Properties

Label 2252.3.d.b.1125.16
Level $2252$
Weight $3$
Character 2252.1125
Analytic conductor $61.363$
Analytic rank $0$
Dimension $76$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2252,3,Mod(1125,2252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2252.1125"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2252 = 2^{2} \cdot 563 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2252.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.3625555339\)
Analytic rank: \(0\)
Dimension: \(76\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1125.16
Character \(\chi\) \(=\) 2252.1125
Dual form 2252.3.d.b.1125.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.46678 q^{3} +1.78369i q^{5} -7.09205 q^{7} +3.01854 q^{9} +0.0787181 q^{11} -12.9657 q^{13} -6.18365i q^{15} +3.40849 q^{17} +6.75628 q^{19} +24.5866 q^{21} +35.5594 q^{23} +21.8185 q^{25} +20.7364 q^{27} -45.1580i q^{29} +46.3610i q^{31} -0.272898 q^{33} -12.6500i q^{35} +62.2734i q^{37} +44.9493 q^{39} +51.6186i q^{41} -31.5544i q^{43} +5.38413i q^{45} -40.1206 q^{47} +1.29721 q^{49} -11.8165 q^{51} -23.3327i q^{53} +0.140409i q^{55} -23.4225 q^{57} -1.25854 q^{59} +46.4689 q^{61} -21.4076 q^{63} -23.1268i q^{65} +47.0822 q^{67} -123.276 q^{69} -36.3976 q^{71} -63.9488i q^{73} -75.6397 q^{75} -0.558273 q^{77} -23.0688i q^{79} -99.0553 q^{81} +4.20676i q^{83} +6.07968i q^{85} +156.553i q^{87} -17.6508i q^{89} +91.9537 q^{91} -160.723i q^{93} +12.0511i q^{95} +70.6669i q^{97} +0.237614 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 4 q^{3} - 8 q^{7} + 128 q^{9} + 2 q^{11} - 6 q^{13} + 22 q^{17} + 12 q^{19} - 6 q^{21} + 24 q^{23} - 912 q^{25} + 22 q^{27} - 52 q^{33} - 70 q^{39} - 28 q^{47} - 340 q^{49} + 314 q^{51} - 98 q^{57}+ \cdots + 348 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2252\mathbb{Z}\right)^\times\).

\(n\) \(565\) \(1127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.46678 −1.15559 −0.577796 0.816181i \(-0.696087\pi\)
−0.577796 + 0.816181i \(0.696087\pi\)
\(4\) 0 0
\(5\) 1.78369i 0.356738i 0.983964 + 0.178369i \(0.0570820\pi\)
−0.983964 + 0.178369i \(0.942918\pi\)
\(6\) 0 0
\(7\) −7.09205 −1.01315 −0.506575 0.862196i \(-0.669089\pi\)
−0.506575 + 0.862196i \(0.669089\pi\)
\(8\) 0 0
\(9\) 3.01854 0.335393
\(10\) 0 0
\(11\) 0.0787181 0.00715619 0.00357810 0.999994i \(-0.498861\pi\)
0.00357810 + 0.999994i \(0.498861\pi\)
\(12\) 0 0
\(13\) −12.9657 −0.997365 −0.498682 0.866785i \(-0.666183\pi\)
−0.498682 + 0.866785i \(0.666183\pi\)
\(14\) 0 0
\(15\) 6.18365i 0.412243i
\(16\) 0 0
\(17\) 3.40849 0.200499 0.100250 0.994962i \(-0.468036\pi\)
0.100250 + 0.994962i \(0.468036\pi\)
\(18\) 0 0
\(19\) 6.75628 0.355594 0.177797 0.984067i \(-0.443103\pi\)
0.177797 + 0.984067i \(0.443103\pi\)
\(20\) 0 0
\(21\) 24.5866 1.17079
\(22\) 0 0
\(23\) 35.5594 1.54606 0.773030 0.634369i \(-0.218740\pi\)
0.773030 + 0.634369i \(0.218740\pi\)
\(24\) 0 0
\(25\) 21.8185 0.872738
\(26\) 0 0
\(27\) 20.7364 0.768014
\(28\) 0 0
\(29\) 45.1580i 1.55717i −0.627538 0.778586i \(-0.715937\pi\)
0.627538 0.778586i \(-0.284063\pi\)
\(30\) 0 0
\(31\) 46.3610i 1.49552i 0.663972 + 0.747758i \(0.268869\pi\)
−0.663972 + 0.747758i \(0.731131\pi\)
\(32\) 0 0
\(33\) −0.272898 −0.00826964
\(34\) 0 0
\(35\) 12.6500i 0.361429i
\(36\) 0 0
\(37\) 62.2734i 1.68306i 0.540207 + 0.841532i \(0.318346\pi\)
−0.540207 + 0.841532i \(0.681654\pi\)
\(38\) 0 0
\(39\) 44.9493 1.15255
\(40\) 0 0
\(41\) 51.6186i 1.25899i 0.777004 + 0.629495i \(0.216738\pi\)
−0.777004 + 0.629495i \(0.783262\pi\)
\(42\) 0 0
\(43\) 31.5544i 0.733823i −0.930256 0.366911i \(-0.880415\pi\)
0.930256 0.366911i \(-0.119585\pi\)
\(44\) 0 0
\(45\) 5.38413i 0.119647i
\(46\) 0 0
\(47\) −40.1206 −0.853629 −0.426815 0.904339i \(-0.640364\pi\)
−0.426815 + 0.904339i \(0.640364\pi\)
\(48\) 0 0
\(49\) 1.29721 0.0264736
\(50\) 0 0
\(51\) −11.8165 −0.231695
\(52\) 0 0
\(53\) 23.3327i 0.440239i −0.975473 0.220120i \(-0.929355\pi\)
0.975473 0.220120i \(-0.0706448\pi\)
\(54\) 0 0
\(55\) 0.140409i 0.00255288i
\(56\) 0 0
\(57\) −23.4225 −0.410921
\(58\) 0 0
\(59\) −1.25854 −0.0213312 −0.0106656 0.999943i \(-0.503395\pi\)
−0.0106656 + 0.999943i \(0.503395\pi\)
\(60\) 0 0
\(61\) 46.4689 0.761786 0.380893 0.924619i \(-0.375617\pi\)
