Properties

Label 2252.4.a.b.1.15
Level $2252$
Weight $4$
Character 2252.1
Self dual yes
Analytic conductor $132.872$
Analytic rank $0$
Dimension $75$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2252,4,Mod(1,2252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2252.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2252 = 2^{2} \cdot 563 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2252.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [75] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.872301333\)
Analytic rank: \(0\)
Dimension: \(75\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 2252.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.71365 q^{3} +6.08579 q^{5} -11.0018 q^{7} +18.0731 q^{9} +32.7744 q^{11} -41.1064 q^{13} -40.8579 q^{15} -94.1075 q^{17} -153.373 q^{19} +73.8622 q^{21} -36.7354 q^{23} -87.9632 q^{25} +59.9319 q^{27} +36.6279 q^{29} -210.992 q^{31} -220.036 q^{33} -66.9546 q^{35} +391.543 q^{37} +275.974 q^{39} +264.513 q^{41} +475.025 q^{43} +109.989 q^{45} -265.144 q^{47} -221.960 q^{49} +631.805 q^{51} -670.151 q^{53} +199.458 q^{55} +1029.70 q^{57} +440.815 q^{59} -667.306 q^{61} -198.837 q^{63} -250.165 q^{65} +33.9180 q^{67} +246.628 q^{69} -1004.80 q^{71} -851.272 q^{73} +590.554 q^{75} -360.577 q^{77} -719.497 q^{79} -890.336 q^{81} +1145.47 q^{83} -572.718 q^{85} -245.907 q^{87} +818.113 q^{89} +452.245 q^{91} +1416.52 q^{93} -933.399 q^{95} -568.529 q^{97} +592.336 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 75 q + 28 q^{3} - 5 q^{5} + 99 q^{7} + 781 q^{9} + 116 q^{11} + 4 q^{13} + 278 q^{15} + 181 q^{17} + 316 q^{19} + 56 q^{21} + 559 q^{23} + 2508 q^{25} + 940 q^{27} - 121 q^{29} + 822 q^{31} + 498 q^{33}+ \cdots + 4658 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −6.71365 −1.29204 −0.646022 0.763319i \(-0.723568\pi\)
−0.646022 + 0.763319i \(0.723568\pi\)
\(4\) 0 0
\(5\) 6.08579 0.544330 0.272165 0.962251i \(-0.412260\pi\)
0.272165 + 0.962251i \(0.412260\pi\)
\(6\) 0 0
\(7\) −11.0018 −0.594041 −0.297021 0.954871i \(-0.595993\pi\)
−0.297021 + 0.954871i \(0.595993\pi\)
\(8\) 0 0
\(9\) 18.0731 0.669375
\(10\) 0 0
\(11\) 32.7744 0.898350 0.449175 0.893444i \(-0.351718\pi\)
0.449175 + 0.893444i \(0.351718\pi\)
\(12\) 0 0
\(13\) −41.1064 −0.876991 −0.438495 0.898733i \(-0.644488\pi\)
−0.438495 + 0.898733i \(0.644488\pi\)
\(14\) 0 0
\(15\) −40.8579 −0.703297
\(16\) 0 0
\(17\) −94.1075 −1.34261 −0.671307 0.741180i \(-0.734267\pi\)
−0.671307 + 0.741180i \(0.734267\pi\)
\(18\) 0 0
\(19\) −153.373 −1.85191 −0.925955 0.377634i \(-0.876738\pi\)
−0.925955 + 0.377634i \(0.876738\pi\)
\(20\) 0 0
\(21\) 73.8622 0.767527
\(22\) 0 0
\(23\) −36.7354 −0.333037 −0.166519 0.986038i \(-0.553253\pi\)
−0.166519 + 0.986038i \(0.553253\pi\)
\(24\) 0 0
\(25\) −87.9632 −0.703705
\(26\) 0 0
\(27\) 59.9319 0.427181
\(28\) 0 0
\(29\) 36.6279 0.234539 0.117270 0.993100i \(-0.462586\pi\)
0.117270 + 0.993100i \(0.462586\pi\)
\(30\) 0 0
\(31\) −210.992 −1.22243 −0.611213 0.791466i \(-0.709318\pi\)
−0.611213 + 0.791466i \(0.709318\pi\)
\(32\) 0 0
\(33\) −220.036 −1.16071
\(34\) 0 0
\(35\) −66.9546 −0.323354
\(36\) 0 0
\(37\) 391.543 1.73971 0.869856 0.493306i \(-0.164212\pi\)
0.869856 + 0.493306i \(0.164212\pi\)
\(38\) 0 0
\(39\) 275.974 1.13311
\(40\) 0 0
\(41\) 264.513 1.00756 0.503781 0.863831i \(-0.331942\pi\)
0.503781 + 0.863831i \(0.331942\pi\)
\(42\) 0 0
\(43\) 475.025 1.68467 0.842334 0.538956i \(-0.181181\pi\)
0.842334 + 0.538956i \(0.181181\pi\)
\(44\) 0 0
\(45\) 109.989 0.364361
\(46\) 0 0
\(47\) −265.144 −0.822878 −0.411439 0.911437i \(-0.634974\pi\)
−0.411439 + 0.911437i \(0.634974\pi\)
\(48\) 0 0
\(49\) −221.960 −0.647115
\(50\) 0 0
\(51\) 631.805 1.73471
\(52\) 0 0
\(53\) −670.151 −1.73684 −0.868418 0.495832i \(-0.834863\pi\)
−0.868418 + 0.495832i \(0.834863\pi\)
\(54\) 0 0
\(55\) 199.458 0.488998
\(56\) 0 0
\(57\) 1029.70 2.39275
\(58\) 0 0
\(59\) 440.815 0.972700 0.486350 0.873764i \(-0.338328\pi\)
0.486350 + 0.873764i \(0.338328\pi\)
\(60\) 0 0
\(61\) −667.306 −1.40065 −0.700326 0.713823i \(-0.746962\pi\)
−0.700326 + 0.713823i \(0.746962\pi\)
\(62\) 0 0
\(63\) −198.837 −0.397637
