Properties

Label 2268.2.j.h.1513.1
Level $2268$
Weight $2$
Character 2268.1513
Analytic conductor $18.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(757,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.757"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-1,0,0,0,3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1513.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1513
Dual form 2268.2.j.h.757.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{7} +(1.50000 - 2.59808i) q^{11} +(2.00000 + 3.46410i) q^{13} +6.00000 q^{17} -4.00000 q^{19} +(2.50000 - 4.33013i) q^{25} +(-3.00000 + 5.19615i) q^{29} +(-1.00000 - 1.73205i) q^{31} -7.00000 q^{37} +(6.00000 + 10.3923i) q^{41} +(3.50000 - 6.06218i) q^{43} +(3.00000 - 5.19615i) q^{47} +(-0.500000 - 0.866025i) q^{49} +3.00000 q^{53} +(3.00000 + 5.19615i) q^{59} +(-1.00000 + 1.73205i) q^{61} +(6.50000 + 11.2583i) q^{67} +9.00000 q^{71} +8.00000 q^{73} +(1.50000 + 2.59808i) q^{77} +(0.500000 - 0.866025i) q^{79} +12.0000 q^{89} -4.00000 q^{91} +(2.00000 - 3.46410i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{7} + 3 q^{11} + 4 q^{13} + 12 q^{17} - 8 q^{19} + 5 q^{25} - 6 q^{29} - 2 q^{31} - 14 q^{37} + 12 q^{41} + 7 q^{43} + 6 q^{47} - q^{49} + 6 q^{53} + 6 q^{59} - 2 q^{61} + 13 q^{67} + 18 q^{71}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i \(0.0205004\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 + 10.3923i 0.937043 + 1.62301i 0.770950 + 0.636895i \(0.219782\pi\)
0.166092 + 0.986110i \(0.446885\pi\)
\(42\) 0 0
\(43\) 3.50000 6.06218i 0.533745 0.924473i −0.465478 0.885059i \(-0.654118\pi\)
0.999223 0.0394140i \(-0.0125491\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 5.19615i 0.437595 0.757937i −0.559908 0.828554i \(-0.689164\pi\)
0.997503 + 0.0706177i \(0.0224970\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 + 5.19615i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.50000 + 11.2583i 0.794101 + 1.37542i 0.923408 + 0.383819i \(0.125391\pi\)
−0.129307 + 0.991605i \(0.541275\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.50000 + 2.59808i 0.170941 + 0.296078i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 3.46410i 0.203069 0.351726i −0.746447 0.665445i \(-0.768242\pi\)
0.949516 + 0.313719i \(0.101575\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 10.3923i 0.597022 1.03407i −0.396236 0.918149i \(-0.629684\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(102\) 0 0
\(103\) 2.00000 + 3.46410i 0.197066 + 0.341328i 0.947576 0.319531i \(-0.103525\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.0000 1.45010 0.725052 0.688694i \(-0.241816\pi\)
0.725052 + 0.688694i \(0.241816\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.50000 + 7.79423i 0.423324 + 0.733219i 0.996262 0.0863794i \(-0.0275297\pi\)
−0.572938 + 0.819599i \(0.694196\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.00000 + 5.19615i −0.275010 + 0.476331i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.00000 + 5.19615i 0.262111 + 0.453990i 0.966803 0.255524i \(-0.0822479\pi\)
−0.704692 + 0.709514i \(0.748915\pi\)
\(132\) 0 0
\(133\) 2.00000 3.46410i 0.173422 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.50000 + 7.79423i −0.384461 + 0.665906i −0.991694 0.128618i \(-0.958946\pi\)
0.607233 + 0.794524i \(0.292279\pi\)
\(138\) 0 0
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.50000 + 7.79423i 0.368654 + 0.638528i 0.989355 0.145519i \(-0.0464853\pi\)
−0.620701 + 0.784047i \(0.713152\pi\)
\(150\) 0 0
\(151\) 3.50000 6.06218i 0.284826 0.493333i −0.687741 0.725956i \(-0.741398\pi\)
0.972567 + 0.232623i \(0.0747309\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 + 3.46410i 0.159617 + 0.276465i 0.934731 0.355357i \(-0.115641\pi\)
−0.775113 + 0.631822i \(0.782307\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 10.3923i −0.464294 0.804181i 0.534875 0.844931i \(-0.320359\pi\)
