Properties

Label 2268.2.bm.i.593.1
Level $2268$
Weight $2$
Character 2268.593
Analytic conductor $18.110$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.1
Root \(1.07992 - 0.623490i\) of defining polynomial
Character \(\chi\) \(=\) 2268.593
Dual form 2268.2.bm.i.1025.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.12105 q^{5} +(-2.20291 + 1.46533i) q^{7} +3.74094i q^{11} +(2.53803 - 1.46533i) q^{13} +(2.71678 + 4.70560i) q^{17} +(-6.07338 - 3.50647i) q^{19} +1.66487i q^{23} +4.74094 q^{25} +(6.12340 + 3.53534i) q^{29} +(-6.60872 - 3.81555i) q^{31} +(6.87538 - 4.57338i) q^{35} +(-4.03534 + 6.98942i) q^{37} +(-4.80027 - 8.31431i) q^{41} +(2.87047 - 4.97180i) q^{43} +(1.56052 + 2.70291i) q^{47} +(2.70560 - 6.45599i) q^{49} +(-3.11266 + 1.79709i) q^{53} -11.6756i q^{55} +(-2.20220 + 3.81431i) q^{59} +(2.57069 - 1.48419i) q^{61} +(-7.92132 + 4.57338i) q^{65} +(4.90850 - 8.50177i) q^{67} -7.33513i q^{71} +(2.46466 - 1.42297i) q^{73} +(-5.48172 - 8.24094i) q^{77} +(-2.57338 - 4.45722i) q^{79} +(7.80262 - 13.5145i) q^{83} +(-8.47919 - 14.6864i) q^{85} +(2.59808 - 4.50000i) q^{89} +(-3.44385 + 6.94706i) q^{91} +(18.9553 + 10.9438i) q^{95} +(2.07606 + 1.19862i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{19} - 24 q^{37} + 6 q^{43} - 18 q^{61} + 54 q^{73} + 24 q^{79} + 6 q^{85} + 42 q^{91} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.12105 −1.39577 −0.697887 0.716207i \(-0.745876\pi\)
−0.697887 + 0.716207i \(0.745876\pi\)
\(6\) 0 0
\(7\) −2.20291 + 1.46533i −0.832620 + 0.553844i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.74094i 1.12794i 0.825797 + 0.563968i \(0.190726\pi\)
−0.825797 + 0.563968i \(0.809274\pi\)
\(12\) 0 0
\(13\) 2.53803 1.46533i 0.703923 0.406410i −0.104884 0.994485i \(-0.533447\pi\)
0.808807 + 0.588074i \(0.200114\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.71678 + 4.70560i 0.658915 + 1.14127i 0.980897 + 0.194529i \(0.0623177\pi\)
−0.321982 + 0.946746i \(0.604349\pi\)
\(18\) 0 0
\(19\) −6.07338 3.50647i −1.39333 0.804438i −0.399646 0.916670i \(-0.630867\pi\)
−0.993682 + 0.112231i \(0.964200\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.66487i 0.347150i 0.984821 + 0.173575i \(0.0555320\pi\)
−0.984821 + 0.173575i \(0.944468\pi\)
\(24\) 0 0
\(25\) 4.74094 0.948188
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.12340 + 3.53534i 1.13709 + 0.656497i 0.945707 0.325019i \(-0.105371\pi\)
0.191379 + 0.981516i \(0.438704\pi\)
\(30\) 0 0
\(31\) −6.60872 3.81555i −1.18696 0.685292i −0.229347 0.973345i \(-0.573659\pi\)
−0.957615 + 0.288053i \(0.906992\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.87538 4.57338i 1.16215 0.773042i
\(36\) 0 0
\(37\) −4.03534 + 6.98942i −0.663406 + 1.14905i 0.316308 + 0.948656i \(0.397557\pi\)
−0.979715 + 0.200397i \(0.935777\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.80027 8.31431i −0.749677 1.29848i −0.947978 0.318337i \(-0.896876\pi\)
0.198301 0.980141i \(-0.436458\pi\)
\(42\) 0 0
\(43\) 2.87047 4.97180i 0.437742 0.758192i −0.559773 0.828646i \(-0.689111\pi\)
0.997515 + 0.0704541i \(0.0224448\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.56052 + 2.70291i 0.227626 + 0.394259i 0.957104 0.289745i \(-0.0935704\pi\)
−0.729478 + 0.684004i \(0.760237\pi\)
\(48\) 0 0
\(49\) 2.70560 6.45599i 0.386514 0.922284i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.11266 + 1.79709i −0.427556 + 0.246850i −0.698305 0.715800i \(-0.746062\pi\)
0.270749 + 0.962650i \(0.412729\pi\)
\(54\) 0 0
\(55\) 11.6756i 1.57434i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.20220 + 3.81431i −0.286701 + 0.496581i −0.973020 0.230719i \(-0.925892\pi\)
0.686319 + 0.727301i \(0.259225\pi\)
\(60\) 0 0
\(61\) 2.57069 1.48419i 0.329143 0.190031i −0.326318 0.945260i \(-0.605808\pi\)
0.655460 + 0.755229i \(0.272475\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.92132 + 4.57338i −0.982519 + 0.567257i
\(66\) 0 0
\(67\) 4.90850 8.50177i 0.599669 1.03866i −0.393201 0.919453i \(-0.628632\pi\)
0.992870 0.119204i \(-0.0380344\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.33513i 0.870519i −0.900305 0.435260i \(-0.856657\pi\)
0.900305 0.435260i \(-0.143343\pi\)
\(72\) 0 0
\(73\) 2.46466 1.42297i 0.288466 0.166546i −0.348784 0.937203i \(-0.613405\pi\)
0.637250 + 0.770657i \(0.280072\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.48172 8.24094i −0.624700 0.939142i
\(78\) 0 0
\(79\) −2.57338 4.45722i −0.289527 0.501476i 0.684170 0.729323i \(-0.260165\pi\)
−0.973697 + 0.227847i \(0.926831\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.80262 13.5145i 0.856449 1.48341i −0.0188457 0.999822i \(-0.505999\pi\)
0.875294 0.483590i \(-0.160668\pi\)
\(84\) 0 0
