Properties

Label 2255.1.h.j
Level $2255$
Weight $1$
Character orbit 2255.h
Self dual yes
Analytic conductor $1.125$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -2255
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2255,1,Mod(2254,2255)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2255, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2255.2254");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2255 = 5 \cdot 11 \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2255.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.12539160349\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.2.129287396253125.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} - \beta_1 q^{3} + ( - \beta_{2} + 1) q^{4} - q^{5} + (2 \beta_{2} + 1) q^{6} + ( - \beta_{3} + \beta_1) q^{8} + (\beta_{2} + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{3} q^{2} - \beta_1 q^{3} + ( - \beta_{2} + 1) q^{4} - q^{5} + (2 \beta_{2} + 1) q^{6} + ( - \beta_{3} + \beta_1) q^{8} + (\beta_{2} + 2) q^{9} + \beta_{3} q^{10} + q^{11} + (\beta_{3} - \beta_1) q^{12} + \beta_1 q^{15} - 2 \beta_{2} q^{16} + ( - \beta_{3} - \beta_1) q^{18} - \beta_{2} q^{19} + (\beta_{2} - 1) q^{20} - \beta_{3} q^{22} + (\beta_{2} - 2) q^{24} + q^{25} + ( - \beta_{3} - \beta_1) q^{27} + ( - \beta_{2} - 1) q^{29} + ( - 2 \beta_{2} - 1) q^{30} + \beta_{2} q^{31} + ( - \beta_{3} + \beta_1) q^{32} - \beta_1 q^{33} + q^{36} + ( - \beta_{3} + \beta_1) q^{38} + (\beta_{3} - \beta_1) q^{40} - q^{41} + ( - \beta_{2} + 1) q^{44} + ( - \beta_{2} - 2) q^{45} + 2 \beta_{3} q^{48} + q^{49} - \beta_{3} q^{50} + \beta_{3} q^{53} + (\beta_{2} + 3) q^{54} - q^{55} + \beta_{3} q^{57} + \beta_1 q^{58} + ( - \beta_{2} - 1) q^{59} + ( - \beta_{3} + \beta_1) q^{60} + (\beta_{3} - \beta_1) q^{62} + ( - \beta_{2} + 1) q^{64} + (2 \beta_{2} + 1) q^{66} + \beta_{3} q^{67} + \beta_1 q^{72} + \beta_1 q^{73} - \beta_1 q^{75} + ( - 2 \beta_{2} + 1) q^{76} + ( - \beta_{2} - 1) q^{79} + 2 \beta_{2} q^{80} + (2 \beta_{2} + 2) q^{81} + \beta_{3} q^{82} - \beta_1 q^{83} + (\beta_{3} + \beta_1) q^{87} + ( - \beta_{3} + \beta_1) q^{88} + (\beta_{3} + \beta_1) q^{90} - \beta_{3} q^{93} + \beta_{2} q^{95} + (\beta_{2} - 2) q^{96} - \beta_{3} q^{98} + (\beta_{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} - 4 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 6 q^{4} - 4 q^{5} + 6 q^{9} + 4 q^{11} + 4 q^{16} + 2 q^{19} - 6 q^{20} - 10 q^{24} + 4 q^{25} - 2 q^{29} - 2 q^{31} + 4 q^{36} - 4 q^{41} + 6 q^{44} - 6 q^{45} + 4 q^{49} + 10 q^{54} - 4 q^{55} - 2 q^{59} + 6 q^{64} + 8 q^{76} - 2 q^{79} - 4 q^{80} + 4 q^{81} - 2 q^{95} - 10 q^{96} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{20} + \zeta_{20}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2255\mathbb{Z}\right)^\times\).

\(n\) \(452\) \(826\) \(1641\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2254.1
−1.17557
1.90211
−1.90211
1.17557
−1.90211 1.17557 2.61803 −1.00000 −2.23607 0 −3.07768 0.381966 1.90211
2254.2 −1.17557 −1.90211 0.381966 −1.00000 2.23607 0 0.726543 2.61803 1.17557
2254.3 1.17557 1.90211 0.381966 −1.00000 2.23607 0 −0.726543 2.61803 −1.17557
2254.4 1.90211 −1.17557 2.61803 −1.00000 −2.23607 0 3.07768 0.381966 −1.90211
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
2255.h odd 2 1 CM by \(\Q(\sqrt{-2255}) \)
5.b even 2 1 inner
451.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2255.1.h.j yes 4
5.b even 2 1 inner 2255.1.h.j yes 4
11.b odd 2 1 2255.1.h.i 4
41.b even 2 1 2255.1.h.i 4
55.d odd 2 1 2255.1.h.i 4
205.c even 2 1 2255.1.h.i 4
451.b odd 2 1 inner 2255.1.h.j yes 4
2255.h odd 2 1 CM 2255.1.h.j yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2255.1.h.i 4 11.b odd 2 1
2255.1.h.i 4 41.b even 2 1
2255.1.h.i 4 55.d odd 2 1
2255.1.h.i 4 205.c even 2 1
2255.1.h.j yes 4 1.a even 1 1 trivial
2255.1.h.j yes 4 5.b even 2 1 inner
2255.1.h.j yes 4 451.b odd 2 1 inner
2255.1.h.j yes 4 2255.h odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2255, [\chi])\):

\( T_{2}^{4} - 5T_{2}^{2} + 5 \) Copy content Toggle raw display
\( T_{3}^{4} - 5T_{3}^{2} + 5 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{19}^{2} - T_{19} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$3$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T - 1)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T + 1)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$59$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$79$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 5T^{2} + 5 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less