−0.999169 + 0.0407502i \(0.987025\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) 2.50000 + 4.33013i 0.188982 + 0.327327i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.00000 15.5885i 0.658145 1.13994i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.5000 23.3827i 0.976826 1.69191i 0.303052 0.952974i \(-0.401994\pi\)
0.673774 0.738938i \(-0.264672\pi\)
\(192\) 0 0
\(193\) −7.00000 12.1244i −0.503871 0.872730i −0.999990 0.00447566i \(-0.998575\pi\)
0.496119 0.868255i \(-0.334758\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.0000 −1.49619 −0.748094 0.663593i \(-0.769031\pi\)
−0.748094 + 0.663593i \(0.769031\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.00000 5.19615i −0.210559 0.364698i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 + 10.3923i −0.415029 + 0.718851i
\(210\) 0 0
\(211\) 12.5000 + 21.6506i 0.860535 + 1.49049i 0.871413 + 0.490550i \(0.163204\pi\)
−0.0108774 + 0.999941i \(0.503462\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 + 20.7846i 0.807207 + 1.39812i
\(222\) 0 0
\(223\) 5.00000 8.66025i 0.334825 0.579934i −0.648626 0.761107i \(-0.724656\pi\)
0.983451 + 0.181173i \(0.0579895\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 0 0
\(229\) −4.00000 6.92820i −0.264327 0.457829i 0.703060 0.711131i \(-0.251817\pi\)
−0.967387 + 0.253302i \(0.918483\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.50000 + 2.59808i 0.0970269 + 0.168056i 0.910453 0.413613i \(-0.135733\pi\)
−0.813426 + 0.581669i \(0.802400\pi\)
\(240\) 0 0
\(241\) −13.0000 + 22.5167i −0.837404 + 1.45043i 0.0546547 + 0.998505i \(0.482594\pi\)
−0.892058 + 0.451920i \(0.850739\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 13.8564i −0.509028 0.881662i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 3.50000 6.06218i 0.217479 0.376685i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.5000 + 18.1865i −0.647458 + 1.12143i 0.336270 + 0.941766i \(0.390834\pi\)
−0.983728 + 0.179664i \(0.942499\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.50000 12.9904i −0.452267 0.783349i
\(276\) 0 0
\(277\) −5.50000 + 9.52628i −0.330463 + 0.572379i −0.982603 0.185720i \(-0.940538\pi\)
0.652140 + 0.758099i \(0.273872\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.50000 + 7.79423i −0.268447 + 0.464965i −0.968461 0.249165i \(-0.919844\pi\)
0.700014 + 0.714130i \(0.253177\pi\)
\(282\) 0 0
\(283\) −13.0000 22.5167i −0.772770 1.33848i −0.936039 0.351895i \(-0.885537\pi\)
0.163270 0.986581i \(-0.447796\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.00000 5.19615i −0.175262 0.303562i 0.764990 0.644042i \(-0.222744\pi\)
−0.940252 + 0.340480i \(0.889411\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 3.50000 + 6.06218i 0.201737 + 0.349418i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −34.0000 −1.94048 −0.970241 0.242140i \(-0.922151\pi\)
−0.970241 + 0.242140i \(0.922151\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.0000 25.9808i −0.850572 1.47323i −0.880693 0.473688i \(-0.842923\pi\)
0.0301210 0.999546i \(-0.490411\pi\)
\(312\) 0 0
\(313\) −13.0000 + 22.5167i −0.734803 + 1.27272i 0.220006 + 0.975499i \(0.429392\pi\)
−0.954810 + 0.297218i \(0.903941\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.00000 + 5.19615i 0.165395 + 0.286473i
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.50000 4.33013i −0.136184 0.235877i 0.789865 0.613280i \(-0.210150\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.50000 7.79423i −0.241573 0.418416i 0.719590 0.694399i \(-0.244330\pi\)
−0.961162 + 0.275983i \(0.910997\pi\)
\(348\) 0 0
\(349\) 5.00000 8.66025i 0.267644 0.463573i −0.700609 0.713545i \(-0.747088\pi\)
0.968253 + 0.249973i \(0.0804216\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −33.0000 −1.74167 −0.870837 0.491572i \(-0.836422\pi\)
−0.870837 + 0.491572i \(0.836422\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.00000 3.46410i 0.104399 0.180825i −0.809093 0.587680i \(-0.800041\pi\)
0.913493 + 0.406855i \(0.133375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.50000 + 2.59808i −0.0778761 + 0.134885i
\(372\) 0 0
\(373\) 0.500000 + 0.866025i 0.0258890 + 0.0448411i 0.878680 0.477412i \(-0.158425\pi\)