\(85\) −8.47919 14.6864i −0.919697 1.59296i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.59808 4.50000i 0.275396 0.476999i −0.694839 0.719165i \(-0.744525\pi\)
0.970235 + 0.242166i \(0.0778579\pi\)
\(90\) 0 0
\(91\) −3.44385 + 6.94706i −0.361013 + 0.728249i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 18.9553 + 10.9438i 1.94477 + 1.12281i
\(96\) 0 0
\(97\) 2.07606 + 1.19862i 0.210792 + 0.121701i 0.601680 0.798738i \(-0.294498\pi\)
−0.390887 + 0.920439i \(0.627832\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −19.7554 −1.96574 −0.982870 0.184299i \(-0.940999\pi\)
−0.982870 + 0.184299i \(0.940999\pi\)
\(102\) 0 0
\(103\) 12.2938i 1.21135i −0.795714 0.605673i \(-0.792904\pi\)
0.795714 0.605673i \(-0.207096\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.7155 9.07338i −1.51928 0.877156i −0.999742 0.0227086i \(-0.992771\pi\)
−0.519537 0.854448i \(-0.673896\pi\)
\(108\) 0 0
\(109\) −5.74094 9.94360i −0.549882 0.952424i −0.998282 0.0585909i \(-0.981339\pi\)
0.448400 0.893833i \(-0.351994\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.56891 0.905813i 0.147591 0.0852117i −0.424386 0.905481i \(-0.639510\pi\)
0.571977 + 0.820270i \(0.306177\pi\)
\(114\) 0 0
\(115\) 5.19615i 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.8801 6.38500i −1.18071 0.585312i
\(120\) 0 0
\(121\) −2.99462 −0.272238
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.808542 0.0723182
\(126\) 0 0
\(127\) −7.47650 −0.663432 −0.331716 0.943379i \(-0.607628\pi\)
−0.331716 + 0.943379i \(0.607628\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.05064 0.616017 0.308009 0.951384i \(-0.400337\pi\)
0.308009 + 0.951384i \(0.400337\pi\)
\(132\) 0 0
\(133\) 18.5172 1.17511i 1.60565 0.101895i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.6703i 1.25336i −0.779275 0.626682i \(-0.784412\pi\)
0.779275 0.626682i \(-0.215588\pi\)
\(138\) 0 0
\(139\) 1.46734 0.847172i 0.124459 0.0718562i −0.436478 0.899715i \(-0.643774\pi\)
0.560937 + 0.827859i \(0.310441\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.48172 + 9.49462i 0.458405 + 0.793980i
\(144\) 0 0
\(145\) −19.1114 11.0340i −1.58712 0.916322i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.8170i 1.21386i 0.794757 + 0.606928i \(0.207598\pi\)
−0.794757 + 0.606928i \(0.792402\pi\)
\(150\) 0 0
\(151\) −6.07069 −0.494026 −0.247013 0.969012i \(-0.579449\pi\)
−0.247013 + 0.969012i \(0.579449\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 20.6261 + 11.9085i 1.65673 + 0.956514i
\(156\) 0 0
\(157\) 12.1141 + 6.99408i 0.966810 + 0.558188i 0.898262 0.439460i \(-0.144830\pi\)
0.0685479 + 0.997648i \(0.478163\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.43960 3.66756i −0.192267 0.289044i
\(162\) 0 0
\(163\) −0.926624 + 1.60496i −0.0725788 + 0.125710i −0.900031 0.435826i \(-0.856456\pi\)
0.827452 + 0.561536i \(0.189790\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.27495 + 2.20828i 0.0986588 + 0.170882i 0.911130 0.412120i \(-0.135211\pi\)
−0.812471 + 0.583002i \(0.801878\pi\)
\(168\) 0 0
\(169\) −2.20560 + 3.82020i −0.169661 + 0.293862i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.95640 + 3.38859i 0.148743 + 0.257630i 0.930763 0.365623i \(-0.119144\pi\)
−0.782020 + 0.623253i \(0.785811\pi\)
\(174\) 0 0
\(175\) −10.4438 + 6.94706i −0.789481 + 0.525148i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −16.9284 + 9.77359i −1.26529 + 0.730513i −0.974092 0.226152i \(-0.927386\pi\)
−0.291193 + 0.956664i \(0.594052\pi\)
\(180\) 0 0
\(181\) 18.1929i 1.35226i 0.736780 + 0.676132i \(0.236345\pi\)
−0.736780 + 0.676132i \(0.763655\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 12.5945 21.8143i 0.925966 1.60382i
\(186\) 0 0
\(187\) −17.6033 + 10.1633i −1.28728 + 0.743214i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.0609 7.54072i 0.945054 0.545627i 0.0535132 0.998567i \(-0.482958\pi\)
0.891541 + 0.452940i \(0.149625\pi\)
\(192\) 0 0
\(193\) 5.57338 9.65337i 0.401180 0.694865i −0.592688 0.805432i \(-0.701933\pi\)
0.993869 + 0.110567i \(0.0352667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.3696i 1.45127i 0.688079 + 0.725636i \(0.258454\pi\)
−0.688079 + 0.725636i \(0.741546\pi\)
\(198\) 0 0
\(199\) 6.42931 3.71197i 0.455762 0.263134i −0.254499 0.967073i \(-0.581910\pi\)
0.710261 + 0.703939i \(0.248577\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −18.6697 + 1.18478i −1.31036 + 0.0831556i
\(204\) 0 0
\(205\) 14.9819 + 25.9494i 1.04638 + 1.81238i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 13.1175 22.7201i 0.907355 1.57158i
\(210\) 0 0
\(211\) 6.77628 + 11.7369i 0.466499 + 0.807999i 0.999268 0.0382614i \(-0.0121820\pi\)