\(64\) 0 0
\(65\) −250.165 −0.477372
\(66\) 0 0
\(67\) 33.9180 0.0618468 0.0309234 0.999522i \(-0.490155\pi\)
0.0309234 + 0.999522i \(0.490155\pi\)
\(68\) 0 0
\(69\) 246.628 0.430298
\(70\) 0 0
\(71\) −1004.80 −1.67955 −0.839776 0.542933i \(-0.817314\pi\)
−0.839776 + 0.542933i \(0.817314\pi\)
\(72\) 0 0
\(73\) −851.272 −1.36485 −0.682424 0.730957i \(-0.739074\pi\)
−0.682424 + 0.730957i \(0.739074\pi\)
\(74\) 0 0
\(75\) 590.554 0.909218
\(76\) 0 0
\(77\) −360.577 −0.533657
\(78\) 0 0
\(79\) −719.497 −1.02468 −0.512340 0.858783i \(-0.671221\pi\)
−0.512340 + 0.858783i \(0.671221\pi\)
\(80\) 0 0
\(81\) −890.336 −1.22131
\(82\) 0 0
\(83\) 1145.47 1.51485 0.757423 0.652925i \(-0.226458\pi\)
0.757423 + 0.652925i \(0.226458\pi\)
\(84\) 0 0
\(85\) −572.718 −0.730824
\(86\) 0 0
\(87\) −245.907 −0.303035
\(88\) 0 0
\(89\) 818.113 0.974380 0.487190 0.873296i \(-0.338022\pi\)
0.487190 + 0.873296i \(0.338022\pi\)
\(90\) 0 0
\(91\) 452.245 0.520969
\(92\) 0 0
\(93\) 1416.52 1.57943
\(94\) 0 0
\(95\) −933.399 −1.00805
\(96\) 0 0
\(97\) −568.529 −0.595107 −0.297553 0.954705i \(-0.596171\pi\)
−0.297553 + 0.954705i \(0.596171\pi\)
\(98\) 0 0
\(99\) 592.336 0.601333
\(100\) 0 0
\(101\) −1279.22 −1.26027 −0.630135 0.776485i \(-0.717001\pi\)
−0.630135 + 0.776485i \(0.717001\pi\)
\(102\) 0 0
\(103\) 281.207 0.269011 0.134505 0.990913i \(-0.457055\pi\)
0.134505 + 0.990913i \(0.457055\pi\)
\(104\) 0 0
\(105\) 449.510 0.417787
\(106\) 0 0
\(107\) −160.662 −0.145157 −0.0725786 0.997363i \(-0.523123\pi\)
−0.0725786 + 0.997363i \(0.523123\pi\)
\(108\) 0 0
\(109\) 336.598 0.295782 0.147891 0.989004i \(-0.452751\pi\)
0.147891 + 0.989004i \(0.452751\pi\)
\(110\) 0 0
\(111\) −2628.69 −2.24778
\(112\) 0 0
\(113\) 157.176 0.130848 0.0654242 0.997858i \(-0.479160\pi\)
0.0654242 + 0.997858i \(0.479160\pi\)
\(114\) 0 0
\(115\) −223.564 −0.181282
\(116\) 0 0
\(117\) −742.923 −0.587036
\(118\) 0 0
\(119\) 1035.35 0.797568
\(120\) 0 0
\(121\) −256.839 −0.192967
\(122\) 0 0
\(123\) −1775.85 −1.30181
\(124\) 0 0
\(125\) −1296.05 −0.927377
\(126\) 0 0
\(127\) −1050.79 −0.734197 −0.367098 0.930182i \(-0.619649\pi\)
−0.367098 + 0.930182i \(0.619649\pi\)
\(128\) 0 0
\(129\) −3189.16 −2.17666
\(130\) 0 0
\(131\) 2242.33 1.49552 0.747761 0.663968i \(-0.231129\pi\)
0.747761 + 0.663968i \(0.231129\pi\)
\(132\) 0 0
\(133\) 1687.38 1.10011
\(134\) 0 0
\(135\) 364.733 0.232527
\(136\) 0 0
\(137\) 1253.26 0.781557 0.390778 0.920485i \(-0.372206\pi\)
0.390778 + 0.920485i \(0.372206\pi\)
\(138\) 0 0
\(139\) −836.262 −0.510294 −0.255147 0.966902i \(-0.582124\pi\)
−0.255147 + 0.966902i \(0.582124\pi\)
\(140\) 0 0
\(141\) 1780.09 1.06319
\(142\) 0 0
\(143\) −1347.24 −0.787845
\(144\) 0 0
\(145\) 222.910 0.127667
\(146\) 0 0
\(147\) 1490.17 0.836101
\(148\) 0 0
\(149\) 2822.25 1.55173 0.775865 0.630898i \(-0.217314\pi\)
0.775865 + 0.630898i \(0.217314\pi\)
\(150\) 0 0
\(151\) 342.010 0.184320 0.0921602 0.995744i \(-0.470623\pi\)
0.0921602 + 0.995744i \(0.470623\pi\)
\(152\) 0 0
\(153\) −1700.82 −0.898712
\(154\) 0 0
\(155\) −1284.05 −0.665403
\(156\) 0 0
\(157\) −2779.16 −1.41275 −0.706374 0.707839i \(-0.749670\pi\)
−0.706374 + 0.707839i \(0.749670\pi\)
\(158\) 0 0
\(159\) 4499.16 2.24407
\(160\) 0 0
\(161\) 404.155 0.197838
\(162\) 0 0
\(163\) −3189.45 −1.53262 −0.766309 0.642472i \(-0.777909\pi\)
−0.766309 + 0.642472i \(0.777909\pi\)
\(164\) 0 0
\(165\) −1339.09 −0.631807
\(166\) 0 0
\(167\) −1490.32 −0.690564 −0.345282 0.938499i \(-0.612217\pi\)
−0.345282 + 0.938499i \(0.612217\pi\)
\(168\) 0 0
\(169\) −507.260 −0.230887
\(170\) 0 0
\(171\) −2771.94 −1.23962
\(172\) 0 0
\(173\) 1247.73 0.548343 0.274171 0.961681i \(-0.411596\pi\)
0.274171 + 0.961681i \(0.411596\pi\)
\(174\) 0 0
\(175\) 967.753 0.418030
\(176\) 0 0
\(177\) −2959.48 −1.25677
\(178\) 0 0
\(179\) 4128.50 1.72390 0.861951 0.506991i \(-0.169242\pi\)
0.861951 + 0.506991i \(0.169242\pi\)
\(180\) 0 0
\(181\) 1424.75 0.585089 0.292544 0.956252i \(-0.405498\pi\)
0.292544 + 0.956252i \(0.405498\pi\)
\(182\) 0 0
\(183\) 4480.06 1.80970
\(184\) 0 0
\(185\) 2382.85 0.946976
\(186\) 0 0
\(187\) −3084.32 −1.20614
\(188\) 0 0
\(189\) −659.358 −0.253763