−0.852791 + 0.522253i \(0.825092\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 11.0000 0.565032 0.282516 0.959263i \(-0.408831\pi\)
0.282516 + 0.959263i \(0.408831\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.00000 10.3923i −0.306586 0.531022i 0.671027 0.741433i \(-0.265853\pi\)
−0.977613 + 0.210411i \(0.932520\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.0000 + 25.9808i −0.760530 + 1.31728i 0.182047 + 0.983290i \(0.441728\pi\)
−0.942578 + 0.333987i \(0.891606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 26.0000 1.30490 0.652451 0.757831i \(-0.273741\pi\)
0.652451 + 0.757831i \(0.273741\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) 4.00000 6.92820i 0.199254 0.345118i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.5000 + 18.1865i −0.520466 + 0.901473i
\(408\) 0 0
\(409\) −16.0000 27.7128i −0.791149 1.37031i −0.925256 0.379344i \(-0.876150\pi\)
0.134107 0.990967i \(-0.457183\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) 18.5000 32.0429i 0.901635 1.56168i 0.0762630 0.997088i \(-0.475701\pi\)
0.825372 0.564590i \(-0.190966\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 15.0000 25.9808i 0.727607 1.26025i
\(426\) 0 0
\(427\) −1.00000 1.73205i −0.0483934 0.0838198i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) −4.00000 −0.192228 −0.0961139 0.995370i \(-0.530641\pi\)
−0.0961139 + 0.995370i \(0.530641\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −13.0000 + 22.5167i −0.620456 + 1.07466i 0.368945 + 0.929451i \(0.379719\pi\)
−0.989401 + 0.145210i \(0.953614\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 20.7846i 0.570137 0.987507i −0.426414 0.904528i \(-0.640223\pi\)
0.996551 0.0829786i \(-0.0264433\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −21.0000 −0.991051 −0.495526 0.868593i \(-0.665025\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(450\) 0 0
\(451\) 36.0000 1.69517
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.50000 + 9.52628i −0.257279 + 0.445621i −0.965512 0.260358i \(-0.916159\pi\)
0.708233 + 0.705979i \(0.249493\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.0000 + 25.9808i −0.698620 + 1.21004i 0.270326 + 0.962769i \(0.412869\pi\)
−0.968945 + 0.247276i \(0.920465\pi\)
\(462\) 0 0
\(463\) 0.500000 + 0.866025i 0.0232370 + 0.0402476i 0.877410 0.479741i \(-0.159269\pi\)
−0.854173 + 0.519989i \(0.825936\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) −13.0000 −0.600284
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.5000 18.1865i −0.482791 0.836218i
\(474\) 0 0
\(475\) −10.0000 + 17.3205i −0.458831 + 0.794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 21.0000 36.3731i 0.959514 1.66193i 0.235833 0.971794i \(-0.424218\pi\)
0.723681 0.690134i \(-0.242449\pi\)
\(480\) 0 0
\(481\) −14.0000 24.2487i −0.638345 1.10565i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −13.0000 −0.589086 −0.294543 0.955638i \(-0.595167\pi\)
−0.294543 + 0.955638i \(0.595167\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.0000 31.1769i −0.812329 1.40699i −0.911230 0.411897i \(-0.864866\pi\)
0.0989017 0.995097i \(-0.468467\pi\)
\(492\) 0 0
\(493\) −18.0000 + 31.1769i −0.810679 + 1.40414i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.50000 + 7.79423i −0.201853 + 0.349619i
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3.00000 5.19615i −0.132973 0.230315i 0.791849 0.610718i \(-0.209119\pi\)
−0.924821 + 0.380402i \(0.875786\pi\)
\(510\) 0 0
\(511\) −4.00000 + 6.92820i −0.176950 + 0.306486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.00000 15.5885i −0.395820 0.685580i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 42.0000 1.84005 0.920027 0.391856i \(-0.128167\pi\)
0.920027 + 0.391856i \(0.128167\pi\)
\(522\) 0 0
\(523\) −34.0000 −1.48672 −0.743358 0.668894i \(-0.766768\pi\)
−0.743358 + 0.668894i \(0.766768\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.00000 10.3923i −0.261364 0.452696i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −24.0000 + 41.5692i −1.03956 + 1.80056i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.50000 6.06218i 0.149649 0.259200i −0.781449 0.623970i \(-0.785519\pi\)
