564\) 0 0
\(565\) −145.099 + 251.319i −0.256813 + 0.444813i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 381.972 + 220.531i 0.671303 + 0.387577i 0.796570 0.604546i \(-0.206645\pi\)
−0.125267 + 0.992123i \(0.539979\pi\)
\(570\) 0 0
\(571\) 481.575 + 834.113i 0.843389 + 1.46079i 0.887013 + 0.461745i \(0.152776\pi\)
−0.0436239 + 0.999048i \(0.513890\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 340.408i 0.592013i
\(576\) 0 0
\(577\) −408.065 −0.707219 −0.353609 0.935393i \(-0.615046\pi\)
−0.353609 + 0.935393i \(0.615046\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −311.745 + 179.986i −0.536566 + 0.309786i
\(582\) 0 0
\(583\) 207.620 359.608i 0.356123 0.616823i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 557.190 + 321.694i 0.949216 + 0.548030i 0.892837 0.450379i \(-0.148711\pi\)
0.0563789 + 0.998409i \(0.482045\pi\)
\(588\) 0 0
\(589\) −13.8301 23.9544i −0.0234806 0.0406695i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 95.5621i 0.161150i 0.996749 + 0.0805751i \(0.0256757\pi\)
−0.996749 + 0.0805751i \(0.974324\pi\)
\(594\) 0 0
\(595\) −123.911 −0.208254
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −627.833 + 362.480i −1.04814 + 0.605141i −0.922127 0.386888i \(-0.873550\pi\)
−0.126009 + 0.992029i \(0.540217\pi\)
\(600\) 0 0
\(601\) −499.620 + 865.367i −0.831314 + 1.43988i 0.0656829 + 0.997841i \(0.479077\pi\)
−0.896997 + 0.442037i \(0.854256\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −84.3217 48.6831i −0.139375 0.0804680i
\(606\) 0 0
\(607\) −231.793 401.478i −0.381867 0.661414i 0.609462 0.792815i \(-0.291386\pi\)
−0.991329 + 0.131402i \(0.958052\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 629.663i 1.03055i
\(612\) 0 0
\(613\) −945.393 −1.54224 −0.771120 0.636690i \(-0.780303\pi\)
−0.771120 + 0.636690i \(0.780303\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −300.008 + 173.210i −0.486237 + 0.280729i −0.723012 0.690836i \(-0.757243\pi\)
0.236775 + 0.971564i \(0.423910\pi\)
\(618\) 0 0
\(619\) 569.292 986.042i 0.919695 1.59296i 0.119818 0.992796i \(-0.461769\pi\)
0.799877 0.600163i \(-0.204898\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 333.961 + 192.813i 0.536054 + 0.309491i
\(624\) 0 0
\(625\) −124.035 214.834i −0.198455 0.343735i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 799.850i 1.27162i
\(630\) 0 0
\(631\) −1006.22 −1.59464 −0.797321 0.603555i \(-0.793750\pi\)
−0.797321 + 0.603555i \(0.793750\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 103.964 60.0237i 0.163723 0.0945255i
\(636\) 0 0
\(637\) −30.0405 + 52.0317i −0.0471594 + 0.0816824i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 103.741 + 59.8952i 0.161843 + 0.0934402i 0.578734 0.815516i \(-0.303547\pi\)
−0.416891 + 0.908957i \(0.636880\pi\)
\(642\) 0 0
\(643\) 467.808 + 810.267i 0.727539 + 1.26014i 0.957920 + 0.287035i \(0.0926695\pi\)
−0.230381 + 0.973101i \(0.573997\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 571.143i 0.882755i −0.897321 0.441378i \(-0.854490\pi\)
0.897321 0.441378i \(-0.145510\pi\)
\(648\) 0 0
\(649\) 214.421 0.330387
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −532.601 + 307.497i −0.815621 + 0.470899i −0.848904 0.528547i \(-0.822737\pi\)
0.0332829 + 0.999446i \(0.489404\pi\)