0.380893 + 0.924619i \(0.375617\pi\)
\(62\) 0 0
\(63\) −21.4076 −0.339804
\(64\) 0 0
\(65\) 23.1268i 0.355798i
\(66\) 0 0
\(67\) 47.0822 0.702720 0.351360 0.936240i \(-0.385719\pi\)
0.351360 + 0.936240i \(0.385719\pi\)
\(68\) 0 0
\(69\) −123.276 −1.78661
\(70\) 0 0
\(71\) −36.3976 −0.512642 −0.256321 0.966592i \(-0.582510\pi\)
−0.256321 + 0.966592i \(0.582510\pi\)
\(72\) 0 0
\(73\) 63.9488i 0.876010i −0.898972 0.438005i \(-0.855685\pi\)
0.898972 0.438005i \(-0.144315\pi\)
\(74\) 0 0
\(75\) −75.6397 −1.00853
\(76\) 0 0
\(77\) −0.558273 −0.00725030
\(78\) 0 0
\(79\) 23.0688i 0.292010i −0.989284 0.146005i \(-0.953358\pi\)
0.989284 0.146005i \(-0.0466416\pi\)
\(80\) 0 0
\(81\) −99.0553 −1.22290
\(82\) 0 0
\(83\) 4.20676i 0.0506838i 0.999679 + 0.0253419i \(0.00806745\pi\)
−0.999679 + 0.0253419i \(0.991933\pi\)
\(84\) 0 0
\(85\) 6.07968i 0.0715257i
\(86\) 0 0
\(87\) 156.553i 1.79946i
\(88\) 0 0
\(89\) 17.6508i 0.198323i −0.995071 0.0991617i \(-0.968384\pi\)
0.995071 0.0991617i \(-0.0316161\pi\)
\(90\) 0 0
\(91\) 91.9537 1.01048
\(92\) 0 0
\(93\) 160.723i 1.72821i
\(94\) 0 0
\(95\) 12.0511i 0.126854i
\(96\) 0 0
\(97\) 70.6669i 0.728525i 0.931296 + 0.364262i \(0.118679\pi\)
−0.931296 + 0.364262i \(0.881321\pi\)
\(98\) 0 0
\(99\) 0.237614 0.00240014
\(100\) 0 0
\(101\) 33.1279 0.327999 0.163999 0.986460i \(-0.447560\pi\)
0.163999 + 0.986460i \(0.447560\pi\)
\(102\) 0 0
\(103\) 178.233 1.73042 0.865209 0.501411i \(-0.167186\pi\)
0.865209 + 0.501411i \(0.167186\pi\)
\(104\) 0 0
\(105\) 43.8548i 0.417664i
\(106\) 0 0
\(107\) 132.352 1.23694 0.618469 0.785809i \(-0.287753\pi\)
0.618469 + 0.785809i \(0.287753\pi\)
\(108\) 0 0
\(109\) 192.347i 1.76465i 0.470643 + 0.882324i \(0.344022\pi\)
−0.470643 + 0.882324i \(0.655978\pi\)
\(110\) 0 0
\(111\) 215.888i 1.94494i
\(112\) 0 0
\(113\) −180.188 −1.59458 −0.797291 0.603596i \(-0.793734\pi\)
−0.797291 + 0.603596i \(0.793734\pi\)
\(114\) 0 0
\(115\) 63.4269i 0.551538i
\(116\) 0 0
\(117\) −39.1376 −0.334509
\(118\) 0 0
\(119\) −24.1732 −0.203136
\(120\) 0 0
\(121\) −120.994 −0.999949
\(122\) 0 0
\(123\) 178.950i 1.45488i
\(124\) 0 0
\(125\) 83.5095i 0.668076i
\(126\) 0 0
\(127\) −32.4774 −0.255728 −0.127864 0.991792i \(-0.540812\pi\)
−0.127864 + 0.991792i \(0.540812\pi\)
\(128\) 0 0
\(129\) 109.392i 0.848000i
\(130\) 0 0
\(131\) 216.144i 1.64995i −0.565168 0.824976i \(-0.691189\pi\)
0.565168 0.824976i \(-0.308811\pi\)
\(132\) 0 0
\(133\) −47.9159 −0.360270
\(134\) 0 0
\(135\) 36.9873i 0.273980i
\(136\) 0 0
\(137\) −80.6473 −0.588667 −0.294333 0.955703i \(-0.595098\pi\)
−0.294333 + 0.955703i \(0.595098\pi\)
\(138\) 0 0
\(139\) 134.493i 0.967576i 0.875185 + 0.483788i \(0.160739\pi\)
−0.875185 + 0.483788i \(0.839261\pi\)
\(140\) 0 0
\(141\) 139.089 0.986447
\(142\) 0 0
\(143\) −1.02064 −0.00713733
\(144\) 0 0
\(145\) 80.5478 0.555502
\(146\) 0 0
\(147\) −4.49713 −0.0305927
\(148\) 0 0
\(149\) −176.779 −1.18643 −0.593217 0.805043i \(-0.702142\pi\)
−0.593217 + 0.805043i \(0.702142\pi\)
\(150\) 0 0
\(151\) 286.056i 1.89441i −0.320630 0.947205i \(-0.603894\pi\)
0.320630 0.947205i \(-0.396106\pi\)
\(152\) 0 0
\(153\) 10.2887 0.0672461
\(154\) 0 0
\(155\) −82.6935 −0.533507
\(156\) 0 0
\(157\) 198.317i 1.26317i −0.775309 0.631583i \(-0.782406\pi\)
0.775309 0.631583i \(-0.217594\pi\)
\(158\) 0 0
\(159\) 80.8892i 0.508737i
\(160\) 0 0
\(161\) −252.189 −1.56639
\(162\) 0 0
\(163\) 126.130i 0.773801i −0.922121 0.386901i \(-0.873546\pi\)
0.922121 0.386901i \(-0.126454\pi\)
\(164\) 0 0
\(165\) 0.486765i 0.00295009i
\(166\) 0 0
\(167\) 238.572i 1.42857i 0.699853 + 0.714287i \(0.253249\pi\)
−0.699853 + 0.714287i \(0.746751\pi\)
\(168\) 0 0
\(169\) −0.889560 −0.00526367
\(170\) 0 0
\(171\) 20.3941 0.119264
\(172\) 0 0
\(173\) 21.9466i 0.126859i 0.997986 + 0.0634296i \(0.0202038\pi\)
−0.997986 + 0.0634296i \(0.979796\pi\)
\(174\) 0 0
\(175\) −154.738 −0.884215
\(176\) 0 0
\(177\) 4.36309 0.0246502
\(178\) 0 0
\(179\) −98.6091 −0.550889 −0.275444 0.961317i \(-0.588825\pi\)
−0.275444 + 0.961317i \(0.588825\pi\)
\(180\) 0 0
\(181\) −244.501 −1.35084 −0.675418 0.737435i \(-0.736037\pi\)
−0.675418 + 0.737435i \(0.736037\pi\)
\(182\) 0 0
\(183\) −161.097 −0.880314
\(184\) 0 0
\(185\) −111.076 −0.600412
\(186\) 0 0