0.931098 + 0.364770i \(0.118852\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.0000 20.7846i 0.511217 0.885454i
\(552\) 0 0
\(553\) 0.500000 + 0.866025i 0.0212622 + 0.0368271i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −33.0000 −1.39825 −0.699127 0.714997i \(-0.746428\pi\)
−0.699127 + 0.714997i \(0.746428\pi\)
\(558\) 0 0
\(559\) 28.0000 1.18427
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.00000 15.5885i −0.379305 0.656975i 0.611656 0.791123i \(-0.290503\pi\)
−0.990961 + 0.134148i \(0.957170\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.5000 23.3827i 0.565949 0.980253i −0.431011 0.902347i \(-0.641843\pi\)
0.996961 0.0779066i \(-0.0248236\pi\)
\(570\) 0 0
\(571\) −16.0000 27.7128i −0.669579 1.15975i −0.978022 0.208502i \(-0.933141\pi\)
0.308443 0.951243i \(-0.400192\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.50000 7.79423i 0.186371 0.322804i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.00000 + 15.5885i −0.371470 + 0.643404i −0.989792 0.142520i \(-0.954479\pi\)
0.618322 + 0.785925i \(0.287813\pi\)
\(588\) 0 0
\(589\) 4.00000 + 6.92820i 0.164817 + 0.285472i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.5000 28.5788i −0.674172 1.16770i −0.976710 0.214563i \(-0.931167\pi\)
0.302539 0.953137i \(-0.402166\pi\)
\(600\) 0 0
\(601\) −16.0000 + 27.7128i −0.652654 + 1.13043i 0.329823 + 0.944043i \(0.393011\pi\)
−0.982477 + 0.186386i \(0.940322\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11.0000 + 19.0526i 0.446476 + 0.773320i 0.998154 0.0607380i \(-0.0193454\pi\)
−0.551678 + 0.834058i \(0.686012\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) 5.00000 0.201948 0.100974 0.994889i \(-0.467804\pi\)
0.100974 + 0.994889i \(0.467804\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 + 5.19615i 0.120775 + 0.209189i 0.920074 0.391745i \(-0.128129\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(618\) 0 0
\(619\) −13.0000 + 22.5167i −0.522514 + 0.905021i 0.477143 + 0.878826i \(0.341672\pi\)
−0.999657 + 0.0261952i \(0.991661\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 + 10.3923i −0.240385 + 0.416359i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −42.0000 −1.67465
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.00000 3.46410i 0.0792429 0.137253i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.50000 12.9904i 0.296232 0.513089i −0.679039 0.734103i \(-0.737603\pi\)
0.975271 + 0.221013i \(0.0709364\pi\)
\(642\) 0 0
\(643\) 20.0000 + 34.6410i 0.788723 + 1.36611i 0.926750 + 0.375680i \(0.122591\pi\)
−0.138027 + 0.990429i \(0.544076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.50000 + 2.59808i 0.0586995 + 0.101671i 0.893882 0.448303i \(-0.147971\pi\)
−0.835182 + 0.549973i \(0.814638\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13.5000 + 23.3827i −0.525885 + 0.910860i 0.473660 + 0.880708i \(0.342933\pi\)
−0.999545 + 0.0301523i \(0.990401\pi\)
\(660\) 0 0
\(661\) −10.0000 17.3205i −0.388955 0.673690i 0.603354 0.797473i \(-0.293830\pi\)
−0.992309 + 0.123784i \(0.960497\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.00000 + 5.19615i 0.115814 + 0.200595i
\(672\) 0 0
\(673\) −14.5000 + 25.1147i −0.558934 + 0.968102i 0.438652 + 0.898657i \(0.355456\pi\)
−0.997586 + 0.0694449i \(0.977877\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.0000 + 36.3731i −0.807096 + 1.39793i 0.107772 + 0.994176i \(0.465628\pi\)
−0.914867 + 0.403755i \(0.867705\pi\)
\(678\) 0 0
\(679\) 2.00000 + 3.46410i 0.0767530 + 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −39.0000 −1.49229 −0.746147 0.665782i \(-0.768098\pi\)
−0.746147 + 0.665782i \(0.768098\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000 + 10.3923i 0.228582 + 0.395915i
\(690\) 0 0
\(691\) 17.0000 29.4449i 0.646710 1.12014i −0.337193 0.941435i \(-0.609478\pi\)