−0.532769 + 0.846261i \(0.678849\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.95887 + 15.5172i −0.610990 + 1.05827i
\(216\) 0 0
\(217\) 20.1494 1.27869i 1.36783 0.0868029i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.7905 + 7.96197i 0.927652 + 0.535580i
\(222\) 0 0
\(223\) −7.61410 4.39600i −0.509878 0.294378i 0.222906 0.974840i \(-0.428446\pi\)
−0.732783 + 0.680462i \(0.761779\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.7048 −0.843248 −0.421624 0.906771i \(-0.638540\pi\)
−0.421624 + 0.906771i \(0.638540\pi\)
\(228\) 0 0
\(229\) 27.9670i 1.84811i −0.382258 0.924056i \(-0.624854\pi\)
0.382258 0.924056i \(-0.375146\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.2737 + 8.24094i 0.935103 + 0.539882i 0.888422 0.459028i \(-0.151802\pi\)
0.0466810 + 0.998910i \(0.485136\pi\)
\(234\) 0 0
\(235\) −4.87047 8.43590i −0.317714 0.550297i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.78349 + 2.76175i −0.309418 + 0.178643i −0.646666 0.762773i \(-0.723837\pi\)
0.337248 + 0.941416i \(0.390504\pi\)
\(240\) 0 0
\(241\) 21.5252i 1.38656i −0.720668 0.693280i \(-0.756165\pi\)
0.720668 0.693280i \(-0.243835\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.44429 + 20.1494i −0.539486 + 1.28730i
\(246\) 0 0
\(247\) −20.5526 −1.30773
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.808542 −0.0510347 −0.0255174 0.999674i \(-0.508123\pi\)
−0.0255174 + 0.999674i \(0.508123\pi\)
\(252\) 0 0
\(253\) −6.22819 −0.391563
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.9634 −0.683881 −0.341941 0.939722i \(-0.611084\pi\)
−0.341941 + 0.939722i \(0.611084\pi\)
\(258\) 0 0
\(259\) −1.35235 21.3102i −0.0840308 1.32415i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.33513i 0.452303i −0.974092 0.226152i \(-0.927386\pi\)
0.974092 0.226152i \(-0.0726145\pi\)
\(264\) 0 0
\(265\) 9.71475 5.60881i 0.596772 0.344547i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.28569 7.42303i −0.261303 0.452590i 0.705285 0.708924i \(-0.250819\pi\)
−0.966588 + 0.256333i \(0.917486\pi\)
\(270\) 0 0
\(271\) 6.79619 + 3.92378i 0.412839 + 0.238353i 0.692009 0.721889i \(-0.256726\pi\)
−0.279170 + 0.960242i \(0.590059\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 17.7356i 1.06949i
\(276\) 0 0
\(277\) −2.26981 −0.136380 −0.0681900 0.997672i \(-0.521722\pi\)
−0.0681900 + 0.997672i \(0.521722\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.0787 + 14.4792i 1.49607 + 0.863756i 0.999990 0.00452108i \(-0.00143911\pi\)
0.496080 + 0.868277i \(0.334772\pi\)
\(282\) 0 0
\(283\) −2.11679 1.22213i −0.125830 0.0726479i 0.435764 0.900061i \(-0.356478\pi\)
−0.561594 + 0.827413i \(0.689812\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.7578 + 11.2817i 1.34335 + 0.665935i
\(288\) 0 0
\(289\) −6.26175 + 10.8457i −0.368338 + 0.637980i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.27730 + 7.40850i 0.249883 + 0.432809i 0.963493 0.267733i \(-0.0862747\pi\)
−0.713610 + 0.700543i \(0.752941\pi\)
\(294\) 0 0
\(295\) 6.87316 11.9047i 0.400171 0.693116i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.43960 + 4.22550i 0.141086 + 0.244367i
\(300\) 0 0
\(301\) 0.961968 + 15.1586i 0.0554469 + 0.873727i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.02324 + 4.63222i −0.459409 + 0.265240i
\(306\) 0 0
\(307\) 23.8000i 1.35834i −0.733982 0.679169i \(-0.762340\pi\)
0.733982 0.679169i \(-0.237660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.55460 14.8170i 0.485087 0.840195i −0.514766 0.857331i \(-0.672121\pi\)
0.999853 + 0.0171354i \(0.00545463\pi\)
\(312\) 0 0
\(313\) −1.35325 + 0.781298i −0.0764901 + 0.0441616i −0.537757 0.843100i \(-0.680728\pi\)
0.461267 + 0.887261i \(0.347395\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.5511 + 13.0199i −1.26660 + 0.731271i −0.974343 0.225069i \(-0.927739\pi\)
−0.292256 + 0.956340i \(0.594406\pi\)
\(318\) 0 0
\(319\) −13.2255 + 22.9072i −0.740486 + 1.28256i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 38.1051i 2.12023i
\(324\) 0 0
\(325\) 12.0327 6.94706i 0.667452 0.385353i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.39835 3.66756i −0.407884 0.202199i
\(330\) 0 0
\(331\) 15.1087 + 26.1691i 0.830450 + 1.43838i 0.897682 + 0.440645i \(0.145250\pi\)
−0.0672312 + 0.997737i \(0.521417\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −15.3197 + 26.5344i −0.837003 + 1.44973i
\(336\) 0 0
\(337\) 11.1114 + 19.2455i 0.605277 + 1.04837i 0.992008 + 0.126178i \(0.0402710\pi\)
−0.386731 + 0.922193i \(0.626396\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.2737 24.7228i 0.772966 1.33882i
\(342\) 0 0
\(343\) 3.50000 + 18.1865i 0.188982 + 0.981981i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −31.6853 18.2935i −1.70095 0.982047i −0.944796 0.327658i \(-0.893741\pi\)