\(190\) 0 0
\(191\) 4534.79 1.71794 0.858969 0.512027i \(-0.171105\pi\)
0.858969 + 0.512027i \(0.171105\pi\)
\(192\) 0 0
\(193\) 3846.08 1.43444 0.717219 0.696848i \(-0.245415\pi\)
0.717219 + 0.696848i \(0.245415\pi\)
\(194\) 0 0
\(195\) 1679.52 0.616785
\(196\) 0 0
\(197\) −1089.04 −0.393861 −0.196931 0.980417i \(-0.563097\pi\)
−0.196931 + 0.980417i \(0.563097\pi\)
\(198\) 0 0
\(199\) 2857.30 1.01783 0.508917 0.860816i \(-0.330046\pi\)
0.508917 + 0.860816i \(0.330046\pi\)
\(200\) 0 0
\(201\) −227.713 −0.0799088
\(202\) 0 0
\(203\) −402.973 −0.139326
\(204\) 0 0
\(205\) 1609.77 0.548446
\(206\) 0 0
\(207\) −663.923 −0.222927
\(208\) 0 0
\(209\) −5026.72 −1.66366
\(210\) 0 0
\(211\) −452.719 −0.147708 −0.0738542 0.997269i \(-0.523530\pi\)
−0.0738542 + 0.997269i \(0.523530\pi\)
\(212\) 0 0
\(213\) 6745.90 2.17005
\(214\) 0 0
\(215\) 2890.90 0.917014
\(216\) 0 0
\(217\) 2321.29 0.726171
\(218\) 0 0
\(219\) 5715.15 1.76344
\(220\) 0 0
\(221\) 3868.43 1.17746
\(222\) 0 0
\(223\) −2458.67 −0.738317 −0.369159 0.929366i \(-0.620354\pi\)
−0.369159 + 0.929366i \(0.620354\pi\)
\(224\) 0 0
\(225\) −1589.77 −0.471043
\(226\) 0 0
\(227\) 3791.90 1.10871 0.554355 0.832280i \(-0.312965\pi\)
0.554355 + 0.832280i \(0.312965\pi\)
\(228\) 0 0
\(229\) −5728.16 −1.65296 −0.826479 0.562968i \(-0.809659\pi\)
−0.826479 + 0.562968i \(0.809659\pi\)
\(230\) 0 0
\(231\) 2420.79 0.689508
\(232\) 0 0
\(233\) 5894.45 1.65733 0.828666 0.559743i \(-0.189100\pi\)
0.828666 + 0.559743i \(0.189100\pi\)
\(234\) 0 0
\(235\) −1613.61 −0.447917
\(236\) 0 0
\(237\) 4830.45 1.32393
\(238\) 0 0
\(239\) −2526.78 −0.683865 −0.341932 0.939725i \(-0.611081\pi\)
−0.341932 + 0.939725i \(0.611081\pi\)
\(240\) 0 0
\(241\) −4358.96 −1.16508 −0.582542 0.812800i \(-0.697942\pi\)
−0.582542 + 0.812800i \(0.697942\pi\)
\(242\) 0 0
\(243\) 4359.25 1.15081
\(244\) 0 0
\(245\) −1350.80 −0.352244
\(246\) 0 0
\(247\) 6304.64 1.62411
\(248\) 0 0
\(249\) −7690.32 −1.95725
\(250\) 0 0
\(251\) 4490.06 1.12912 0.564561 0.825391i \(-0.309045\pi\)
0.564561 + 0.825391i \(0.309045\pi\)
\(252\) 0 0
\(253\) −1203.98 −0.299184
\(254\) 0 0
\(255\) 3845.03 0.944256
\(256\) 0 0
\(257\) −1188.99 −0.288588 −0.144294 0.989535i \(-0.546091\pi\)
−0.144294 + 0.989535i \(0.546091\pi\)
\(258\) 0 0
\(259\) −4307.68 −1.03346
\(260\) 0 0
\(261\) 661.981 0.156995
\(262\) 0 0
\(263\) 2402.25 0.563227 0.281614 0.959528i \(-0.409130\pi\)
0.281614 + 0.959528i \(0.409130\pi\)
\(264\) 0 0
\(265\) −4078.40 −0.945411
\(266\) 0 0
\(267\) −5492.53 −1.25894
\(268\) 0 0
\(269\) −610.710 −0.138422 −0.0692112 0.997602i \(-0.522048\pi\)
−0.0692112 + 0.997602i \(0.522048\pi\)
\(270\) 0 0
\(271\) −2649.86 −0.593977 −0.296989 0.954881i \(-0.595982\pi\)
−0.296989 + 0.954881i \(0.595982\pi\)
\(272\) 0 0
\(273\) −3036.21 −0.673114
\(274\) 0 0
\(275\) −2882.94 −0.632174
\(276\) 0 0
\(277\) −5949.92 −1.29060 −0.645300 0.763929i \(-0.723268\pi\)
−0.645300 + 0.763929i \(0.723268\pi\)
\(278\) 0 0
\(279\) −3813.28 −0.818262
\(280\) 0 0
\(281\) −7743.59 −1.64393 −0.821964 0.569539i \(-0.807122\pi\)
−0.821964 + 0.569539i \(0.807122\pi\)
\(282\) 0 0
\(283\) −1623.97 −0.341113 −0.170556 0.985348i \(-0.554557\pi\)
−0.170556 + 0.985348i \(0.554557\pi\)
\(284\) 0 0
\(285\) 6266.51 1.30244
\(286\) 0 0
\(287\) −2910.12 −0.598533
\(288\) 0 0
\(289\) 3943.22 0.802610
\(290\) 0 0
\(291\) 3816.91 0.768904
\(292\) 0 0
\(293\) 3091.97 0.616501 0.308250 0.951305i \(-0.400257\pi\)
0.308250 + 0.951305i \(0.400257\pi\)
\(294\) 0 0
\(295\) 2682.71 0.529469
\(296\) 0 0
\(297\) 1964.23 0.383758
\(298\) 0 0
\(299\) 1510.06 0.292070
\(300\) 0 0
\(301\) −5226.13 −1.00076
\(302\) 0 0
\(303\) 8588.25 1.62832
\(304\) 0 0
\(305\) −4061.08 −0.762416
\(306\) 0 0
\(307\) 7958.68 1.47956 0.739781 0.672847i \(-0.234929\pi\)
0.739781 + 0.672847i \(0.234929\pi\)
\(308\) 0 0
\(309\) −1887.92 −0.347574
\(310\) 0 0
\(311\) −1517.54 −0.276693 −0.138346 0.990384i \(-0.544179\pi\)
−0.138346 + 0.990384i \(0.544179\pi\)
\(312\) 0 0
\(313\) −4888.81 −0.882849 −0.441424 0.897298i \(-0.645527\pi\)
−0.441424 + 0.897298i \(0.645527\pi\)
\(314\) 0 0
\(315\) −1210.08 −0.216445
\(316\) 0 0