0.983904 0.178700i \(-0.0571891\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 36.0000 + 62.3538i 1.36360 + 2.36182i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.0000 −0.566542 −0.283271 0.959040i \(-0.591420\pi\)
−0.283271 + 0.959040i \(0.591420\pi\)
\(702\) 0 0
\(703\) 28.0000 1.05604
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.00000 + 10.3923i 0.225653 + 0.390843i
\(708\) 0 0
\(709\) −20.5000 + 35.5070i −0.769894 + 1.33349i 0.167727 + 0.985834i \(0.446357\pi\)
−0.937620 + 0.347661i \(0.886976\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 42.0000 1.56634 0.783168 0.621810i \(-0.213603\pi\)
0.783168 + 0.621810i \(0.213603\pi\)
\(720\) 0 0
\(721\) −4.00000 −0.148968
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.0000 + 25.9808i 0.557086 + 0.964901i
\(726\) 0 0
\(727\) 23.0000 39.8372i 0.853023 1.47748i −0.0254445 0.999676i \(-0.508100\pi\)
0.878467 0.477803i \(-0.158567\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.0000 36.3731i 0.776713 1.34531i
\(732\) 0 0
\(733\) −10.0000 17.3205i −0.369358 0.639748i 0.620107 0.784517i \(-0.287089\pi\)
−0.989465 + 0.144770i \(0.953756\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 39.0000 1.43658
\(738\) 0 0
\(739\) −19.0000 −0.698926 −0.349463 0.936950i \(-0.613636\pi\)
−0.349463 + 0.936950i \(0.613636\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 25.5000 + 44.1673i 0.935504 + 1.62034i 0.773732 + 0.633513i \(0.218388\pi\)
0.161772 + 0.986828i \(0.448279\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7.50000 + 12.9904i −0.274044 + 0.474658i
\(750\) 0 0
\(751\) −20.5000 35.5070i −0.748056 1.29567i −0.948753 0.316017i \(-0.897654\pi\)
0.200698 0.979653i \(-0.435679\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.0000 25.9808i −0.543750 0.941802i −0.998684 0.0512772i \(-0.983671\pi\)
0.454935 0.890525i \(-0.349663\pi\)
\(762\) 0 0
\(763\) 5.00000 8.66025i 0.181012 0.313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.0000 + 20.7846i −0.433295 + 0.750489i
\(768\) 0 0
\(769\) −4.00000 6.92820i −0.144244 0.249837i 0.784847 0.619690i \(-0.212742\pi\)
−0.929091 + 0.369852i \(0.879408\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −10.0000 −0.359211
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24.0000 41.5692i −0.859889 1.48937i
\(780\) 0 0
\(781\) 13.5000 23.3827i 0.483068 0.836698i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −22.0000 38.1051i −0.784215 1.35830i −0.929467 0.368906i \(-0.879732\pi\)
0.145251 0.989395i \(-0.453601\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.00000 −0.320003
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)
−0.739975 + 0.672634i \(0.765163\pi\)
\(798\) 0 0
\(799\) 18.0000 31.1769i 0.636794 1.10296i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0000 20.7846i 0.423471 0.733473i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 15.0000 0.527372 0.263686 0.964609i \(-0.415062\pi\)
0.263686 + 0.964609i \(0.415062\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −14.0000 + 24.2487i −0.489798 + 0.848355i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.5000 28.5788i 0.575854 0.997408i −0.420094 0.907480i \(-0.638003\pi\)
0.995948 0.0899279i \(-0.0286637\pi\)
\(822\) 0 0
\(823\) 8.00000 + 13.8564i 0.278862 + 0.483004i 0.971102 0.238664i \(-0.0767093\pi\)
−0.692240 + 0.721668i \(0.743376\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −39.0000 −1.35616 −0.678081 0.734987i \(-0.737188\pi\)
−0.678081 + 0.734987i \(0.737188\pi\)
\(828\) 0 0
\(829\) −40.0000 −1.38926 −0.694629 0.719368i \(-0.744431\pi\)
−0.694629 + 0.719368i \(0.744431\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.00000 5.19615i −0.103944 0.180036i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.00000 10.3923i 0.207143 0.358782i −0.743670 0.668546i \(-0.766917\pi\)
0.950813 + 0.309764i \(0.100250\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 11.0000 19.0526i 0.376633 0.652347i −0.613937 0.789355i \(-0.710415\pi\)
0.990570 + 0.137008i \(0.0437485\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.00000 15.5885i 0.307434 0.532492i −0.670366 0.742030i \(-0.733863\pi\)