\(187\) 0.268310 0.00143481
\(188\) 0 0
\(189\) −147.064 −0.778114
\(190\) 0 0
\(191\) −54.1417 −0.283465 −0.141732 0.989905i \(-0.545267\pi\)
−0.141732 + 0.989905i \(0.545267\pi\)
\(192\) 0 0
\(193\) −179.806 −0.931638 −0.465819 0.884880i \(-0.654240\pi\)
−0.465819 + 0.884880i \(0.654240\pi\)
\(194\) 0 0
\(195\) 80.1756i 0.411157i
\(196\) 0 0
\(197\) −263.058 −1.33532 −0.667661 0.744465i \(-0.732704\pi\)
−0.667661 + 0.744465i \(0.732704\pi\)
\(198\) 0 0
\(199\) 21.5418i 0.108250i 0.998534 + 0.0541252i \(0.0172370\pi\)
−0.998534 + 0.0541252i \(0.982763\pi\)
\(200\) 0 0
\(201\) −163.224 −0.812057
\(202\) 0 0
\(203\) 320.263i 1.57765i
\(204\) 0 0
\(205\) −92.0715 −0.449129
\(206\) 0 0
\(207\) 107.337 0.518538
\(208\) 0 0
\(209\) 0.531842 0.00254470
\(210\) 0 0
\(211\) −33.3902 −0.158247 −0.0791236 0.996865i \(-0.525212\pi\)
−0.0791236 + 0.996865i \(0.525212\pi\)
\(212\) 0 0
\(213\) 126.182 0.592405
\(214\) 0 0
\(215\) 56.2832 0.261782
\(216\) 0 0
\(217\) 328.794i 1.51518i
\(218\) 0 0
\(219\) 221.696i 1.01231i
\(220\) 0 0
\(221\) −44.1936 −0.199971
\(222\) 0 0
\(223\) 51.8306 0.232424 0.116212 0.993224i \(-0.462925\pi\)
0.116212 + 0.993224i \(0.462925\pi\)
\(224\) 0 0
\(225\) 65.8599 0.292710
\(226\) 0 0
\(227\) 103.848i 0.457479i 0.973488 + 0.228739i \(0.0734603\pi\)
−0.973488 + 0.228739i \(0.926540\pi\)
\(228\) 0 0
\(229\) 138.564i 0.605084i −0.953136 0.302542i \(-0.902165\pi\)
0.953136 0.302542i \(-0.0978353\pi\)
\(230\) 0 0
\(231\) 1.93541 0.00837839
\(232\) 0 0
\(233\) 93.6572i 0.401962i 0.979595 + 0.200981i \(0.0644130\pi\)
−0.979595 + 0.200981i \(0.935587\pi\)
\(234\) 0 0
\(235\) 71.5626i 0.304522i
\(236\) 0 0
\(237\) 79.9744i 0.337445i
\(238\) 0 0
\(239\) 24.4963i 0.102495i 0.998686 + 0.0512475i \(0.0163197\pi\)
−0.998686 + 0.0512475i \(0.983680\pi\)
\(240\) 0 0
\(241\) −358.192 −1.48627 −0.743136 0.669140i \(-0.766662\pi\)
−0.743136 + 0.669140i \(0.766662\pi\)
\(242\) 0 0
\(243\) 156.775 0.645165
\(244\) 0 0
\(245\) 2.31382i 0.00944415i
\(246\) 0 0
\(247\) −87.6002 −0.354657
\(248\) 0 0
\(249\) 14.5839i 0.0585699i
\(250\) 0 0
\(251\) 66.5884 0.265292 0.132646 0.991163i \(-0.457653\pi\)
0.132646 + 0.991163i \(0.457653\pi\)
\(252\) 0 0
\(253\) 2.79917 0.0110639
\(254\) 0 0
\(255\) 21.0769i 0.0826545i
\(256\) 0 0
\(257\) 247.535 0.963169 0.481585 0.876400i \(-0.340061\pi\)
0.481585 + 0.876400i \(0.340061\pi\)
\(258\) 0 0
\(259\) 441.646i 1.70520i
\(260\) 0 0
\(261\) 136.311i 0.522265i
\(262\) 0 0
\(263\) 119.407i 0.454017i −0.973893 0.227009i \(-0.927105\pi\)
0.973893 0.227009i \(-0.0728946\pi\)
\(264\) 0 0
\(265\) 41.6182 0.157050
\(266\) 0 0
\(267\) 61.1913i 0.229181i
\(268\) 0 0
\(269\) −103.270 −0.383902 −0.191951 0.981405i \(-0.561481\pi\)
−0.191951 + 0.981405i \(0.561481\pi\)
\(270\) 0 0
\(271\) 329.451 1.21568 0.607842 0.794058i \(-0.292035\pi\)
0.607842 + 0.794058i \(0.292035\pi\)
\(272\) 0 0
\(273\) −318.783 −1.16770
\(274\) 0 0
\(275\) 1.71751 0.00624548
\(276\) 0 0
\(277\) 278.030 1.00372 0.501860 0.864949i \(-0.332649\pi\)
0.501860 + 0.864949i \(0.332649\pi\)
\(278\) 0 0
\(279\) 139.942i 0.501586i
\(280\) 0 0
\(281\) −56.8539 −0.202327 −0.101164 0.994870i \(-0.532257\pi\)
−0.101164 + 0.994870i \(0.532257\pi\)
\(282\) 0 0
\(283\) 236.992i 0.837428i 0.908118 + 0.418714i \(0.137519\pi\)
−0.908118 + 0.418714i \(0.862481\pi\)
\(284\) 0 0
\(285\) 41.7785i 0.146591i
\(286\) 0 0
\(287\) 366.082i 1.27555i
\(288\) 0 0
\(289\) −277.382 −0.959800
\(290\) 0 0
\(291\) 244.986i 0.841877i
\(292\) 0 0
\(293\) 11.2885i 0.0385273i −0.999814 0.0192636i \(-0.993868\pi\)
0.999814 0.0192636i \(-0.00613218\pi\)
\(294\) 0 0
\(295\) 2.24485i 0.00760966i
\(296\) 0 0
\(297\) 1.63233 0.00549606
\(298\) 0 0
\(299\) −461.054 −1.54199
\(300\) 0 0
\(301\) 223.785i 0.743473i
\(302\) 0 0
\(303\) −114.847 −0.379033
\(304\) 0 0
\(305\) 82.8861i 0.271758i
\(306\) 0 0
\(307\) 499.213i 1.62610i 0.582193 + 0.813051i \(0.302195\pi\)
−0.582193 + 0.813051i \(0.697805\pi\)
\(308\) 0 0
\(309\) −617.894 −1.99966
\(310\) 0 0
\(311\) 569.619i 1.83157i 0.401665 + 0.915787i \(0.368432\pi\)
−0.401665 + 0.915787i \(0.631568\pi\)
\(312\) 0 0
\(313\) 151.249i 0.483225i −0.970373 0.241612i \(-0.922324\pi\)
0.970373 0.241612i \(-0.0776763\pi\)
\(314\) 0 0
\(315\) 38.1845i 0.121221i