−0.756159 0.654388i \(-0.772926\pi\)
\(348\) 0 0
\(349\) −7.96197 4.59684i −0.426194 0.246063i 0.271530 0.962430i \(-0.412470\pi\)
−0.697724 + 0.716367i \(0.745804\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.554360 −0.0295056 −0.0147528 0.999891i \(-0.504696\pi\)
−0.0147528 + 0.999891i \(0.504696\pi\)
\(354\) 0 0
\(355\) 22.8933i 1.21505i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.3487 7.12953i −0.651740 0.376282i 0.137383 0.990518i \(-0.456131\pi\)
−0.789123 + 0.614236i \(0.789464\pi\)
\(360\) 0 0
\(361\) 15.0906 + 26.1377i 0.794242 + 1.37567i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.69231 + 4.44116i −0.402634 + 0.232461i
\(366\) 0 0
\(367\) 13.9504i 0.728207i −0.931358 0.364104i \(-0.881375\pi\)
0.931358 0.364104i \(-0.118625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.22355 8.51991i 0.219276 0.442332i
\(372\) 0 0
\(373\) 16.4349 0.850966 0.425483 0.904966i \(-0.360104\pi\)
0.425483 + 0.904966i \(0.360104\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.7218 1.06723
\(378\) 0 0
\(379\) 34.5217 1.77326 0.886630 0.462479i \(-0.153040\pi\)
0.886630 + 0.462479i \(0.153040\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.92959 −0.200793 −0.100396 0.994948i \(-0.532011\pi\)
−0.100396 + 0.994948i \(0.532011\pi\)
\(384\) 0 0
\(385\) 17.1087 + 25.7204i 0.871941 + 1.31083i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 21.4765i 1.08890i −0.838793 0.544451i \(-0.816738\pi\)
0.838793 0.544451i \(-0.183262\pi\)
\(390\) 0 0
\(391\) −7.83422 + 4.52309i −0.396194 + 0.228743i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.03163 + 13.9112i 0.404115 + 0.699948i
\(396\) 0 0
\(397\) −15.8913 9.17483i −0.797560 0.460472i 0.0450569 0.998984i \(-0.485653\pi\)
−0.842617 + 0.538513i \(0.818986\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.52350i 0.275830i −0.990444 0.137915i \(-0.955960\pi\)
0.990444 0.137915i \(-0.0440401\pi\)
\(402\) 0 0
\(403\) −22.3642 −1.11404
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −26.1470 15.0960i −1.29606 0.748280i
\(408\) 0 0
\(409\) 8.64406 + 4.99065i 0.427421 + 0.246772i 0.698248 0.715856i \(-0.253963\pi\)
−0.270826 + 0.962628i \(0.587297\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.738012 11.6295i −0.0363152 0.572252i
\(414\) 0 0
\(415\) −24.3523 + 42.1795i −1.19541 + 2.07051i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.14798 8.91657i −0.251495 0.435603i 0.712442 0.701731i \(-0.247589\pi\)
−0.963938 + 0.266128i \(0.914256\pi\)
\(420\) 0 0
\(421\) −5.24363 + 9.08223i −0.255559 + 0.442641i −0.965047 0.262076i \(-0.915593\pi\)
0.709488 + 0.704717i \(0.248926\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.8801 + 22.3089i 0.624775 + 1.08214i
\(426\) 0 0
\(427\) −3.48816 + 7.03644i −0.168804 + 0.340517i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.26668 + 3.04072i −0.253687 + 0.146466i −0.621451 0.783453i \(-0.713457\pi\)
0.367764 + 0.929919i \(0.380123\pi\)
\(432\) 0 0
\(433\) 25.6452i 1.23243i −0.787579 0.616214i \(-0.788666\pi\)
0.787579 0.616214i \(-0.211334\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.83782 10.1114i 0.279261 0.483694i
\(438\) 0 0
\(439\) −24.7228 + 14.2737i −1.17996 + 0.681248i −0.956004 0.293353i \(-0.905229\pi\)
−0.223951 + 0.974600i \(0.571896\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.3702 10.6060i 0.872794 0.503908i 0.00451818 0.999990i \(-0.498562\pi\)
0.868276 + 0.496082i \(0.165228\pi\)
\(444\) 0 0
\(445\) −8.10872 + 14.0447i −0.384390 + 0.665783i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.5633i 1.06483i −0.846484 0.532414i \(-0.821285\pi\)
0.846484 0.532414i \(-0.178715\pi\)
\(450\) 0 0
\(451\) 31.1033 17.9575i 1.46460 0.845587i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.7484 21.6821i 0.503893 1.01647i
\(456\) 0 0
\(457\) −6.72013 11.6396i −0.314354 0.544478i 0.664946 0.746892i \(-0.268455\pi\)
−0.979300 + 0.202414i \(0.935121\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.99642 + 17.3143i −0.465580 + 0.806408i −0.999227 0.0392989i \(-0.987488\pi\)
0.533648 + 0.845707i \(0.320821\pi\)
\(462\) 0 0
\(463\) −5.00538 8.66957i −0.232620 0.402909i 0.725959 0.687738i \(-0.241396\pi\)
−0.958578 + 0.284829i \(0.908063\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.7699 29.0463i 0.776018 1.34410i −0.158203 0.987407i \(-0.550570\pi\)
0.934221 0.356695i \(-0.116097\pi\)
\(468\) 0 0
\(469\) 1.64496 + 25.9212i 0.0759574 + 1.19693i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.5992 + 10.7383i 0.855192 + 0.493745i
\(474\) 0 0
\(475\) −28.7935 16.6239i −1.32114 0.762759i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.31720 0.380023 0.190011 0.981782i \(-0.439148\pi\)