\(654\) 0 0
\(655\) −206.405 + 357.504i −0.315122 + 0.545808i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −830.110 479.264i −1.25965 0.727259i −0.286644 0.958037i \(-0.592540\pi\)
−0.973007 + 0.230778i \(0.925873\pi\)
\(660\) 0 0
\(661\) −397.893 689.171i −0.601956 1.04262i −0.992525 0.122044i \(-0.961055\pi\)
0.390569 0.920574i \(-0.372278\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 36.1743i 0.0543974i
\(666\) 0 0
\(667\) −330.826 −0.495991
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −564.747 + 326.057i −0.841649 + 0.485926i
\(672\) 0 0
\(673\) −63.7569 + 110.430i −0.0947353 + 0.164086i −0.909498 0.415708i \(-0.863534\pi\)
0.814763 + 0.579794i \(0.196867\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −26.4113 15.2486i −0.0390122 0.0225237i 0.480367 0.877068i \(-0.340503\pi\)
−0.519379 + 0.854544i \(0.673837\pi\)
\(678\) 0 0
\(679\) 87.2510 + 151.123i 0.128499 + 0.222567i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1094.05i 1.60183i −0.598776 0.800917i \(-0.704346\pi\)
0.598776 0.800917i \(-0.295654\pi\)
\(684\) 0 0
\(685\) −374.272 −0.546382
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 346.896 200.280i 0.503477 0.290683i
\(690\) 0 0
\(691\) −55.8745 + 96.7775i −0.0808604 + 0.140054i −0.903620 0.428336i \(-0.859100\pi\)
0.822759 + 0.568390i \(0.192433\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 150.837 + 87.0860i 0.217032 + 0.125304i
\(696\) 0 0
\(697\) 70.2510 + 121.678i 0.100791 + 0.174574i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 71.8328i 0.102472i −0.998687 0.0512360i \(-0.983684\pi\)
0.998687 0.0512360i \(-0.0163161\pi\)
\(702\) 0 0
\(703\) 233.506 0.332156
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 212.310 122.577i 0.300297 0.173376i
\(708\) 0 0
\(709\) −90.9882 + 157.596i −0.128333 + 0.222280i −0.923031 0.384726i \(-0.874296\pi\)
0.794698 + 0.607005i \(0.207629\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −70.8815 40.9235i −0.0994131 0.0573962i
\(714\) 0 0
\(715\) 88.8706 + 153.928i 0.124295 + 0.215284i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 733.616i 1.02033i 0.860077 + 0.510164i \(0.170415\pi\)
−0.860077 + 0.510164i \(0.829585\pi\)
\(720\) 0 0
\(721\) −510.952 −0.708671
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 322.767 186.350i 0.445197 0.257034i
\(726\) 0 0
\(727\) 65.2248 112.973i 0.0897178 0.155396i −0.817674 0.575681i \(-0.804737\pi\)
0.907392 + 0.420286i \(0.138070\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 622.984 + 359.680i 0.852235 + 0.492038i
\(732\) 0 0
\(733\) −419.907 727.301i −0.572861 0.992224i −0.996270 0.0862860i \(-0.972500\pi\)
0.423409 0.905938i \(-0.360833\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 285.442i 0.387302i
\(738\) 0 0
\(739\) −260.907 −0.353054 −0.176527 0.984296i \(-0.556486\pi\)
−0.176527 + 0.984296i \(0.556486\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −124.448 + 71.8503i −0.167495 + 0.0967030i −0.581404 0.813615i \(-0.697496\pi\)
0.413909 + 0.910318i \(0.364163\pi\)
\(744\) 0 0
\(745\) 305.690 529.471i 0.410322 0.710699i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −108.152 62.4417i −0.144395 0.0833667i
\(750\) 0 0
\(751\) 44.0732 + 76.3370i 0.0586860 + 0.101647i 0.893876 0.448315i \(-0.147976\pi\)