\(316\) 0 0
\(317\) 150.833i 0.475814i 0.971288 + 0.237907i \(0.0764613\pi\)
−0.971288 + 0.237907i \(0.923539\pi\)
\(318\) 0 0
\(319\) 3.55475i 0.0111434i
\(320\) 0 0
\(321\) −458.836 −1.42940
\(322\) 0 0
\(323\) 23.0287 0.0712963
\(324\) 0 0
\(325\) −282.892 −0.870438
\(326\) 0 0
\(327\) 666.823i 2.03921i
\(328\) 0 0
\(329\) 284.537 0.864855
\(330\) 0 0
\(331\) 372.844i 1.12642i 0.826315 + 0.563209i \(0.190433\pi\)
−0.826315 + 0.563209i \(0.809567\pi\)
\(332\) 0 0
\(333\) 187.975i 0.564488i
\(334\) 0 0
\(335\) 83.9800i 0.250687i
\(336\) 0 0
\(337\) −397.922 −1.18078 −0.590389 0.807119i \(-0.701026\pi\)
−0.590389 + 0.807119i \(0.701026\pi\)
\(338\) 0 0
\(339\) 624.670 1.84269
\(340\) 0 0
\(341\) 3.64945i 0.0107022i
\(342\) 0 0
\(343\) 338.311 0.986329
\(344\) 0 0
\(345\) 219.887i 0.637353i
\(346\) 0 0
\(347\) −614.345 −1.77045 −0.885223 0.465166i \(-0.845995\pi\)
−0.885223 + 0.465166i \(0.845995\pi\)
\(348\) 0 0
\(349\) 240.217 0.688300 0.344150 0.938915i \(-0.388167\pi\)
0.344150 + 0.938915i \(0.388167\pi\)
\(350\) 0 0
\(351\) −268.863 −0.765990
\(352\) 0 0
\(353\) 433.927i 1.22925i −0.788818 0.614627i \(-0.789306\pi\)
0.788818 0.614627i \(-0.210694\pi\)
\(354\) 0 0
\(355\) 64.9219i 0.182879i
\(356\) 0 0
\(357\) 83.8030 0.234742
\(358\) 0 0
\(359\) 166.263i 0.463128i −0.972820 0.231564i \(-0.925616\pi\)
0.972820 0.231564i \(-0.0743842\pi\)
\(360\) 0 0
\(361\) −315.353 −0.873553
\(362\) 0 0
\(363\) 419.458 1.15553
\(364\) 0 0
\(365\) 114.065 0.312506
\(366\) 0 0
\(367\) 15.8241i 0.0431174i −0.999768 0.0215587i \(-0.993137\pi\)
0.999768 0.0215587i \(-0.00686288\pi\)
\(368\) 0 0
\(369\) 155.813i 0.422257i
\(370\) 0 0
\(371\) 165.477i 0.446029i
\(372\) 0 0
\(373\) 563.745i 1.51138i 0.654929 + 0.755691i \(0.272699\pi\)
−0.654929 + 0.755691i \(0.727301\pi\)
\(374\) 0 0
\(375\) 289.509i 0.772024i
\(376\) 0 0
\(377\) 585.507i 1.55307i
\(378\) 0 0
\(379\) −547.320 −1.44412 −0.722058 0.691833i \(-0.756804\pi\)
−0.722058 + 0.691833i \(0.756804\pi\)
\(380\) 0 0
\(381\) 112.592 0.295517
\(382\) 0 0
\(383\) 228.334 0.596173 0.298086 0.954539i \(-0.403652\pi\)
0.298086 + 0.954539i \(0.403652\pi\)
\(384\) 0 0
\(385\) 0.995785i 0.00258645i
\(386\) 0 0
\(387\) 95.2481i 0.246119i
\(388\) 0 0
\(389\) 419.932i 1.07952i −0.841820 0.539759i \(-0.818516\pi\)
0.841820 0.539759i \(-0.181484\pi\)
\(390\) 0 0
\(391\) 121.204 0.309984
\(392\) 0 0
\(393\) 749.322i 1.90667i
\(394\) 0 0
\(395\) 41.1475 0.104171
\(396\) 0 0
\(397\) 456.405i 1.14963i 0.818282 + 0.574817i \(0.194927\pi\)
−0.818282 + 0.574817i \(0.805073\pi\)
\(398\) 0 0
\(399\) 166.114 0.416325
\(400\) 0 0
\(401\) −271.042 −0.675916 −0.337958 0.941161i \(-0.609736\pi\)
−0.337958 + 0.941161i \(0.609736\pi\)
\(402\) 0 0
\(403\) 601.104i 1.49157i
\(404\) 0 0
\(405\) 176.684i 0.436256i
\(406\) 0 0
\(407\) 4.90204i 0.0120443i
\(408\) 0 0
\(409\) −501.217 −1.22547 −0.612734 0.790289i \(-0.709930\pi\)
−0.612734 + 0.790289i \(0.709930\pi\)
\(410\) 0 0
\(411\) 279.586 0.680259
\(412\) 0 0
\(413\) 8.92565 0.0216118
\(414\) 0 0
\(415\) −7.50355 −0.0180808
\(416\) 0 0
\(417\) 466.257i 1.11812i
\(418\) 0 0
\(419\) 389.164i 0.928791i −0.885628 0.464396i \(-0.846272\pi\)
0.885628 0.464396i \(-0.153728\pi\)
\(420\) 0 0
\(421\) 738.853 1.75500 0.877498 0.479581i \(-0.159211\pi\)
0.877498 + 0.479581i \(0.159211\pi\)
\(422\) 0 0
\(423\) −121.106 −0.286301
\(424\) 0 0
\(425\) 74.3680 0.174983
\(426\) 0 0
\(427\) −329.560 −0.771804
\(428\) 0 0
\(429\) 3.53833 0.00824785
\(430\) 0 0
\(431\) 315.719i 0.732527i −0.930511 0.366264i \(-0.880637\pi\)
0.930511 0.366264i \(-0.119363\pi\)
\(432\) 0 0
\(433\) 62.2338i 0.143727i 0.997414 + 0.0718636i \(0.0228946\pi\)
−0.997414 + 0.0718636i \(0.977105\pi\)
\(434\) 0 0
\(435\) −279.241 −0.641934
\(436\) 0 0
\(437\) 240.249 0.549769
\(438\) 0 0
\(439\) −326.306 −0.743295 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(440\) 0 0
\(441\) 3.91567 0.00887908
\(442\) 0 0
\(443\) 22.4440i 0.0506636i −0.999679 0.0253318i \(-0.991936\pi\)
0.999679 0.0253318i \(-0.00806422\pi\)
\(444\) 0 0
\(445\) 31.4835 0.0707494
\(446\) 0 0
\(447\) 612.852 1.37103
\(448\) 0 0
\(449\) 640.430 1.42635 0.713174 0.700988i \(-0.247257\pi\)
0.713174 + 0.700988i \(0.247257\pi\)
\(450\) 0 0