0.190011 + 0.981782i \(0.439148\pi\)
\(480\) 0 0
\(481\) 23.6525i 1.07846i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.47950 3.74094i −0.294219 0.169867i
\(486\) 0 0
\(487\) −1.36509 2.36441i −0.0618583 0.107142i 0.833438 0.552613i \(-0.186369\pi\)
−0.895296 + 0.445472i \(0.853036\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.00704 + 5.20022i −0.406482 + 0.234683i −0.689277 0.724498i \(-0.742072\pi\)
0.282795 + 0.959180i \(0.408738\pi\)
\(492\) 0 0
\(493\) 38.4190i 1.73030i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.7484 + 16.1586i 0.482132 + 0.724812i
\(498\) 0 0
\(499\) −10.7517 −0.481312 −0.240656 0.970610i \(-0.577363\pi\)
−0.240656 + 0.970610i \(0.577363\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.3466 −0.773447 −0.386723 0.922196i \(-0.626393\pi\)
−0.386723 + 0.922196i \(0.626393\pi\)
\(504\) 0 0
\(505\) 61.6577 2.74373
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.37968 0.0611534 0.0305767 0.999532i \(-0.490266\pi\)
0.0305767 + 0.999532i \(0.490266\pi\)
\(510\) 0 0
\(511\) −3.34428 + 6.74621i −0.147942 + 0.298435i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 38.3696i 1.69077i
\(516\) 0 0
\(517\) −10.1114 + 5.83782i −0.444699 + 0.256747i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.19381 + 3.79978i 0.0961123 + 0.166471i 0.910072 0.414450i \(-0.136026\pi\)
−0.813960 + 0.580921i \(0.802693\pi\)
\(522\) 0 0
\(523\) −30.6494 17.6955i −1.34021 0.773769i −0.353369 0.935484i \(-0.614964\pi\)
−0.986837 + 0.161715i \(0.948297\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 41.4639i 1.80620i
\(528\) 0 0
\(529\) 20.2282 0.879487
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −24.3665 14.0680i −1.05543 0.609353i
\(534\) 0 0
\(535\) 49.0490 + 28.3184i 2.12057 + 1.22431i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 24.1514 + 10.1215i 1.04028 + 0.435962i
\(540\) 0 0
\(541\) −23.1114 + 40.0301i −0.993637 + 1.72103i −0.399278 + 0.916830i \(0.630739\pi\)
−0.594359 + 0.804200i \(0.702594\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.9177 + 31.0344i 0.767512 + 1.32937i
\(546\) 0 0
\(547\) −2.14406 + 3.71363i −0.0916735 + 0.158783i −0.908215 0.418503i \(-0.862555\pi\)
0.816542 + 0.577286i \(0.195888\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −24.7931 42.9429i −1.05622 1.82943i
\(552\) 0 0
\(553\) 12.2002 + 6.04798i 0.518806 + 0.257186i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.49023 5.47919i 0.402114 0.232161i −0.285282 0.958444i \(-0.592087\pi\)
0.687396 + 0.726283i \(0.258754\pi\)
\(558\) 0 0
\(559\) 16.8248i 0.711612i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −16.3572 + 28.3315i −0.689375 + 1.19403i 0.282666 + 0.959218i \(0.408781\pi\)
−0.972040 + 0.234813i \(0.924552\pi\)
\(564\) 0 0
\(565\) −4.89666 + 2.82709i −0.206004 + 0.118936i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 31.8124 18.3669i 1.33364 0.769980i 0.347788 0.937573i \(-0.386933\pi\)
0.985856 + 0.167594i \(0.0535997\pi\)
\(570\) 0 0
\(571\) −7.10603 + 12.3080i −0.297378 + 0.515074i −0.975535 0.219843i \(-0.929446\pi\)
0.678157 + 0.734917i \(0.262779\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.89307i 0.329164i
\(576\) 0 0
\(577\) 22.1848 12.8084i 0.923565 0.533220i 0.0387941 0.999247i \(-0.487648\pi\)
0.884771 + 0.466027i \(0.154315\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.61486 + 41.2047i 0.108483 + 1.70946i
\(582\) 0 0
\(583\) −6.72282 11.6443i −0.278431 0.482256i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.05064 + 12.2121i −0.291011 + 0.504046i −0.974049 0.226337i \(-0.927325\pi\)
0.683038 + 0.730383i \(0.260658\pi\)
\(588\) 0 0
\(589\) 26.7582 + 46.3465i 1.10255 + 1.90967i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.9721 + 32.8606i −0.779090 + 1.34942i 0.153377 + 0.988168i \(0.450985\pi\)
−0.932467 + 0.361255i \(0.882348\pi\)
\(594\) 0 0
\(595\) 40.1993 + 19.9279i 1.64801 + 0.816964i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.9032 9.75906i −0.690646 0.398744i 0.113208 0.993571i \(-0.463887\pi\)
−0.803854 + 0.594827i \(0.797221\pi\)
\(600\) 0 0
\(601\) 33.0436 + 19.0777i 1.34788 + 0.778197i 0.987948 0.154783i \(-0.0494679\pi\)
0.359928 + 0.932980i \(0.382801\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.34636 0.379984
\(606\) 0 0
\(607\) 34.0355i 1.38146i 0.723114 + 0.690729i \(0.242710\pi\)
−0.723114 + 0.690729i \(0.757290\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.92132 + 4.57338i 0.320462 + 0.185019i
\(612\) 0 0
\(613\) −10.6676 18.4768i −0.430859 0.746269i 0.566089 0.824344i \(-0.308456\pi\)
−0.996947 + 0.0780750i \(0.975123\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.7263 + 10.8116i −0.753892 + 0.435260i −0.827098 0.562057i \(-0.810010\pi\)