−0.835190 + 0.549962i \(0.814642\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 78.9445i 0.104562i
\(756\) 0 0
\(757\) −519.660 −0.686473 −0.343237 0.939249i \(-0.611523\pi\)
−0.343237 + 0.939249i \(0.611523\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 221.637 127.962i 0.291245 0.168150i −0.347258 0.937769i \(-0.612887\pi\)
0.638503 + 0.769619i \(0.279554\pi\)
\(762\) 0 0
\(763\) −275.373 + 476.959i −0.360908 + 0.625110i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 179.130 + 103.421i 0.233546 + 0.134838i
\(768\) 0 0
\(769\) −601.316 1041.51i −0.781946 1.35437i −0.930807 0.365512i \(-0.880894\pi\)
0.148861 0.988858i \(-0.452439\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 100.613i 0.130158i 0.997880 + 0.0650792i \(0.0207300\pi\)
−0.997880 + 0.0650792i \(0.979270\pi\)
\(774\) 0 0
\(775\) 92.2065 0.118976
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 35.5224 20.5089i 0.0456000 0.0263272i
\(780\) 0 0
\(781\) −510.911 + 884.924i −0.654176 + 1.13307i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −329.804 190.412i −0.420132 0.242563i
\(786\) 0 0
\(787\) −368.907 638.966i −0.468751 0.811901i 0.530611 0.847616i \(-0.321963\pi\)
−0.999362 + 0.0357147i \(0.988629\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 329.887i 0.417051i
\(792\) 0 0
\(793\) −629.061 −0.793268
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 647.045 373.571i 0.811850 0.468722i −0.0357477 0.999361i \(-0.511381\pi\)
0.847598 + 0.530639i \(0.178048\pi\)
\(798\) 0 0
\(799\) −738.110 + 1278.44i −0.923792 + 1.60005i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −318.171 183.696i −0.396228 0.228762i
\(804\) 0 0
\(805\) 53.5203 + 92.6998i 0.0664848 + 0.115155i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1156.21i 1.42919i 0.699538 + 0.714595i \(0.253389\pi\)
−0.699538 + 0.714595i \(0.746611\pi\)
\(810\) 0 0
\(811\) −194.081 −0.239311 −0.119655 0.992815i \(-0.538179\pi\)
−0.119655 + 0.992815i \(0.538179\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 565.877 326.709i 0.694328 0.400870i
\(816\) 0 0
\(817\) 105.004 181.872i 0.128524 0.222610i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −93.8794 54.2013i −0.114348 0.0660187i 0.441735 0.897145i \(-0.354363\pi\)
−0.556083 + 0.831127i \(0.687696\pi\)
\(822\) 0 0
\(823\) 546.409 + 946.408i 0.663924 + 1.14995i 0.979576 + 0.201074i \(0.0644433\pi\)
−0.315652 + 0.948875i \(0.602223\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.9283i 0.0228879i 0.999935 + 0.0114440i \(0.00364281\pi\)
−0.999935 + 0.0114440i \(0.996357\pi\)
\(828\) 0 0
\(829\) 18.1778 0.0219274 0.0109637 0.999940i \(-0.496510\pi\)
0.0109637 + 0.999940i \(0.496510\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 121.986 70.4288i 0.146442 0.0845483i
\(834\) 0 0
\(835\) −88.5307 + 153.340i −0.106025 + 0.183640i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 257.613 + 148.733i 0.307047 + 0.177274i 0.645604 0.763672i \(-0.276606\pi\)
−0.338557 + 0.940946i \(0.609939\pi\)
\(840\) 0 0
\(841\) −239.395 414.645i −0.284656 0.493038i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 221.880i 0.262580i
\(846\) 0 0
\(847\) 110.682 0.130676
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 598.380 345.475i 0.703149 0.405963i