\(451\) 4.06332i 0.00900958i
\(452\) 0 0
\(453\) 991.691i 2.18916i
\(454\) 0 0
\(455\) 164.017i 0.360476i
\(456\) 0 0
\(457\) 608.551i 1.33162i −0.746121 0.665811i \(-0.768086\pi\)
0.746121 0.665811i \(-0.231914\pi\)
\(458\) 0 0
\(459\) 70.6797 0.153986
\(460\) 0 0
\(461\) −268.061 −0.581477 −0.290739 0.956802i \(-0.593901\pi\)
−0.290739 + 0.956802i \(0.593901\pi\)
\(462\) 0 0
\(463\) 519.238i 1.12146i −0.827997 0.560732i \(-0.810520\pi\)
0.827997 0.560732i \(-0.189480\pi\)
\(464\) 0 0
\(465\) 286.680 0.616516
\(466\) 0 0
\(467\) −214.808 −0.459975 −0.229987 0.973194i \(-0.573868\pi\)
−0.229987 + 0.973194i \(0.573868\pi\)
\(468\) 0 0
\(469\) −333.910 −0.711961
\(470\) 0 0
\(471\) 687.521i 1.45970i
\(472\) 0 0
\(473\) 2.48390i 0.00525138i
\(474\) 0 0
\(475\) 147.412 0.310340
\(476\) 0 0
\(477\) 70.4306i 0.147653i
\(478\) 0 0
\(479\) 521.722i 1.08919i −0.838699 0.544595i \(-0.816683\pi\)
0.838699 0.544595i \(-0.183317\pi\)
\(480\) 0 0
\(481\) 807.420i 1.67863i
\(482\) 0 0
\(483\) 874.283 1.81011
\(484\) 0 0
\(485\) −126.048 −0.259892
\(486\) 0 0
\(487\) 415.337i 0.852848i 0.904523 + 0.426424i \(0.140227\pi\)
−0.904523 + 0.426424i \(0.859773\pi\)
\(488\) 0 0
\(489\) 437.263i 0.894199i
\(490\) 0 0
\(491\) 263.760 0.537189 0.268595 0.963253i \(-0.413441\pi\)
0.268595 + 0.963253i \(0.413441\pi\)
\(492\) 0 0
\(493\) 153.921i 0.312212i
\(494\) 0 0
\(495\) 0.423829i 0.000856220i
\(496\) 0 0
\(497\) 258.133 0.519383
\(498\) 0 0
\(499\) 620.671i 1.24383i 0.783085 + 0.621914i \(0.213645\pi\)
−0.783085 + 0.621914i \(0.786355\pi\)
\(500\) 0 0
\(501\) 827.075i 1.65085i
\(502\) 0 0
\(503\) −305.342 −0.607042 −0.303521 0.952825i \(-0.598162\pi\)
−0.303521 + 0.952825i \(0.598162\pi\)
\(504\) 0 0
\(505\) 59.0898i 0.117010i
\(506\) 0 0
\(507\) 3.08391 0.00608266
\(508\) 0 0
\(509\) 210.207 0.412981 0.206491 0.978449i \(-0.433796\pi\)
0.206491 + 0.978449i \(0.433796\pi\)
\(510\) 0 0
\(511\) 453.528i 0.887530i
\(512\) 0 0
\(513\) 140.101 0.273101
\(514\) 0 0
\(515\) 317.912i 0.617305i
\(516\) 0 0
\(517\) −3.15822 −0.00610874
\(518\) 0 0
\(519\) 76.0841i 0.146598i
\(520\) 0 0
\(521\) −18.0976 −0.0347364 −0.0173682 0.999849i \(-0.505529\pi\)
−0.0173682 + 0.999849i \(0.505529\pi\)
\(522\) 0 0
\(523\) 230.738i 0.441182i 0.975366 + 0.220591i \(0.0707986\pi\)
−0.975366 + 0.220591i \(0.929201\pi\)
\(524\) 0 0
\(525\) 536.441 1.02179
\(526\) 0 0
\(527\) 158.021i 0.299850i
\(528\) 0 0
\(529\) 735.470 1.39030
\(530\) 0 0
\(531\) −3.79896 −0.00715435
\(532\) 0 0
\(533\) 669.274i 1.25567i
\(534\) 0 0
\(535\) 236.075i 0.441263i
\(536\) 0 0
\(537\) 341.856 0.636603
\(538\) 0 0
\(539\) 0.102114 0.000189451
\(540\) 0 0
\(541\) −665.526 −1.23018 −0.615088 0.788458i \(-0.710880\pi\)
−0.615088 + 0.788458i \(0.710880\pi\)
\(542\) 0 0
\(543\) 847.631 1.56102
\(544\) 0 0
\(545\) −343.086 −0.629516
\(546\) 0 0
\(547\) 631.348i 1.15420i −0.816673 0.577100i \(-0.804184\pi\)
0.816673 0.577100i \(-0.195816\pi\)
\(548\) 0 0
\(549\) 140.268 0.255498
\(550\) 0 0
\(551\) 305.100i 0.553721i
\(552\) 0 0
\(553\) 163.605i 0.295850i
\(554\) 0 0
\(555\) 385.077 0.693832
\(556\) 0 0
\(557\) 766.871 1.37679 0.688394 0.725337i \(-0.258316\pi\)
0.688394 + 0.725337i \(0.258316\pi\)
\(558\) 0 0
\(559\) 409.126i 0.731889i
\(560\) 0 0
\(561\) −0.930170 −0.00165806
\(562\) 0 0
\(563\) 562.959 6.75533i 0.999928 0.0119988i
\(564\) 0 0
\(565\) 321.399i 0.568847i
\(566\) 0 0
\(567\) 702.505 1.23899
\(568\) 0 0
\(569\) 811.664i 1.42647i −0.700923 0.713237i \(-0.747228\pi\)
0.700923 0.713237i \(-0.252772\pi\)
\(570\) 0 0
\(571\) 774.929i 1.35714i 0.734534 + 0.678572i \(0.237401\pi\)
−0.734534 + 0.678572i \(0.762599\pi\)
\(572\) 0 0
\(573\) 187.697 0.327569
\(574\) 0 0
\(575\) 775.851 1.34931
\(576\) 0 0
\(577\) 235.802i 0.408669i −0.978901 0.204335i \(-0.934497\pi\)
0.978901 0.204335i \(-0.0655031\pi\)
\(578\) 0 0
\(579\) 623.348 1.07659
\(580\) 0 0
\(581\) 29.8346i 0.0513504i
\(582\) 0 0
\(583\) 1.83671i 0.00315044i
\(584\) 0 0
\(585\) 69.8093i 0.119332i
\(586\) 0 0
\(587\) 221.534i 0.377400i 0.982035 + 0.188700i \(0.0604273\pi\)
−0.982035 + 0.188700i \(0.939573\pi\)
\(588\) 0 0
\(589\) 313.228i 0.531796i
\(590\) 0 0
\(591\) 911.965 1.54309
\(592\) 0 0
\(593\) −608.513 −1.02616 −0.513080 0.858341i \(-0.671496\pi\)