0.0732065 + 0.997317i \(0.476677\pi\)
\(618\) 0 0
\(619\) 19.8495i 0.797818i −0.916990 0.398909i \(-0.869389\pi\)
0.916990 0.398909i \(-0.130611\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.870682 + 13.7201i 0.0348831 + 0.549685i
\(624\) 0 0
\(625\) −26.2282 −1.04913
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −43.8525 −1.74851
\(630\) 0 0
\(631\) −26.3803 −1.05018 −0.525092 0.851045i \(-0.675969\pi\)
−0.525092 + 0.851045i \(0.675969\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23.3345 0.926002
\(636\) 0 0
\(637\) −2.59329 20.3501i −0.102750 0.806300i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.5002i 1.40217i −0.713076 0.701087i \(-0.752699\pi\)
0.713076 0.701087i \(-0.247301\pi\)
\(642\) 0 0
\(643\) −5.61947 + 3.24440i −0.221610 + 0.127947i −0.606696 0.794934i \(-0.707505\pi\)
0.385085 + 0.922881i \(0.374172\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.8076 + 37.7718i 0.857343 + 1.48496i 0.874454 + 0.485109i \(0.161220\pi\)
−0.0171104 + 0.999854i \(0.505447\pi\)
\(648\) 0 0
\(649\) −14.2691 8.23828i −0.560112 0.323381i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.0707i 0.981092i −0.871415 0.490546i \(-0.836797\pi\)
0.871415 0.490546i \(-0.163203\pi\)
\(654\) 0 0
\(655\) −22.0054 −0.859821
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −11.6617 6.73287i −0.454275 0.262276i 0.255359 0.966846i \(-0.417806\pi\)
−0.709634 + 0.704571i \(0.751140\pi\)
\(660\) 0 0
\(661\) −40.4783 23.3702i −1.57442 0.908994i −0.995617 0.0935285i \(-0.970185\pi\)
−0.578806 0.815465i \(-0.696481\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −57.7931 + 3.66756i −2.24112 + 0.142222i
\(666\) 0 0
\(667\) −5.88590 + 10.1947i −0.227903 + 0.394740i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.55225 + 9.61679i 0.214342 + 0.371252i
\(672\) 0 0
\(673\) 18.9638 32.8462i 0.730999 1.26613i −0.225458 0.974253i \(-0.572388\pi\)
0.956457 0.291875i \(-0.0942790\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.56891 2.71744i −0.0602983 0.104440i 0.834300 0.551310i \(-0.185872\pi\)
−0.894599 + 0.446870i \(0.852539\pi\)
\(678\) 0 0
\(679\) −6.32975 + 0.401687i −0.242913 + 0.0154153i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.1449 + 7.01184i −0.464711 + 0.268301i −0.714023 0.700122i \(-0.753129\pi\)
0.249312 + 0.968423i \(0.419795\pi\)
\(684\) 0 0
\(685\) 45.7866i 1.74941i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.26668 + 9.12216i −0.200645 + 0.347527i
\(690\) 0 0
\(691\) −28.6141 + 16.5204i −1.08853 + 0.628464i −0.933185 0.359396i \(-0.882983\pi\)
−0.155346 + 0.987860i \(0.549649\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.57965 + 2.64406i −0.173716 + 0.100295i
\(696\) 0 0
\(697\) 26.0825 45.1763i 0.987946 1.71117i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.4058i 1.22395i 0.790877 + 0.611975i \(0.209625\pi\)
−0.790877 + 0.611975i \(0.790375\pi\)
\(702\) 0 0
\(703\) 49.0163 28.2996i 1.84869 1.06734i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 43.5194 28.9483i 1.63672 1.08871i
\(708\) 0 0
\(709\) 23.7528 + 41.1410i 0.892055 + 1.54508i 0.837408 + 0.546578i \(0.184070\pi\)
0.0546463 + 0.998506i \(0.482597\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.35241 11.0027i 0.237899 0.412054i
\(714\) 0 0
\(715\) −17.1087 29.6332i −0.639830 1.10822i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −23.1139 + 40.0344i −0.862003 + 1.49303i 0.00798976 + 0.999968i \(0.497457\pi\)
−0.869993 + 0.493065i \(0.835877\pi\)
\(720\) 0 0
\(721\) 18.0145 + 27.0821i 0.670896 + 1.00859i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 29.0306 + 16.7608i 1.07817 + 0.622482i
\(726\) 0 0
\(727\) −12.3262 7.11651i −0.457152 0.263937i 0.253694 0.967285i \(-0.418354\pi\)
−0.710846 + 0.703348i \(0.751688\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 31.1937 1.15374
\(732\) 0 0
\(733\) 40.0914i 1.48081i −0.672162 0.740404i \(-0.734634\pi\)
0.672162 0.740404i \(-0.265366\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.8046 + 18.3624i 1.17154 + 0.676388i
\(738\) 0 0
\(739\) 2.99731 + 5.19150i 0.110258 + 0.190972i 0.915874 0.401465i \(-0.131499\pi\)
−0.805616 + 0.592438i \(0.798166\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.20912 4.16219i 0.264477 0.152696i −0.361898 0.932218i \(-0.617871\pi\)
0.626375 + 0.779522i \(0.284538\pi\)
\(744\) 0 0
\(745\) 46.2446i 1.69427i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 47.9154 3.04072i 1.75079 0.111106i
\(750\) 0 0
\(751\) 10.9530 0.399681 0.199840 0.979828i \(-0.435958\pi\)
0.199840 + 0.979828i \(0.435958\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.9469 0.689548