\(852\) 0 0
\(853\) −140.063 + 242.596i −0.164200 + 0.284403i −0.936371 0.351012i \(-0.885838\pi\)
0.772171 + 0.635415i \(0.219171\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −370.867 214.120i −0.432750 0.249849i 0.267767 0.963484i \(-0.413714\pi\)
−0.700518 + 0.713635i \(0.747048\pi\)
\(858\) 0 0
\(859\) 267.549 + 463.408i 0.311466 + 0.539474i 0.978680 0.205392i \(-0.0658468\pi\)
−0.667214 + 0.744866i \(0.732513\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1628.73i 1.88729i 0.330964 + 0.943643i \(0.392626\pi\)
−0.330964 + 0.943643i \(0.607374\pi\)
\(864\) 0 0
\(865\) 358.301 0.414220
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −205.459 + 118.622i −0.236432 + 0.136504i
\(870\) 0 0
\(871\) 137.676 238.462i 0.158066 0.273779i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −237.754 137.267i −0.271719 0.156877i
\(876\) 0 0
\(877\) −310.705 538.156i −0.354281 0.613633i 0.632714 0.774386i \(-0.281941\pi\)
−0.986995 + 0.160753i \(0.948608\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1011.60i 1.14824i 0.818773 + 0.574118i \(0.194655\pi\)
−0.818773 + 0.574118i \(0.805345\pi\)
\(882\) 0 0
\(883\) 400.235 0.453268 0.226634 0.973980i \(-0.427228\pi\)
0.226634 + 0.973980i \(0.427228\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 396.030 228.648i 0.446482 0.257777i −0.259861 0.965646i \(-0.583677\pi\)
0.706343 + 0.707869i \(0.250344\pi\)
\(888\) 0 0
\(889\) −68.2327 + 118.182i −0.0767522 + 0.132939i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 373.225 + 215.482i 0.417945 + 0.241301i
\(894\) 0 0
\(895\) 309.188 + 535.530i 0.345462 + 0.598357i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 89.6112i 0.0996787i
\(900\) 0 0
\(901\) −939.098 −1.04228
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 409.833 236.617i 0.452854 0.261456i
\(906\) 0 0
\(907\) −543.793 + 941.878i −0.599552 + 1.03845i 0.393335 + 0.919395i \(0.371321\pi\)
−0.992887 + 0.119059i \(0.962012\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 641.310 + 370.261i 0.703963 + 0.406433i 0.808822 0.588054i \(-0.200106\pi\)
−0.104859 + 0.994487i \(0.533439\pi\)
\(912\) 0 0
\(913\) −605.284 1048.38i −0.662961 1.14828i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 469.267i 0.511742i
\(918\) 0 0
\(919\) 1079.91 1.17509 0.587547 0.809190i \(-0.300094\pi\)
0.587547 + 0.809190i \(0.300094\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −853.642 + 492.851i −0.924856 + 0.533966i
\(924\) 0 0
\(925\) −389.203 + 674.119i −0.420760 + 0.728777i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 126.389 + 72.9707i 0.136048 + 0.0785475i 0.566479 0.824076i \(-0.308305\pi\)
−0.430431 + 0.902623i \(0.641638\pi\)
\(930\) 0 0
\(931\) −20.5608 35.6123i −0.0220846 0.0382517i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 416.707i 0.445676i
\(936\) 0 0
\(937\) −406.972 −0.434336 −0.217168 0.976134i \(-0.569682\pi\)
−0.217168 + 0.976134i \(0.569682\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 359.026 207.284i 0.381537 0.220281i −0.296950 0.954893i \(-0.595969\pi\)
0.678487 + 0.734613i \(0.262636\pi\)
\(942\) 0 0
\(943\) 60.6863 105.112i 0.0643545 0.111465i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −582.910 336.543i −0.615533 0.355378i 0.159595 0.987183i \(-0.448981\pi\)