\(317\) 9030.85 1.60007 0.800036 0.599952i \(-0.204814\pi\)
0.800036 + 0.599952i \(0.204814\pi\)
\(318\) 0 0
\(319\) 1200.46 0.210698
\(320\) 0 0
\(321\) 1078.63 0.187549
\(322\) 0 0
\(323\) 14433.6 2.48640
\(324\) 0 0
\(325\) 3615.85 0.617143
\(326\) 0 0
\(327\) −2259.80 −0.382163
\(328\) 0 0
\(329\) 2917.06 0.488823
\(330\) 0 0
\(331\) 9572.82 1.58964 0.794819 0.606847i \(-0.207566\pi\)
0.794819 + 0.606847i \(0.207566\pi\)
\(332\) 0 0
\(333\) 7076.42 1.16452
\(334\) 0 0
\(335\) 206.418 0.0336651
\(336\) 0 0
\(337\) −5460.13 −0.882588 −0.441294 0.897363i \(-0.645480\pi\)
−0.441294 + 0.897363i \(0.645480\pi\)
\(338\) 0 0
\(339\) −1055.22 −0.169062
\(340\) 0 0
\(341\) −6915.12 −1.09817
\(342\) 0 0
\(343\) 6215.58 0.978454
\(344\) 0 0
\(345\) 1500.93 0.234224
\(346\) 0 0
\(347\) 5278.46 0.816608 0.408304 0.912846i \(-0.366120\pi\)
0.408304 + 0.912846i \(0.366120\pi\)
\(348\) 0 0
\(349\) 4710.01 0.722410 0.361205 0.932487i \(-0.382366\pi\)
0.361205 + 0.932487i \(0.382366\pi\)
\(350\) 0 0
\(351\) −2463.59 −0.374634
\(352\) 0 0
\(353\) 8579.87 1.29366 0.646828 0.762636i \(-0.276095\pi\)
0.646828 + 0.762636i \(0.276095\pi\)
\(354\) 0 0
\(355\) −6115.02 −0.914230
\(356\) 0 0
\(357\) −6950.99 −1.03049
\(358\) 0 0
\(359\) 383.334 0.0563555 0.0281777 0.999603i \(-0.491030\pi\)
0.0281777 + 0.999603i \(0.491030\pi\)
\(360\) 0 0
\(361\) 16664.4 2.42957
\(362\) 0 0
\(363\) 1724.33 0.249322
\(364\) 0 0
\(365\) −5180.66 −0.742927
\(366\) 0 0
\(367\) 13170.9 1.87335 0.936673 0.350207i \(-0.113889\pi\)
0.936673 + 0.350207i \(0.113889\pi\)
\(368\) 0 0
\(369\) 4780.59 0.674437
\(370\) 0 0
\(371\) 7372.87 1.03175
\(372\) 0 0
\(373\) 1786.38 0.247977 0.123988 0.992284i \(-0.460431\pi\)
0.123988 + 0.992284i \(0.460431\pi\)
\(374\) 0 0
\(375\) 8701.22 1.19821
\(376\) 0 0
\(377\) −1505.64 −0.205689
\(378\) 0 0
\(379\) 1718.66 0.232933 0.116467 0.993195i \(-0.462843\pi\)
0.116467 + 0.993195i \(0.462843\pi\)
\(380\) 0 0
\(381\) 7054.67 0.948614
\(382\) 0 0
\(383\) 103.144 0.0137609 0.00688043 0.999976i \(-0.497810\pi\)
0.00688043 + 0.999976i \(0.497810\pi\)
\(384\) 0 0
\(385\) −2194.40 −0.290485
\(386\) 0 0
\(387\) 8585.20 1.12768
\(388\) 0 0
\(389\) −9995.10 −1.30276 −0.651378 0.758754i \(-0.725809\pi\)
−0.651378 + 0.758754i \(0.725809\pi\)
\(390\) 0 0
\(391\) 3457.07 0.447140
\(392\) 0 0
\(393\) −15054.2 −1.93228
\(394\) 0 0
\(395\) −4378.71 −0.557763
\(396\) 0 0
\(397\) 5718.09 0.722878 0.361439 0.932396i \(-0.382286\pi\)
0.361439 + 0.932396i \(0.382286\pi\)
\(398\) 0 0
\(399\) −11328.5 −1.42139
\(400\) 0 0
\(401\) 6494.59 0.808789 0.404394 0.914585i \(-0.367482\pi\)
0.404394 + 0.914585i \(0.367482\pi\)
\(402\) 0 0
\(403\) 8673.12 1.07206
\(404\) 0 0
\(405\) −5418.40 −0.664796
\(406\) 0 0
\(407\) 12832.6 1.56287
\(408\) 0 0
\(409\) −6968.80 −0.842506 −0.421253 0.906943i \(-0.638410\pi\)
−0.421253 + 0.906943i \(0.638410\pi\)
\(410\) 0 0
\(411\) −8413.95 −1.00980
\(412\) 0 0
\(413\) −4849.76 −0.577824
\(414\) 0 0
\(415\) 6971.12 0.824575
\(416\) 0 0
\(417\) 5614.37 0.659322
\(418\) 0 0
\(419\) −6984.62 −0.814370 −0.407185 0.913346i \(-0.633490\pi\)
−0.407185 + 0.913346i \(0.633490\pi\)
\(420\) 0 0
\(421\) −7017.77 −0.812411 −0.406206 0.913782i \(-0.633148\pi\)
−0.406206 + 0.913782i \(0.633148\pi\)
\(422\) 0 0
\(423\) −4791.99 −0.550814
\(424\) 0 0
\(425\) 8278.00 0.944804
\(426\) 0 0
\(427\) 7341.56 0.832045
\(428\) 0 0
\(429\) 9044.89 1.01793
\(430\) 0 0
\(431\) −4517.07 −0.504825 −0.252413 0.967620i \(-0.581224\pi\)
−0.252413 + 0.967620i \(0.581224\pi\)
\(432\) 0 0
\(433\) 14988.2 1.66348 0.831739 0.555166i \(-0.187345\pi\)
0.831739 + 0.555166i \(0.187345\pi\)
\(434\) 0 0
\(435\) −1496.54 −0.164951
\(436\) 0 0
\(437\) 5634.23 0.616755
\(438\) 0 0
\(439\) 4811.62 0.523112 0.261556 0.965188i \(-0.415764\pi\)
0.261556 + 0.965188i \(0.415764\pi\)
\(440\) 0 0
\(441\) −4011.52 −0.433163
\(442\) 0 0
\(443\) 7729.32 0.828964 0.414482 0.910057i \(-0.363963\pi\)
0.414482 + 0.910057i \(0.363963\pi\)
\(444\) 0 0
\(445\) 4978.86 0.530384
\(446\) 0 0
\(447\) −18947.6 −2.00490
\(448\) 0 0
\(449\) 1355.07 0.142427 0.0712136 0.997461i \(-0.477313\pi\)
0.0712136 + 0.997461i \(0.477313\pi\)