−0.513080 + 0.858341i \(0.671496\pi\)
\(594\) 0 0
\(595\) 43.1174i 0.0724662i
\(596\) 0 0
\(597\) 74.6807i 0.125093i
\(598\) 0 0
\(599\) −485.059 −0.809782 −0.404891 0.914365i \(-0.632690\pi\)
−0.404891 + 0.914365i \(0.632690\pi\)
\(600\) 0 0
\(601\) 460.254i 0.765813i −0.923787 0.382907i \(-0.874923\pi\)
0.923787 0.382907i \(-0.125077\pi\)
\(602\) 0 0
\(603\) 142.120 0.235687
\(604\) 0 0
\(605\) 215.815i 0.356719i
\(606\) 0 0
\(607\) −1.60019 −0.00263623 −0.00131812 0.999999i \(-0.500420\pi\)
−0.00131812 + 0.999999i \(0.500420\pi\)
\(608\) 0 0
\(609\) 1110.28i 1.82312i
\(610\) 0 0
\(611\) 520.193 0.851380
\(612\) 0 0
\(613\) 563.377i 0.919049i 0.888165 + 0.459524i \(0.151980\pi\)
−0.888165 + 0.459524i \(0.848020\pi\)
\(614\) 0 0
\(615\) 319.191 0.519010
\(616\) 0 0
\(617\) 287.155i 0.465405i 0.972548 + 0.232703i \(0.0747568\pi\)
−0.972548 + 0.232703i \(0.925243\pi\)
\(618\) 0 0
\(619\) 980.394i 1.58383i 0.610628 + 0.791917i \(0.290917\pi\)
−0.610628 + 0.791917i \(0.709083\pi\)
\(620\) 0 0
\(621\) 737.373 1.18740
\(622\) 0 0
\(623\) 125.180i 0.200931i
\(624\) 0 0
\(625\) 396.506 0.634410
\(626\) 0 0
\(627\) −1.84378 −0.00294063
\(628\) 0 0
\(629\) 212.258i 0.337453i
\(630\) 0 0
\(631\) −891.574 −1.41295 −0.706477 0.707736i \(-0.749717\pi\)
−0.706477 + 0.707736i \(0.749717\pi\)
\(632\) 0 0
\(633\) 115.756 0.182869
\(634\) 0 0
\(635\) 57.9296i 0.0912277i
\(636\) 0 0
\(637\) −16.8193 −0.0264039
\(638\) 0 0
\(639\) −109.867 −0.171937
\(640\) 0 0
\(641\) 1012.21i 1.57911i 0.613681 + 0.789554i \(0.289688\pi\)
−0.613681 + 0.789554i \(0.710312\pi\)
\(642\) 0 0
\(643\) 617.389i 0.960170i −0.877222 0.480085i \(-0.840606\pi\)
0.877222 0.480085i \(-0.159394\pi\)
\(644\) 0 0
\(645\) −195.121 −0.302514
\(646\) 0 0
\(647\) 211.427 0.326780 0.163390 0.986562i \(-0.447757\pi\)
0.163390 + 0.986562i \(0.447757\pi\)
\(648\) 0 0
\(649\) −0.0990701 −0.000152650
\(650\) 0 0
\(651\) 1139.86i 1.75093i
\(652\) 0 0
\(653\) 968.072 1.48250 0.741250 0.671229i \(-0.234233\pi\)
0.741250 + 0.671229i \(0.234233\pi\)
\(654\) 0 0
\(655\) 385.533 0.588600
\(656\) 0 0
\(657\) 193.032i 0.293808i
\(658\) 0 0
\(659\) 94.9656i 0.144106i −0.997401 0.0720528i \(-0.977045\pi\)
0.997401 0.0720528i \(-0.0229550\pi\)
\(660\) 0 0
\(661\) 750.561i 1.13549i 0.823204 + 0.567746i \(0.192185\pi\)
−0.823204 + 0.567746i \(0.807815\pi\)
\(662\) 0 0
\(663\) 153.209 0.231085
\(664\) 0 0
\(665\) 85.4670i 0.128522i
\(666\) 0 0
\(667\) 1605.79i 2.40748i
\(668\) 0 0
\(669\) −179.685 −0.268588
\(670\) 0 0
\(671\) 3.65795 0.00545149
\(672\) 0 0
\(673\) 499.931 0.742839 0.371420 0.928465i \(-0.378871\pi\)
0.371420 + 0.928465i \(0.378871\pi\)
\(674\) 0 0
\(675\) 452.436 0.670276
\(676\) 0 0
\(677\) 689.660i 1.01870i −0.860559 0.509350i \(-0.829886\pi\)
0.860559 0.509350i \(-0.170114\pi\)
\(678\) 0 0
\(679\) 501.173i 0.738105i
\(680\) 0 0
\(681\) 360.017i 0.528659i
\(682\) 0 0
\(683\) 801.523 1.17353 0.586766 0.809756i \(-0.300401\pi\)
0.586766 + 0.809756i \(0.300401\pi\)
\(684\) 0 0
\(685\) 143.850i 0.210000i
\(686\) 0 0
\(687\) 480.371i 0.699230i
\(688\) 0 0
\(689\) 302.526i 0.439079i
\(690\) 0 0
\(691\) 1315.37i 1.90358i −0.306751 0.951790i \(-0.599242\pi\)
0.306751 0.951790i \(-0.400758\pi\)
\(692\) 0 0
\(693\) −1.68517 −0.00243170
\(694\) 0 0
\(695\) −239.894 −0.345171
\(696\) 0 0
\(697\) 175.942i 0.252427i
\(698\) 0 0
\(699\) 324.689i 0.464505i
\(700\) 0 0
\(701\) 770.892i 1.09970i 0.835262 + 0.549852i \(0.185316\pi\)
−0.835262 + 0.549852i \(0.814684\pi\)
\(702\) 0 0
\(703\) 420.736i 0.598487i
\(704\) 0 0
\(705\) 248.092i 0.351903i
\(706\) 0 0
\(707\) −234.945 −0.332312
\(708\) 0 0
\(709\) −1231.20 −1.73653 −0.868265 0.496101i \(-0.834765\pi\)
−0.868265 + 0.496101i \(0.834765\pi\)
\(710\) 0 0
\(711\) 69.6340i 0.0979382i
\(712\) 0 0
\(713\) 1648.57i 2.31216i
\(714\) 0 0
\(715\) 1.82050i 0.00254616i
\(716\) 0 0
\(717\) 84.9233i 0.118442i
\(718\) 0 0
\(719\) −525.218 −0.730484 −0.365242 0.930913i \(-0.619014\pi\)
−0.365242 + 0.930913i \(0.619014\pi\)
\(720\) 0 0
\(721\) −1264.04 −1.75317
\(722\) 0 0
\(723\) 1241.77 1.71752
\(724\) 0 0
\(725\) 985.278i 1.35900i
\(726\) 0 0
\(727\) 236.734i 0.325632i 0.986656 + 0.162816i \(0.0520577\pi\)
−0.986656 + 0.162816i \(0.947942\pi\)