−0.775128 + 0.631805i \(0.782315\pi\)
\(948\) 0 0
\(949\) −177.203 306.924i −0.186726 0.323418i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 68.0024i 0.0713562i −0.999363 0.0356781i \(-0.988641\pi\)
0.999363 0.0356781i \(-0.0113591\pi\)
\(954\) 0 0
\(955\) −496.604 −0.520004
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 368.458 212.729i 0.384210 0.221824i
\(960\) 0 0
\(961\) 469.415 813.051i 0.488465 0.846046i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −33.2618 19.2037i −0.0344682 0.0199002i
\(966\) 0 0
\(967\) 604.624 + 1047.24i 0.625257 + 1.08298i 0.988491 + 0.151279i \(0.0483392\pi\)
−0.363234 + 0.931698i \(0.618327\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1441.24i 1.48429i −0.670240 0.742144i \(-0.733809\pi\)
0.670240 0.742144i \(-0.266191\pi\)
\(972\) 0 0
\(973\) −197.992 −0.203486
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.7998 24.1332i 0.0427839 0.0247013i −0.478456 0.878112i \(-0.658803\pi\)
0.521239 + 0.853411i \(0.325470\pi\)
\(978\) 0 0
\(979\) −648.420 + 1123.10i −0.662328 + 1.14719i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.0513 + 9.26720i 0.0163289 + 0.00942747i 0.508142 0.861273i \(-0.330332\pi\)
−0.491813 + 0.870701i \(0.663666\pi\)
\(984\) 0 0
\(985\) −66.3830 114.979i −0.0673939 0.116730i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 621.418i 0.628330i
\(990\) 0 0
\(991\) 77.2549 0.0779565 0.0389783 0.999240i \(-0.487590\pi\)
0.0389783 + 0.999240i \(0.487590\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 609.209 351.727i 0.612270 0.353494i
\(996\) 0 0
\(997\) 758.674 1314.06i 0.760957 1.31802i −0.181400 0.983409i \(-0.558063\pi\)
0.942358 0.334607i \(-0.108604\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.3.bg.c.2213.3 8
3.2 odd 2 inner 2268.3.bg.c.2213.2 8
9.2 odd 6 252.3.c.a.197.2 4
9.4 even 3 inner 2268.3.bg.c.701.2 8
9.5 odd 6 inner 2268.3.bg.c.701.3 8
9.7 even 3 252.3.c.a.197.3 yes 4
36.7 odd 6 1008.3.d.c.449.3 4
36.11 even 6 1008.3.d.c.449.2 4
63.2 odd 6 1764.3.bk.d.557.2 8
63.11 odd 6 1764.3.bk.d.1745.3 8
63.16 even 3 1764.3.bk.d.557.3 8
63.20 even 6 1764.3.c.f.197.3 4
63.25 even 3 1764.3.bk.d.1745.2 8
63.34 odd 6 1764.3.c.f.197.2 4
63.38 even 6 1764.3.bk.e.1745.2 8
63.47 even 6 1764.3.bk.e.557.3 8
63.52 odd 6 1764.3.bk.e.1745.3 8
63.61 odd 6 1764.3.bk.e.557.2 8
72.11 even 6 4032.3.d.e.449.3 4
72.29 odd 6 4032.3.d.h.449.3 4
72.43 odd 6 4032.3.d.e.449.2 4
72.61 even 6 4032.3.d.h.449.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.c.a.197.2 4 9.2 odd 6
252.3.c.a.197.3 yes 4 9.7 even 3
1008.3.d.c.449.2 4 36.11 even 6
1008.3.d.c.449.3 4 36.7 odd 6
1764.3.c.f.197.2 4 63.34 odd 6
1764.3.c.f.197.3 4 63.20 even 6
1764.3.bk.d.557.2 8 63.2 odd 6
1764.3.bk.d.557.3 8 63.16 even 3
1764.3.bk.d.1745.2 8 63.25 even 3
1764.3.bk.d.1745.3 8 63.11 odd 6
1764.3.bk.e.557.2 8 63.61 odd 6
1764.3.bk.e.557.3 8 63.47 even 6
1764.3.bk.e.1745.2 8 63.38 even 6
1764.3.bk.e.1745.3 8 63.52 odd 6
2268.3.bg.c.701.2 8 9.4 even 3 inner
2268.3.bg.c.701.3 8 9.5 odd 6 inner
2268.3.bg.c.2213.2 8 3.2 odd 2 inner
2268.3.bg.c.2213.3 8 1.1 even 1 trivial
4032.3.d.e.449.2 4 72.43 odd 6
4032.3.d.e.449.3 4 72.11 even 6
4032.3.d.h.449.2 4 72.61 even 6
4032.3.d.h.449.3 4 72.29 odd 6