\(450\) 0 0
\(451\) 8669.26 0.905144
\(452\) 0 0
\(453\) −2296.14 −0.238150
\(454\) 0 0
\(455\) 2752.27 0.283579
\(456\) 0 0
\(457\) −14073.0 −1.44049 −0.720246 0.693718i \(-0.755971\pi\)
−0.720246 + 0.693718i \(0.755971\pi\)
\(458\) 0 0
\(459\) −5640.04 −0.573539
\(460\) 0 0
\(461\) 296.421 0.0299473 0.0149736 0.999888i \(-0.495234\pi\)
0.0149736 + 0.999888i \(0.495234\pi\)
\(462\) 0 0
\(463\) −2481.89 −0.249122 −0.124561 0.992212i \(-0.539752\pi\)
−0.124561 + 0.992212i \(0.539752\pi\)
\(464\) 0 0
\(465\) 8620.67 0.859729
\(466\) 0 0
\(467\) −8056.44 −0.798303 −0.399152 0.916885i \(-0.630695\pi\)
−0.399152 + 0.916885i \(0.630695\pi\)
\(468\) 0 0
\(469\) −373.158 −0.0367396
\(470\) 0 0
\(471\) 18658.3 1.82533
\(472\) 0 0
\(473\) 15568.7 1.51342
\(474\) 0 0
\(475\) 13491.2 1.30320
\(476\) 0 0
\(477\) −12111.7 −1.16260
\(478\) 0 0
\(479\) 8958.61 0.854550 0.427275 0.904122i \(-0.359474\pi\)
0.427275 + 0.904122i \(0.359474\pi\)
\(480\) 0 0
\(481\) −16095.0 −1.52571
\(482\) 0 0
\(483\) −2713.36 −0.255615
\(484\) 0 0
\(485\) −3459.95 −0.323934
\(486\) 0 0
\(487\) 15030.3 1.39854 0.699270 0.714858i \(-0.253509\pi\)
0.699270 + 0.714858i \(0.253509\pi\)
\(488\) 0 0
\(489\) 21412.8 1.98021
\(490\) 0 0
\(491\) 18955.7 1.74228 0.871138 0.491038i \(-0.163382\pi\)
0.871138 + 0.491038i \(0.163382\pi\)
\(492\) 0 0
\(493\) −3446.96 −0.314895
\(494\) 0 0
\(495\) 3604.83 0.327324
\(496\) 0 0
\(497\) 11054.6 0.997723
\(498\) 0 0
\(499\) 18450.1 1.65519 0.827596 0.561324i \(-0.189708\pi\)
0.827596 + 0.561324i \(0.189708\pi\)
\(500\) 0 0
\(501\) 10005.5 0.892238
\(502\) 0 0
\(503\) −7085.19 −0.628058 −0.314029 0.949413i \(-0.601679\pi\)
−0.314029 + 0.949413i \(0.601679\pi\)
\(504\) 0 0
\(505\) −7785.08 −0.686003
\(506\) 0 0
\(507\) 3405.57 0.298317
\(508\) 0 0
\(509\) −2794.98 −0.243390 −0.121695 0.992568i \(-0.538833\pi\)
−0.121695 + 0.992568i \(0.538833\pi\)
\(510\) 0 0
\(511\) 9365.52 0.810775
\(512\) 0 0
\(513\) −9191.96 −0.791101
\(514\) 0 0
\(515\) 1711.36 0.146431
\(516\) 0 0
\(517\) −8689.94 −0.739232
\(518\) 0 0
\(519\) −8376.84 −0.708483
\(520\) 0 0
\(521\) 7246.51 0.609358 0.304679 0.952455i \(-0.401451\pi\)
0.304679 + 0.952455i \(0.401451\pi\)
\(522\) 0 0
\(523\) −17397.3 −1.45455 −0.727275 0.686346i \(-0.759214\pi\)
−0.727275 + 0.686346i \(0.759214\pi\)
\(524\) 0 0
\(525\) −6497.16 −0.540113
\(526\) 0 0
\(527\) 19855.9 1.64125
\(528\) 0 0
\(529\) −10817.5 −0.889086
\(530\) 0 0
\(531\) 7966.92 0.651101
\(532\) 0 0
\(533\) −10873.2 −0.883623
\(534\) 0 0
\(535\) −977.758 −0.0790134
\(536\) 0 0
\(537\) −27717.3 −2.22736
\(538\) 0 0
\(539\) −7274.62 −0.581336
\(540\) 0 0
\(541\) −2042.49 −0.162317 −0.0811584 0.996701i \(-0.525862\pi\)
−0.0811584 + 0.996701i \(0.525862\pi\)
\(542\) 0 0
\(543\) −9565.30 −0.755960
\(544\) 0 0
\(545\) 2048.47 0.161003
\(546\) 0 0
\(547\) 17232.7 1.34702 0.673509 0.739179i \(-0.264786\pi\)
0.673509 + 0.739179i \(0.264786\pi\)
\(548\) 0 0
\(549\) −12060.3 −0.937562
\(550\) 0 0
\(551\) −5617.75 −0.434345
\(552\) 0 0
\(553\) 7915.76 0.608702
\(554\) 0 0
\(555\) −15997.6 −1.22353
\(556\) 0 0
\(557\) 3269.11 0.248683 0.124342 0.992239i \(-0.460318\pi\)
0.124342 + 0.992239i \(0.460318\pi\)
\(558\) 0 0
\(559\) −19526.6 −1.47744
\(560\) 0 0
\(561\) 20707.0 1.55838
\(562\) 0 0
\(563\) 563.000 0.0421450
\(564\) 0 0
\(565\) 956.539 0.0712246
\(566\) 0 0
\(567\) 9795.30 0.725510
\(568\) 0 0
\(569\) 12551.7 0.924774 0.462387 0.886678i \(-0.346993\pi\)
0.462387 + 0.886678i \(0.346993\pi\)
\(570\) 0 0
\(571\) −18749.3 −1.37414 −0.687070 0.726591i \(-0.741103\pi\)
−0.687070 + 0.726591i \(0.741103\pi\)
\(572\) 0 0
\(573\) −30445.0 −2.21965
\(574\) 0 0
\(575\) 3231.36 0.234360
\(576\) 0 0
\(577\) −11797.7 −0.851204 −0.425602 0.904910i \(-0.639938\pi\)
−0.425602 + 0.904910i \(0.639938\pi\)
\(578\) 0 0
\(579\) −25821.2 −1.85336
\(580\) 0 0
\(581\) −12602.3 −0.899880
\(582\) 0 0
\(583\) −21963.8 −1.56029
\(584\) 0 0
\(585\) −4521.27 −0.319541
\(586\) 0 0
\(587\) 5138.97 0.361343 0.180671 0.983544i \(-0.442173\pi\)
0.180671 + 0.983544i \(0.442173\pi\)
\(588\) 0 0
\(589\) 32360.5 2.26382
\(590\) 0 0
\(591\) 7311.42 0.508886
\(592\) 0 0