\(756\) 0 0
\(757\) −3.28275 −0.119314 −0.0596568 0.998219i \(-0.519001\pi\)
−0.0596568 + 0.998219i \(0.519001\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −46.9232 −1.70097 −0.850483 0.526003i \(-0.823690\pi\)
−0.850483 + 0.526003i \(0.823690\pi\)
\(762\) 0 0
\(763\) 27.2174 + 13.4924i 0.985337 + 0.488459i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.9078i 0.466074i
\(768\) 0 0
\(769\) −3.91587 + 2.26083i −0.141210 + 0.0815276i −0.568940 0.822379i \(-0.692647\pi\)
0.427731 + 0.903906i \(0.359313\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.8635 36.1367i −0.750409 1.29975i −0.947625 0.319386i \(-0.896523\pi\)
0.197216 0.980360i \(-0.436810\pi\)
\(774\) 0 0
\(775\) −31.3315 18.0893i −1.12546 0.649786i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 67.3279i 2.41227i
\(780\) 0 0
\(781\) 27.4403 0.981890
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −37.8087 21.8288i −1.34945 0.779105i
\(786\) 0 0
\(787\) −6.86957 3.96615i −0.244874 0.141378i 0.372541 0.928016i \(-0.378487\pi\)
−0.617415 + 0.786638i \(0.711820\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.12885 + 4.29440i −0.0756933 + 0.152691i
\(792\) 0 0
\(793\) 4.34966 7.53383i 0.154461 0.267534i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.79200 15.2282i −0.311429 0.539410i 0.667243 0.744840i \(-0.267474\pi\)
−0.978672 + 0.205430i \(0.934141\pi\)
\(798\) 0 0
\(799\) −8.47919 + 14.6864i −0.299972 + 0.519567i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.32324 + 9.22013i 0.187853 + 0.325371i
\(804\) 0 0
\(805\) 7.61410 + 11.4466i 0.268362 + 0.403441i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 45.9338 26.5199i 1.61495 0.932390i 0.626747 0.779223i \(-0.284386\pi\)
0.988200 0.153168i \(-0.0489475\pi\)
\(810\) 0 0
\(811\) 0.966384i 0.0339343i 0.999856 + 0.0169672i \(0.00540108\pi\)
−0.999856 + 0.0169672i \(0.994599\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.89204 5.00916i 0.101304 0.175463i
\(816\) 0 0
\(817\) −34.8669 + 20.1304i −1.21984 + 0.704274i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38.5209 22.2400i 1.34439 0.776183i 0.356940 0.934127i \(-0.383820\pi\)
0.987448 + 0.157945i \(0.0504868\pi\)
\(822\) 0 0
\(823\) −13.0327 + 22.5732i −0.454290 + 0.786853i −0.998647 0.0520005i \(-0.983440\pi\)
0.544357 + 0.838853i \(0.316774\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.4166i 0.466540i 0.972412 + 0.233270i \(0.0749426\pi\)
−0.972412 + 0.233270i \(0.925057\pi\)
\(828\) 0 0
\(829\) −0.407601 + 0.235328i −0.0141566 + 0.00817329i −0.507062 0.861910i \(-0.669268\pi\)
0.492905 + 0.870083i \(0.335935\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 37.7298 4.80804i 1.30726 0.166589i
\(834\) 0 0
\(835\) −3.97919 6.89216i −0.137706 0.238513i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −11.7154 + 20.2917i −0.404461 + 0.700548i −0.994259 0.107004i \(-0.965874\pi\)
0.589797 + 0.807551i \(0.299208\pi\)
\(840\) 0 0
\(841\) 10.4973 + 18.1819i 0.361976 + 0.626961i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.88377 11.9230i 0.236809 0.410165i
\(846\) 0 0
\(847\) 6.59688 4.38812i 0.226671 0.150778i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −11.6365 6.71834i −0.398894 0.230302i
\(852\) 0 0
\(853\) −16.4266 9.48392i −0.562437 0.324723i 0.191686 0.981456i \(-0.438604\pi\)
−0.754123 + 0.656733i \(0.771938\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.1964 −0.450780 −0.225390 0.974269i \(-0.572366\pi\)
−0.225390 + 0.974269i \(0.572366\pi\)
\(858\) 0 0
\(859\) 8.98985i 0.306730i −0.988170 0.153365i \(-0.950989\pi\)
0.988170 0.153365i \(-0.0490110\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0178 6.93847i −0.409090 0.236188i 0.281309 0.959617i \(-0.409232\pi\)
−0.690399 + 0.723429i \(0.742565\pi\)
\(864\) 0 0
\(865\) −6.10603 10.5760i −0.207611 0.359593i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.6742 9.62684i 0.565633 0.326568i
\(870\) 0 0
\(871\) 28.7704i 0.974847i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.78114 + 1.18478i −0.0602136 + 0.0400530i
\(876\) 0 0
\(877\) −10.1306 −0.342087 −0.171043 0.985263i \(-0.554714\pi\)
−0.171043 + 0.985263i \(0.554714\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30.7189 −1.03495 −0.517473 0.855700i \(-0.673127\pi\)
−0.517473 + 0.855700i \(0.673127\pi\)
\(882\) 0 0
\(883\) −35.4403 −1.19266 −0.596330 0.802740i \(-0.703375\pi\)
−0.596330 + 0.802740i \(0.703375\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.2767 1.21805 0.609027 0.793150i \(-0.291560\pi\)
0.609027 + 0.793150i \(0.291560\pi\)
\(888\) 0 0
\(889\) 16.4700 10.9556i 0.552387 0.367438i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 21.8877i 0.732444i