\(728\) 0 0
\(729\) 347.994 0.477358
\(730\) 0 0
\(731\) 107.553i 0.147131i
\(732\) 0 0
\(733\) 73.5579 0.100352 0.0501759 0.998740i \(-0.484022\pi\)
0.0501759 + 0.998740i \(0.484022\pi\)
\(734\) 0 0
\(735\) 8.02148i 0.0109136i
\(736\) 0 0
\(737\) 3.70622 0.00502880
\(738\) 0 0
\(739\) 271.733 0.367704 0.183852 0.982954i \(-0.441143\pi\)
0.183852 + 0.982954i \(0.441143\pi\)
\(740\) 0 0
\(741\) 303.690 0.409838
\(742\) 0 0
\(743\) 1054.54i 1.41930i 0.704553 + 0.709651i \(0.251148\pi\)
−0.704553 + 0.709651i \(0.748852\pi\)
\(744\) 0 0
\(745\) 315.318i 0.423245i
\(746\) 0 0
\(747\) 12.6983i 0.0169990i
\(748\) 0 0
\(749\) −938.650 −1.25320
\(750\) 0 0
\(751\) −688.375 −0.916612 −0.458306 0.888795i \(-0.651544\pi\)
−0.458306 + 0.888795i \(0.651544\pi\)
\(752\) 0 0
\(753\) −230.847 −0.306570
\(754\) 0 0
\(755\) 510.234 0.675807
\(756\) 0 0
\(757\) −254.236 −0.335847 −0.167924 0.985800i \(-0.553706\pi\)
−0.167924 + 0.985800i \(0.553706\pi\)
\(758\) 0 0
\(759\) −9.70409 −0.0127854
\(760\) 0 0
\(761\) 169.796i 0.223122i 0.993758 + 0.111561i \(0.0355850\pi\)
−0.993758 + 0.111561i \(0.964415\pi\)
\(762\) 0 0
\(763\) 1364.13i 1.78785i
\(764\) 0 0
\(765\) 18.3518i 0.0239892i
\(766\) 0 0
\(767\) 16.3179 0.0212750
\(768\) 0 0
\(769\) 122.260i 0.158986i 0.996835 + 0.0794930i \(0.0253301\pi\)
−0.996835 + 0.0794930i \(0.974670\pi\)
\(770\) 0 0
\(771\) −858.147 −1.11303
\(772\) 0 0
\(773\) 1077.99 1.39456 0.697279 0.716799i \(-0.254394\pi\)
0.697279 + 0.716799i \(0.254394\pi\)
\(774\) 0 0
\(775\) 1011.52i 1.30519i
\(776\) 0 0
\(777\) 1531.09i 1.97051i
\(778\) 0 0
\(779\) 348.750i 0.447689i
\(780\) 0 0
\(781\) −2.86515 −0.00366856
\(782\) 0 0
\(783\) 936.414i 1.19593i
\(784\) 0 0
\(785\) 353.736 0.450619
\(786\) 0 0
\(787\) 191.192i 0.242938i −0.992595 0.121469i \(-0.961240\pi\)
0.992595 0.121469i \(-0.0387605\pi\)
\(788\) 0 0
\(789\) 413.956i 0.524659i
\(790\) 0 0
\(791\) 1277.90 1.61555
\(792\) 0 0
\(793\) −602.504 −0.759778
\(794\) 0 0
\(795\) −144.281 −0.181486
\(796\) 0 0
\(797\) 216.924i 0.272175i −0.990697 0.136088i \(-0.956547\pi\)
0.990697 0.136088i \(-0.0434529\pi\)
\(798\) 0 0
\(799\) −136.751 −0.171152
\(800\) 0 0
\(801\) 53.2796i 0.0665163i
\(802\) 0 0
\(803\) 5.03393i 0.00626890i
\(804\) 0 0
\(805\) 449.827i 0.558791i
\(806\) 0 0
\(807\) 358.012 0.443634
\(808\) 0 0
\(809\) −1022.75 −1.26422 −0.632110 0.774879i \(-0.717811\pi\)
−0.632110 + 0.774879i \(0.717811\pi\)
\(810\) 0 0
\(811\) −336.769 −0.415251 −0.207626 0.978208i \(-0.566574\pi\)
−0.207626 + 0.978208i \(0.566574\pi\)
\(812\) 0 0
\(813\) −1142.13 −1.40484
\(814\) 0 0
\(815\) 224.976 0.276044
\(816\) 0 0
\(817\) 213.190i 0.260943i
\(818\) 0 0
\(819\) 277.566 0.338908
\(820\) 0 0
\(821\) −498.182 −0.606799 −0.303400 0.952863i \(-0.598122\pi\)
−0.303400 + 0.952863i \(0.598122\pi\)
\(822\) 0 0
\(823\) 77.7654i 0.0944902i 0.998883 + 0.0472451i \(0.0150442\pi\)
−0.998883 + 0.0472451i \(0.984956\pi\)
\(824\) 0 0
\(825\) −5.95422 −0.00721723
\(826\) 0 0
\(827\) 1512.80i 1.82926i −0.404295 0.914628i \(-0.632483\pi\)
0.404295 0.914628i \(-0.367517\pi\)
\(828\) 0 0
\(829\) 1558.71i 1.88023i −0.340853 0.940117i \(-0.610716\pi\)
0.340853 0.940117i \(-0.389284\pi\)
\(830\) 0 0
\(831\) −963.869 −1.15989
\(832\) 0 0
\(833\) 4.42152 0.00530795
\(834\) 0 0
\(835\) −425.538 −0.509626
\(836\) 0 0
\(837\) 961.359i 1.14858i
\(838\) 0 0
\(839\) −458.595 −0.546598 −0.273299 0.961929i \(-0.588115\pi\)
−0.273299 + 0.961929i \(0.588115\pi\)
\(840\) 0 0
\(841\) −1198.24 −1.42479
\(842\) 0 0
\(843\) 197.100 0.233808
\(844\) 0 0
\(845\) 1.58670i 0.00187775i
\(846\) 0 0
\(847\) 858.094 1.01310
\(848\) 0 0
\(849\) 821.599i 0.967725i
\(850\) 0 0
\(851\) 2214.40i 2.60212i
\(852\) 0 0
\(853\) 855.927i 1.00343i 0.865033 + 0.501716i \(0.167298\pi\)
−0.865033 + 0.501716i \(0.832702\pi\)
\(854\) 0 0
\(855\) 36.3767i 0.0425459i
\(856\) 0 0
\(857\) 371.457i 0.433438i −0.976234 0.216719i \(-0.930464\pi\)
0.976234 0.216719i \(-0.0695356\pi\)
\(858\) 0 0
\(859\) −1042.70 −1.21386 −0.606928 0.794756i \(-0.707599\pi\)
−0.606928 + 0.794756i \(0.707599\pi\)
\(860\) 0 0
\(861\) 1269.12i 1.47401i
\(862\) 0 0
\(863\) −1360.23 −1.57616 −0.788080 0.615573i \(-0.788925\pi\)
−0.788080 + 0.615573i \(0.788925\pi\)
\(864\) 0 0