\(593\) 27439.8 1.90020 0.950098 0.311953i \(-0.100983\pi\)
0.950098 + 0.311953i \(0.100983\pi\)
\(594\) 0 0
\(595\) 6300.93 0.434140
\(596\) 0 0
\(597\) −19182.9 −1.31508
\(598\) 0 0
\(599\) −19840.1 −1.35333 −0.676664 0.736292i \(-0.736575\pi\)
−0.676664 + 0.736292i \(0.736575\pi\)
\(600\) 0 0
\(601\) −20817.3 −1.41290 −0.706451 0.707762i \(-0.749705\pi\)
−0.706451 + 0.707762i \(0.749705\pi\)
\(602\) 0 0
\(603\) 613.004 0.0413988
\(604\) 0 0
\(605\) −1563.07 −0.105038
\(606\) 0 0
\(607\) 3720.10 0.248755 0.124377 0.992235i \(-0.460307\pi\)
0.124377 + 0.992235i \(0.460307\pi\)
\(608\) 0 0
\(609\) 2705.42 0.180015
\(610\) 0 0
\(611\) 10899.1 0.721656
\(612\) 0 0
\(613\) 7553.08 0.497660 0.248830 0.968547i \(-0.419954\pi\)
0.248830 + 0.968547i \(0.419954\pi\)
\(614\) 0 0
\(615\) −10807.5 −0.708616
\(616\) 0 0
\(617\) 4603.60 0.300379 0.150190 0.988657i \(-0.452012\pi\)
0.150190 + 0.988657i \(0.452012\pi\)
\(618\) 0 0
\(619\) −19776.0 −1.28411 −0.642055 0.766659i \(-0.721918\pi\)
−0.642055 + 0.766659i \(0.721918\pi\)
\(620\) 0 0
\(621\) −2201.62 −0.142267
\(622\) 0 0
\(623\) −9000.71 −0.578822
\(624\) 0 0
\(625\) 3107.92 0.198907
\(626\) 0 0
\(627\) 33747.7 2.14952
\(628\) 0 0
\(629\) −36847.2 −2.33576
\(630\) 0 0
\(631\) 8212.01 0.518091 0.259045 0.965865i \(-0.416592\pi\)
0.259045 + 0.965865i \(0.416592\pi\)
\(632\) 0 0
\(633\) 3039.40 0.190846
\(634\) 0 0
\(635\) −6394.92 −0.399645
\(636\) 0 0
\(637\) 9124.01 0.567514
\(638\) 0 0
\(639\) −18159.9 −1.12425
\(640\) 0 0
\(641\) 11968.2 0.737467 0.368734 0.929535i \(-0.379791\pi\)
0.368734 + 0.929535i \(0.379791\pi\)
\(642\) 0 0
\(643\) 19860.1 1.21805 0.609025 0.793151i \(-0.291561\pi\)
0.609025 + 0.793151i \(0.291561\pi\)
\(644\) 0 0
\(645\) −19408.5 −1.18482
\(646\) 0 0
\(647\) −13797.0 −0.838356 −0.419178 0.907904i \(-0.637682\pi\)
−0.419178 + 0.907904i \(0.637682\pi\)
\(648\) 0 0
\(649\) 14447.5 0.873825
\(650\) 0 0
\(651\) −15584.3 −0.938245
\(652\) 0 0
\(653\) 812.272 0.0486779 0.0243389 0.999704i \(-0.492252\pi\)
0.0243389 + 0.999704i \(0.492252\pi\)
\(654\) 0 0
\(655\) 13646.4 0.814057
\(656\) 0 0
\(657\) −15385.2 −0.913595
\(658\) 0 0
\(659\) −16249.3 −0.960520 −0.480260 0.877126i \(-0.659458\pi\)
−0.480260 + 0.877126i \(0.659458\pi\)
\(660\) 0 0
\(661\) −27858.2 −1.63927 −0.819636 0.572884i \(-0.805825\pi\)
−0.819636 + 0.572884i \(0.805825\pi\)
\(662\) 0 0
\(663\) −25971.3 −1.52133
\(664\) 0 0
\(665\) 10269.1 0.598823
\(666\) 0 0
\(667\) −1345.54 −0.0781102
\(668\) 0 0
\(669\) 16506.7 0.953938
\(670\) 0 0
\(671\) −21870.5 −1.25828
\(672\) 0 0
\(673\) 23201.1 1.32888 0.664441 0.747341i \(-0.268670\pi\)
0.664441 + 0.747341i \(0.268670\pi\)
\(674\) 0 0
\(675\) −5271.80 −0.300610
\(676\) 0 0
\(677\) 17141.2 0.973102 0.486551 0.873652i \(-0.338255\pi\)
0.486551 + 0.873652i \(0.338255\pi\)
\(678\) 0 0
\(679\) 6254.84 0.353518
\(680\) 0 0
\(681\) −25457.5 −1.43250
\(682\) 0 0
\(683\) 17737.8 0.993729 0.496864 0.867828i \(-0.334485\pi\)
0.496864 + 0.867828i \(0.334485\pi\)
\(684\) 0 0
\(685\) 7627.08 0.425424
\(686\) 0 0
\(687\) 38456.9 2.13569
\(688\) 0 0
\(689\) 27547.5 1.52319
\(690\) 0 0
\(691\) −14205.3 −0.782050 −0.391025 0.920380i \(-0.627879\pi\)
−0.391025 + 0.920380i \(0.627879\pi\)
\(692\) 0 0
\(693\) −6516.76 −0.357217
\(694\) 0 0
\(695\) −5089.31 −0.277768
\(696\) 0 0
\(697\) −24892.7 −1.35277
\(698\) 0 0
\(699\) −39573.3 −2.14135
\(700\) 0 0
\(701\) −12811.9 −0.690300 −0.345150 0.938547i \(-0.612172\pi\)
−0.345150 + 0.938547i \(0.612172\pi\)
\(702\) 0 0
\(703\) −60052.4 −3.22179
\(704\) 0 0
\(705\) 10833.2 0.578728
\(706\) 0 0
\(707\) 14073.7 0.748653
\(708\) 0 0
\(709\) 5329.22 0.282289 0.141145 0.989989i \(-0.454922\pi\)
0.141145 + 0.989989i \(0.454922\pi\)
\(710\) 0 0
\(711\) −13003.6 −0.685896
\(712\) 0 0
\(713\) 7750.85 0.407113
\(714\) 0 0
\(715\) −8199.01 −0.428847
\(716\) 0 0
\(717\) 16963.9 0.883583
\(718\) 0 0
\(719\) 1941.47 0.100702 0.0503508 0.998732i \(-0.483966\pi\)
0.0503508 + 0.998732i \(0.483966\pi\)
\(720\) 0 0
\(721\) −3093.78 −0.159803
\(722\) 0 0
\(723\) 29264.6 1.50534
\(724\) 0 0
\(725\) −3221.91 −0.165046
\(726\) 0 0
\(727\) −24328.5 −1.24112 −0.620559 0.784160i \(-0.713094\pi\)