\(894\) 0 0
\(895\) 52.8342 30.5039i 1.76605 1.01963i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −26.9785 46.7282i −0.899785 1.55847i
\(900\) 0 0
\(901\) −16.9128 9.76460i −0.563447 0.325306i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 56.7808i 1.88746i
\(906\) 0 0
\(907\) 7.85862 0.260941 0.130471 0.991452i \(-0.458351\pi\)
0.130471 + 0.991452i \(0.458351\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.0787 14.4792i −0.830894 0.479717i 0.0232646 0.999729i \(-0.492594\pi\)
−0.854159 + 0.520012i \(0.825927\pi\)
\(912\) 0 0
\(913\) 50.5570 + 29.1891i 1.67319 + 0.966019i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.5319 + 10.3315i −0.512908 + 0.341177i
\(918\) 0 0
\(919\) 17.1993 29.7901i 0.567353 0.982684i −0.429473 0.903080i \(-0.641301\pi\)
0.996826 0.0796049i \(-0.0253659\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10.7484 18.6168i −0.353788 0.612779i
\(924\) 0 0
\(925\) −19.1313 + 33.1364i −0.629034 + 1.08952i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.05052 5.28365i −0.100084 0.173351i 0.811635 0.584165i \(-0.198578\pi\)
−0.911719 + 0.410814i \(0.865245\pi\)
\(930\) 0 0
\(931\) −39.0698 + 29.7226i −1.28046 + 0.974117i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 54.9409 31.7201i 1.79676 1.03736i
\(936\) 0 0
\(937\) 50.7128i 1.65671i −0.560201 0.828357i \(-0.689276\pi\)
0.560201 0.828357i \(-0.310724\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17.5616 + 30.4177i −0.572493 + 0.991587i 0.423816 + 0.905748i \(0.360690\pi\)
−0.996309 + 0.0858389i \(0.972643\pi\)
\(942\) 0 0
\(943\) 13.8423 7.99185i 0.450767 0.260250i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −34.2973 + 19.8016i −1.11451 + 0.643465i −0.939995 0.341189i \(-0.889170\pi\)
−0.174519 + 0.984654i \(0.555837\pi\)
\(948\) 0 0
\(949\) 4.17025 7.22309i 0.135372 0.234471i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.5942i 0.407966i 0.978974 + 0.203983i \(0.0653887\pi\)
−0.978974 + 0.203983i \(0.934611\pi\)
\(954\) 0 0
\(955\) −40.7637 + 23.5349i −1.31908 + 0.761573i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 21.4968 + 32.3172i 0.694168 + 1.04358i
\(960\) 0 0
\(961\) 13.6168 + 23.5850i 0.439251 + 0.760805i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −17.3948 + 30.1286i −0.559958 + 0.969875i
\(966\) 0 0
\(967\) −25.9203 44.8954i −0.833542 1.44374i −0.895212 0.445641i \(-0.852976\pi\)
0.0616698 0.998097i \(-0.480357\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.918852 + 1.59150i −0.0294874 + 0.0510736i −0.880392 0.474246i \(-0.842721\pi\)
0.850905 + 0.525319i \(0.176054\pi\)
\(972\) 0 0
\(973\) −1.99103 + 4.01639i −0.0638296 + 0.128760i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.2808 13.4412i −0.744818 0.430021i 0.0790007 0.996875i \(-0.474827\pi\)
−0.823818 + 0.566854i \(0.808160\pi\)
\(978\) 0 0
\(979\) 16.8342 + 9.71924i 0.538024 + 0.310628i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.3970 0.522983 0.261492 0.965206i \(-0.415786\pi\)
0.261492 + 0.965206i \(0.415786\pi\)
\(984\) 0 0
\(985\) 63.5744i 2.02565i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.27742 + 4.77897i 0.263207 + 0.151962i
\(990\) 0 0
\(991\) 1.17941 + 2.04279i 0.0374651 + 0.0648915i 0.884150 0.467203i \(-0.154738\pi\)
−0.846685 + 0.532095i \(0.821405\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20.0662 + 11.5852i −0.636141 + 0.367276i
\(996\) 0 0
\(997\) 15.1398i 0.479481i −0.970837 0.239740i \(-0.922938\pi\)
0.970837 0.239740i \(-0.0770623\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.i.593.1 12
3.2 odd 2 inner 2268.2.bm.i.593.6 12
7.3 odd 6 2268.2.w.i.269.1 12
9.2 odd 6 756.2.t.e.593.1 yes 12
9.4 even 3 2268.2.w.i.1349.6 12
9.5 odd 6 2268.2.w.i.1349.1 12
9.7 even 3 756.2.t.e.593.6 yes 12
21.17 even 6 2268.2.w.i.269.6 12
63.2 odd 6 5292.2.f.e.2645.11 12
63.16 even 3 5292.2.f.e.2645.2 12
63.31 odd 6 inner 2268.2.bm.i.1025.6 12
63.38 even 6 756.2.t.e.269.6 yes 12
63.47 even 6 5292.2.f.e.2645.1 12
63.52 odd 6 756.2.t.e.269.1 12
63.59 even 6 inner 2268.2.bm.i.1025.1 12
63.61 odd 6 5292.2.f.e.2645.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.t.e.269.1 12 63.52 odd 6
756.2.t.e.269.6 yes 12 63.38 even 6
756.2.t.e.593.1 yes 12 9.2 odd 6
756.2.t.e.593.6 yes 12 9.7 even 3
2268.2.w.i.269.1 12 7.3 odd 6
2268.2.w.i.269.6 12 21.17 even 6
2268.2.w.i.1349.1 12 9.5 odd 6
2268.2.w.i.1349.6 12 9.4 even 3
2268.2.bm.i.593.1 12 1.1 even 1 trivial
2268.2.bm.i.593.6 12 3.2 odd 2 inner
2268.2.bm.i.1025.1 12 63.59 even 6 inner
2268.2.bm.i.1025.6 12 63.31 odd 6 inner
5292.2.f.e.2645.1 12 63.47 even 6
5292.2.f.e.2645.2 12 63.16 even 3
5292.2.f.e.2645.11 12 63.2 odd 6
5292.2.f.e.2645.12 12 63.61 odd 6