0.977800 + 0.209539i \(0.0671963\pi\)
\(858\) 0 0
\(859\) 2.00000 + 3.46410i 0.0682391 + 0.118194i 0.898126 0.439738i \(-0.144929\pi\)
−0.829887 + 0.557931i \(0.811595\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.0000 0.714848 0.357424 0.933942i \(-0.383655\pi\)
0.357424 + 0.933942i \(0.383655\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.50000 2.59808i −0.0508840 0.0881337i
\(870\) 0 0
\(871\) −26.0000 + 45.0333i −0.880976 + 1.52590i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.50000 4.33013i −0.0844190 0.146218i 0.820724 0.571324i \(-0.193570\pi\)
−0.905143 + 0.425106i \(0.860237\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 48.0000 1.61716 0.808581 0.588386i \(-0.200236\pi\)
0.808581 + 0.588386i \(0.200236\pi\)
\(882\) 0 0
\(883\) −31.0000 −1.04323 −0.521617 0.853180i \(-0.674671\pi\)
−0.521617 + 0.853180i \(0.674671\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 9.50000 16.4545i 0.318620 0.551866i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.0000 + 20.7846i −0.401565 + 0.695530i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.50000 + 14.7224i −0.282238 + 0.488850i −0.971936 0.235247i \(-0.924410\pi\)
0.689698 + 0.724097i \(0.257743\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 12.0000 20.7846i 0.397578 0.688625i −0.595849 0.803097i \(-0.703184\pi\)
0.993426 + 0.114472i \(0.0365176\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) 29.0000 0.956622 0.478311 0.878191i \(-0.341249\pi\)
0.478311 + 0.878191i \(0.341249\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 18.0000 + 31.1769i 0.592477 + 1.02620i
\(924\) 0 0
\(925\) −17.5000 + 30.3109i −0.575396 + 0.996616i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.00000 5.19615i 0.0984268 0.170480i −0.812607 0.582812i \(-0.801952\pi\)
0.911034 + 0.412332i \(0.135286\pi\)
\(930\) 0 0
\(931\) 2.00000 + 3.46410i 0.0655474 + 0.113531i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20.0000 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000 + 10.3923i 0.195594 + 0.338779i 0.947095 0.320953i \(-0.104003\pi\)
−0.751501 + 0.659732i \(0.770670\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.0000 + 20.7846i −0.389948 + 0.675409i −0.992442 0.122714i \(-0.960840\pi\)
0.602494 + 0.798123i \(0.294174\pi\)
\(948\) 0 0
\(949\) 16.0000 + 27.7128i 0.519382 + 0.899596i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.50000 7.79423i −0.145313 0.251689i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 20.0000 + 34.6410i 0.643157 + 1.11398i 0.984724 + 0.174123i \(0.0557089\pi\)
−0.341567 + 0.939857i \(0.610958\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 54.0000 1.73294 0.866471 0.499227i \(-0.166383\pi\)
0.866471 + 0.499227i \(0.166383\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 27.0000 + 46.7654i 0.863807 + 1.49616i 0.868227 + 0.496167i \(0.165259\pi\)
−0.00442082 + 0.999990i \(0.501407\pi\)
\(978\) 0 0
\(979\) 18.0000 31.1769i 0.575282 0.996419i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.0000 25.9808i 0.478426 0.828658i −0.521268 0.853393i \(-0.674541\pi\)
0.999694 + 0.0247352i \(0.00787426\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −7.00000 −0.222362 −0.111181 0.993800i \(-0.535463\pi\)
−0.111181 + 0.993800i \(0.535463\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 23.0000 39.8372i 0.728417 1.26166i −0.229135 0.973395i \(-0.573590\pi\)
0.957552 0.288261i \(-0.0930771\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.j.h.1513.1 2
3.2 odd 2 2268.2.j.g.1513.1 2
9.2 odd 6 2268.2.a.c.1.1 yes 1
9.4 even 3 inner 2268.2.j.h.757.1 2
9.5 odd 6 2268.2.j.g.757.1 2
9.7 even 3 2268.2.a.b.1.1 1
36.7 odd 6 9072.2.a.m.1.1 1
36.11 even 6 9072.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2268.2.a.b.1.1 1 9.7 even 3
2268.2.a.c.1.1 yes 1 9.2 odd 6
2268.2.j.g.757.1 2 9.5 odd 6
2268.2.j.g.1513.1 2 3.2 odd 2
2268.2.j.h.757.1 2 9.4 even 3 inner
2268.2.j.h.1513.1 2 1.1 even 1 trivial
9072.2.a.l.1.1 1 36.11 even 6
9072.2.a.m.1.1 1 36.7 odd 6