−0.620559 + 0.784160i \(0.713094\pi\)
\(728\) 0 0
\(729\) −5227.41 −0.265580
\(730\) 0 0
\(731\) −44703.5 −2.26186
\(732\) 0 0
\(733\) −17957.9 −0.904900 −0.452450 0.891790i \(-0.649450\pi\)
−0.452450 + 0.891790i \(0.649450\pi\)
\(734\) 0 0
\(735\) 9068.83 0.455114
\(736\) 0 0
\(737\) 1111.64 0.0555601
\(738\) 0 0
\(739\) −8417.14 −0.418984 −0.209492 0.977810i \(-0.567181\pi\)
−0.209492 + 0.977810i \(0.567181\pi\)
\(740\) 0 0
\(741\) −42327.2 −2.09842
\(742\) 0 0
\(743\) 18351.9 0.906145 0.453073 0.891474i \(-0.350328\pi\)
0.453073 + 0.891474i \(0.350328\pi\)
\(744\) 0 0
\(745\) 17175.6 0.844653
\(746\) 0 0
\(747\) 20702.3 1.01400
\(748\) 0 0
\(749\) 1767.58 0.0862294
\(750\) 0 0
\(751\) 27617.6 1.34192 0.670958 0.741495i \(-0.265883\pi\)
0.670958 + 0.741495i \(0.265883\pi\)
\(752\) 0 0
\(753\) −30144.7 −1.45888
\(754\) 0 0
\(755\) 2081.40 0.100331
\(756\) 0 0
\(757\) 8875.91 0.426156 0.213078 0.977035i \(-0.431651\pi\)
0.213078 + 0.977035i \(0.431651\pi\)
\(758\) 0 0
\(759\) 8083.10 0.386558
\(760\) 0 0
\(761\) −9267.19 −0.441439 −0.220720 0.975337i \(-0.570841\pi\)
−0.220720 + 0.975337i \(0.570841\pi\)
\(762\) 0 0
\(763\) −3703.18 −0.175707
\(764\) 0 0
\(765\) −10350.8 −0.489196
\(766\) 0 0
\(767\) −18120.4 −0.853049
\(768\) 0 0
\(769\) −23159.5 −1.08602 −0.543012 0.839725i \(-0.682716\pi\)
−0.543012 + 0.839725i \(0.682716\pi\)
\(770\) 0 0
\(771\) 7982.47 0.372868
\(772\) 0 0
\(773\) 1028.26 0.0478447 0.0239223 0.999714i \(-0.492385\pi\)
0.0239223 + 0.999714i \(0.492385\pi\)
\(774\) 0 0
\(775\) 18559.5 0.860228
\(776\) 0 0
\(777\) 28920.3 1.33527
\(778\) 0 0
\(779\) −40569.3 −1.86591
\(780\) 0 0
\(781\) −32931.8 −1.50883
\(782\) 0 0
\(783\) 2195.18 0.100191
\(784\) 0 0
\(785\) −16913.4 −0.769000
\(786\) 0 0
\(787\) −8703.04 −0.394193 −0.197096 0.980384i \(-0.563151\pi\)
−0.197096 + 0.980384i \(0.563151\pi\)
\(788\) 0 0
\(789\) −16127.8 −0.727714
\(790\) 0 0
\(791\) −1729.22 −0.0777293
\(792\) 0 0
\(793\) 27430.6 1.22836
\(794\) 0 0
\(795\) 27381.0 1.22151
\(796\) 0 0
\(797\) 14926.6 0.663396 0.331698 0.943386i \(-0.392379\pi\)
0.331698 + 0.943386i \(0.392379\pi\)
\(798\) 0 0
\(799\) 24952.1 1.10481
\(800\) 0 0
\(801\) 14785.9 0.652226
\(802\) 0 0
\(803\) −27899.9 −1.22611
\(804\) 0 0
\(805\) 2459.60 0.107689
\(806\) 0 0
\(807\) 4100.09 0.178848
\(808\) 0 0
\(809\) −32572.3 −1.41555 −0.707776 0.706437i \(-0.750301\pi\)
−0.707776 + 0.706437i \(0.750301\pi\)
\(810\) 0 0
\(811\) 24742.6 1.07131 0.535653 0.844438i \(-0.320065\pi\)
0.535653 + 0.844438i \(0.320065\pi\)
\(812\) 0 0
\(813\) 17790.3 0.767444
\(814\) 0 0
\(815\) −19410.3 −0.834250
\(816\) 0 0
\(817\) −72856.3 −3.11985
\(818\) 0 0
\(819\) 8173.48 0.348724
\(820\) 0 0
\(821\) 11473.0 0.487710 0.243855 0.969812i \(-0.421588\pi\)
0.243855 + 0.969812i \(0.421588\pi\)
\(822\) 0 0
\(823\) −6505.04 −0.275518 −0.137759 0.990466i \(-0.543990\pi\)
−0.137759 + 0.990466i \(0.543990\pi\)
\(824\) 0 0
\(825\) 19355.1 0.816796
\(826\) 0 0
\(827\) −29084.3 −1.22292 −0.611462 0.791274i \(-0.709418\pi\)
−0.611462 + 0.791274i \(0.709418\pi\)
\(828\) 0 0
\(829\) −34516.8 −1.44610 −0.723050 0.690796i \(-0.757260\pi\)
−0.723050 + 0.690796i \(0.757260\pi\)
\(830\) 0 0
\(831\) 39945.7 1.66751
\(832\) 0 0
\(833\) 20888.1 0.868825
\(834\) 0 0
\(835\) −9069.75 −0.375894
\(836\) 0 0
\(837\) −12645.1 −0.522197
\(838\) 0 0
\(839\) 12050.1 0.495845 0.247923 0.968780i \(-0.420252\pi\)
0.247923 + 0.968780i \(0.420252\pi\)
\(840\) 0 0
\(841\) −23047.4 −0.944991
\(842\) 0 0
\(843\) 51987.8 2.12403
\(844\) 0 0
\(845\) −3087.08 −0.125679
\(846\) 0 0
\(847\) 2825.69 0.114630
\(848\) 0 0
\(849\) 10902.8 0.440733
\(850\) 0 0
\(851\) −14383.5 −0.579388
\(852\) 0 0
\(853\) 39402.9 1.58163 0.790815 0.612055i \(-0.209657\pi\)
0.790815 + 0.612055i \(0.209657\pi\)
\(854\) 0 0
\(855\) −16869.4 −0.674763
\(856\) 0 0
\(857\) −39574.9 −1.57742 −0.788711 0.614764i \(-0.789251\pi\)
−0.788711 + 0.614764i \(0.789251\pi\)
\(858\) 0 0
\(859\) −12108.4 −0.480947 −0.240474 0.970656i \(-0.577303\pi\)
−0.240474 + 0.970656i \(0.577303\pi\)
\(860\) 0 0
\(861\) 19537.6 0.773331
\(862\) 0 0
\(863\) 29594.4 1.16733 0.583665 0.811994i \(-0.301618\pi\)