\(865\) −39.1460 −0.0452555
\(866\) 0 0
\(867\) 961.622 1.10914
\(868\) 0 0
\(869\) 1.81593i 0.00208968i
\(870\) 0 0
\(871\) −610.456 −0.700868
\(872\) 0 0
\(873\) 213.311i 0.244342i
\(874\) 0 0
\(875\) 592.254i 0.676862i
\(876\) 0 0
\(877\) 939.441 1.07120 0.535599 0.844472i \(-0.320086\pi\)
0.535599 + 0.844472i \(0.320086\pi\)
\(878\) 0 0
\(879\) 39.1347i 0.0445218i
\(880\) 0 0
\(881\) −1576.80 −1.78979 −0.894894 0.446279i \(-0.852749\pi\)
−0.894894 + 0.446279i \(0.852749\pi\)
\(882\) 0 0
\(883\) 506.285i 0.573369i 0.958025 + 0.286684i \(0.0925531\pi\)
−0.958025 + 0.286684i \(0.907447\pi\)
\(884\) 0 0
\(885\) 7.78239i 0.00879366i
\(886\) 0 0
\(887\) −567.090 −0.639335 −0.319668 0.947530i \(-0.603571\pi\)
−0.319668 + 0.947530i \(0.603571\pi\)
\(888\) 0 0
\(889\) 230.331 0.259091
\(890\) 0 0
\(891\) −7.79745 −0.00875134
\(892\) 0 0
\(893\) −271.066 −0.303545
\(894\) 0 0
\(895\) 175.888i 0.196523i
\(896\) 0 0
\(897\) 1598.37 1.78191
\(898\) 0 0
\(899\) 2093.57 2.32877
\(900\) 0 0
\(901\) 79.5292i 0.0882677i
\(902\) 0 0
\(903\) 775.814i 0.859152i
\(904\) 0 0
\(905\) 436.114i 0.481894i
\(906\) 0 0
\(907\) 592.683 0.653454 0.326727 0.945119i \(-0.394054\pi\)
0.326727 + 0.945119i \(0.394054\pi\)
\(908\) 0 0
\(909\) 99.9978 0.110009
\(910\) 0 0
\(911\) 632.663i 0.694470i −0.937778 0.347235i \(-0.887121\pi\)
0.937778 0.347235i \(-0.112879\pi\)
\(912\) 0 0
\(913\) 0.331148i 0.000362703i
\(914\) 0 0
\(915\) 287.348i 0.314041i
\(916\) 0 0
\(917\) 1532.90i 1.67165i
\(918\) 0 0
\(919\) 278.808i 0.303382i −0.988428 0.151691i \(-0.951528\pi\)
0.988428 0.151691i \(-0.0484719\pi\)
\(920\) 0 0
\(921\) 1730.66i 1.87911i
\(922\) 0 0
\(923\) 471.921 0.511291
\(924\) 0 0
\(925\) 1358.71i 1.46887i
\(926\) 0 0
\(927\) 538.003 0.580370
\(928\) 0 0
\(929\) 1571.51i 1.69162i 0.533485 + 0.845809i \(0.320882\pi\)
−0.533485 + 0.845809i \(0.679118\pi\)
\(930\) 0 0
\(931\) 8.76431 0.00941386
\(932\) 0 0
\(933\) 1974.74i 2.11655i
\(934\) 0 0
\(935\) 0.478581i 0.000511851i
\(936\) 0 0
\(937\) 1723.64i 1.83953i −0.392472 0.919764i \(-0.628380\pi\)
0.392472 0.919764i \(-0.371620\pi\)
\(938\) 0 0
\(939\) 524.348i 0.558411i
\(940\) 0 0
\(941\) 109.977i 0.116873i −0.998291 0.0584363i \(-0.981389\pi\)
0.998291 0.0584363i \(-0.0186115\pi\)
\(942\) 0 0
\(943\) 1835.53i 1.94648i
\(944\) 0 0
\(945\) 262.316i 0.277583i
\(946\) 0 0
\(947\) 472.288i 0.498720i −0.968411 0.249360i \(-0.919780\pi\)
0.968411 0.249360i \(-0.0802203\pi\)
\(948\) 0 0
\(949\) 829.143i 0.873702i
\(950\) 0 0
\(951\) 522.904i 0.549847i
\(952\) 0 0
\(953\) 585.822 0.614713 0.307357 0.951594i \(-0.400556\pi\)
0.307357 + 0.951594i \(0.400556\pi\)
\(954\) 0 0
\(955\) 96.5720i 0.101123i
\(956\) 0 0
\(957\) 12.3235i 0.0128773i
\(958\) 0 0
\(959\) 571.955 0.596408
\(960\) 0 0
\(961\) −1188.34 −1.23657
\(962\) 0 0
\(963\) 399.511 0.414861
\(964\) 0 0
\(965\) 320.718i 0.332350i
\(966\) 0 0
\(967\) 197.341 0.204075 0.102038 0.994781i \(-0.467464\pi\)
0.102038 + 0.994781i \(0.467464\pi\)
\(968\) 0 0
\(969\) −79.8354 −0.0823895
\(970\) 0 0
\(971\) 395.335i 0.407142i 0.979060 + 0.203571i \(0.0652548\pi\)
−0.979060 + 0.203571i \(0.934745\pi\)
\(972\) 0 0
\(973\) 953.832i 0.980300i
\(974\) 0 0
\(975\) 980.725 1.00587
\(976\) 0 0
\(977\) 1286.98i 1.31728i 0.752459 + 0.658639i \(0.228868\pi\)
−0.752459 + 0.658639i \(0.771132\pi\)
\(978\) 0 0
\(979\) 1.38944i 0.00141924i
\(980\) 0 0
\(981\) 580.606i 0.591851i
\(982\) 0 0
\(983\) 816.858i 0.830985i −0.909597 0.415492i \(-0.863609\pi\)
0.909597 0.415492i \(-0.136391\pi\)
\(984\) 0 0
\(985\) 469.214i 0.476360i
\(986\) 0 0
\(987\) −986.427 −0.999419
\(988\) 0 0
\(989\) 1122.05i 1.13453i
\(990\) 0 0
\(991\) 1160.32 1.17086 0.585431 0.810722i \(-0.300925\pi\)
0.585431 + 0.810722i \(0.300925\pi\)
\(992\) 0 0
\(993\) 1292.57i 1.30168i
\(994\) 0 0
\(995\) −38.4239 −0.0386170
\(996\) 0 0
\(997\) 86.6082 0.0868688 0.0434344 0.999056i \(-0.486170\pi\)
0.0434344 + 0.999056i \(0.486170\pi\)
\(998\) 0 0
\(999\) 1291.32i 1.29262i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2252.3.d.b.1125.16 yes 76
563.562 odd 2 inner 2252.3.d.b.1125.15 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2252.3.d.b.1125.15 76 563.562 odd 2 inner
2252.3.d.b.1125.16 yes 76 1.1 even 1 trivial