0.583665 + 0.811994i \(0.301618\pi\)
\(864\) 0 0
\(865\) 7593.43 0.298479
\(866\) 0 0
\(867\) −26473.4 −1.03701
\(868\) 0 0
\(869\) −23581.1 −0.920521
\(870\) 0 0
\(871\) −1394.25 −0.0542391
\(872\) 0 0
\(873\) −10275.1 −0.398350
\(874\) 0 0
\(875\) 14258.9 0.550900
\(876\) 0 0
\(877\) −16838.1 −0.648326 −0.324163 0.946001i \(-0.605083\pi\)
−0.324163 + 0.946001i \(0.605083\pi\)
\(878\) 0 0
\(879\) −20758.4 −0.796545
\(880\) 0 0
\(881\) −16537.3 −0.632413 −0.316207 0.948690i \(-0.602409\pi\)
−0.316207 + 0.948690i \(0.602409\pi\)
\(882\) 0 0
\(883\) 34065.2 1.29829 0.649143 0.760667i \(-0.275128\pi\)
0.649143 + 0.760667i \(0.275128\pi\)
\(884\) 0 0
\(885\) −18010.8 −0.684097
\(886\) 0 0
\(887\) −35515.0 −1.34439 −0.672196 0.740373i \(-0.734649\pi\)
−0.672196 + 0.740373i \(0.734649\pi\)
\(888\) 0 0
\(889\) 11560.6 0.436143
\(890\) 0 0
\(891\) −29180.2 −1.09717
\(892\) 0 0
\(893\) 40666.1 1.52390
\(894\) 0 0
\(895\) 25125.2 0.938371
\(896\) 0 0
\(897\) −10138.0 −0.377367
\(898\) 0 0
\(899\) −7728.18 −0.286707
\(900\) 0 0
\(901\) 63066.3 2.33190
\(902\) 0 0
\(903\) 35086.4 1.29303
\(904\) 0 0
\(905\) 8670.75 0.318481
\(906\) 0 0
\(907\) −2050.69 −0.0750738 −0.0375369 0.999295i \(-0.511951\pi\)
−0.0375369 + 0.999295i \(0.511951\pi\)
\(908\) 0 0
\(909\) −23119.6 −0.843594
\(910\) 0 0
\(911\) 17347.9 0.630913 0.315456 0.948940i \(-0.397842\pi\)
0.315456 + 0.948940i \(0.397842\pi\)
\(912\) 0 0
\(913\) 37542.2 1.36086
\(914\) 0 0
\(915\) 27264.7 0.985075
\(916\) 0 0
\(917\) −24669.7 −0.888402
\(918\) 0 0
\(919\) 38349.9 1.37655 0.688273 0.725452i \(-0.258369\pi\)
0.688273 + 0.725452i \(0.258369\pi\)
\(920\) 0 0
\(921\) −53431.8 −1.91166
\(922\) 0 0
\(923\) 41303.9 1.47295
\(924\) 0 0
\(925\) −34441.4 −1.22424
\(926\) 0 0
\(927\) 5082.29 0.180069
\(928\) 0 0
\(929\) 34315.3 1.21189 0.605946 0.795506i \(-0.292795\pi\)
0.605946 + 0.795506i \(0.292795\pi\)
\(930\) 0 0
\(931\) 34042.9 1.19840
\(932\) 0 0
\(933\) 10188.2 0.357499
\(934\) 0 0
\(935\) −18770.5 −0.656536
\(936\) 0 0
\(937\) −13162.9 −0.458924 −0.229462 0.973318i \(-0.573697\pi\)
−0.229462 + 0.973318i \(0.573697\pi\)
\(938\) 0 0
\(939\) 32821.7 1.14068
\(940\) 0 0
\(941\) 34912.8 1.20948 0.604742 0.796422i \(-0.293276\pi\)
0.604742 + 0.796422i \(0.293276\pi\)
\(942\) 0 0
\(943\) −9716.99 −0.335555
\(944\) 0 0
\(945\) −4012.71 −0.138131
\(946\) 0 0
\(947\) 35185.9 1.20738 0.603690 0.797219i \(-0.293696\pi\)
0.603690 + 0.797219i \(0.293696\pi\)
\(948\) 0 0
\(949\) 34992.8 1.19696
\(950\) 0 0
\(951\) −60630.0 −2.06736
\(952\) 0 0
\(953\) 26228.8 0.891536 0.445768 0.895148i \(-0.352931\pi\)
0.445768 + 0.895148i \(0.352931\pi\)
\(954\) 0 0
\(955\) 27597.8 0.935124
\(956\) 0 0
\(957\) −8059.45 −0.272231
\(958\) 0 0
\(959\) −13788.1 −0.464277
\(960\) 0 0
\(961\) 14726.5 0.494325
\(962\) 0 0
\(963\) −2903.67 −0.0971647
\(964\) 0 0
\(965\) 23406.4 0.780807
\(966\) 0 0
\(967\) 41496.1 1.37996 0.689982 0.723827i \(-0.257619\pi\)
0.689982 + 0.723827i \(0.257619\pi\)
\(968\) 0 0
\(969\) −96902.2 −3.21253
\(970\) 0 0
\(971\) −2862.88 −0.0946181 −0.0473091 0.998880i \(-0.515065\pi\)
−0.0473091 + 0.998880i \(0.515065\pi\)
\(972\) 0 0
\(973\) 9200.39 0.303135
\(974\) 0 0
\(975\) −24275.6 −0.797375
\(976\) 0 0
\(977\) −27022.6 −0.884882 −0.442441 0.896798i \(-0.645887\pi\)
−0.442441 + 0.896798i \(0.645887\pi\)
\(978\) 0 0
\(979\) 26813.2 0.875334
\(980\) 0 0
\(981\) 6083.39 0.197989
\(982\) 0 0
\(983\) −12935.7 −0.419719 −0.209859 0.977732i \(-0.567301\pi\)
−0.209859 + 0.977732i \(0.567301\pi\)
\(984\) 0 0
\(985\) −6627.65 −0.214390
\(986\) 0 0
\(987\) −19584.1 −0.631581
\(988\) 0 0
\(989\) −17450.2 −0.561057
\(990\) 0 0
\(991\) −39164.8 −1.25541 −0.627705 0.778452i \(-0.716005\pi\)
−0.627705 + 0.778452i \(0.716005\pi\)
\(992\) 0 0
\(993\) −64268.6 −2.05388
\(994\) 0 0
\(995\) 17388.9 0.554037
\(996\) 0 0
\(997\) 20397.2 0.647930 0.323965 0.946069i \(-0.394984\pi\)
0.323965 + 0.946069i \(0.394984\pi\)
\(998\) 0 0
\(999\) 23465.9 0.743172
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2252.4.a.b.1.15 75
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2252.4.a.b.1.15 75 1.1 even 1 trivial