Properties

Label 2252.3.d.b.1125.14
Level $2252$
Weight $3$
Character 2252.1125
Analytic conductor $61.363$
Analytic rank $0$
Dimension $76$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2252,3,Mod(1125,2252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2252.1125"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2252, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2252 = 2^{2} \cdot 563 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2252.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.3625555339\)
Analytic rank: \(0\)
Dimension: \(76\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1125.14
Character \(\chi\) \(=\) 2252.1125
Dual form 2252.3.d.b.1125.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.03034 q^{3} -4.25476i q^{5} -6.68184 q^{7} +7.24360 q^{9} -2.45745 q^{11} +15.0750 q^{13} +17.1481i q^{15} -14.0894 q^{17} -16.7283 q^{19} +26.9301 q^{21} -9.19372 q^{23} +6.89699 q^{25} +7.07886 q^{27} -14.2032i q^{29} +23.2203i q^{31} +9.90433 q^{33} +28.4297i q^{35} -39.2466i q^{37} -60.7572 q^{39} +78.3003i q^{41} +40.5013i q^{43} -30.8198i q^{45} -28.9200 q^{47} -4.35296 q^{49} +56.7850 q^{51} +96.6004i q^{53} +10.4558i q^{55} +67.4205 q^{57} -47.3123 q^{59} +92.6486 q^{61} -48.4006 q^{63} -64.1404i q^{65} +17.9997 q^{67} +37.0538 q^{69} -22.2559 q^{71} +7.30071i q^{73} -27.7972 q^{75} +16.4203 q^{77} +15.6568i q^{79} -93.7226 q^{81} +3.48742i q^{83} +59.9471i q^{85} +57.2438i q^{87} -97.5347i q^{89} -100.729 q^{91} -93.5855i q^{93} +71.1748i q^{95} -27.8558i q^{97} -17.8008 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 4 q^{3} - 8 q^{7} + 128 q^{9} + 2 q^{11} - 6 q^{13} + 22 q^{17} + 12 q^{19} - 6 q^{21} + 24 q^{23} - 912 q^{25} + 22 q^{27} - 52 q^{33} - 70 q^{39} - 28 q^{47} - 340 q^{49} + 314 q^{51} - 98 q^{57}+ \cdots + 348 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2252\mathbb{Z}\right)^\times\).

\(n\) \(565\) \(1127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.03034 −1.34345 −0.671723 0.740803i \(-0.734445\pi\)
−0.671723 + 0.740803i \(0.734445\pi\)
\(4\) 0 0
\(5\) 4.25476i 0.850953i −0.904970 0.425476i \(-0.860107\pi\)
0.904970 0.425476i \(-0.139893\pi\)
\(6\) 0 0
\(7\) −6.68184 −0.954549 −0.477275 0.878754i \(-0.658375\pi\)
−0.477275 + 0.878754i \(0.658375\pi\)
\(8\) 0 0
\(9\) 7.24360 0.804845
\(10\) 0 0
\(11\) −2.45745 −0.223404 −0.111702 0.993742i \(-0.535630\pi\)
−0.111702 + 0.993742i \(0.535630\pi\)
\(12\) 0 0
\(13\) 15.0750 1.15961 0.579807 0.814754i \(-0.303128\pi\)
0.579807 + 0.814754i \(0.303128\pi\)
\(14\) 0 0
\(15\) 17.1481i 1.14321i
\(16\) 0 0
\(17\) −14.0894 −0.828788 −0.414394 0.910097i \(-0.636007\pi\)
−0.414394 + 0.910097i \(0.636007\pi\)
\(18\) 0 0
\(19\) −16.7283 −0.880435 −0.440218 0.897891i \(-0.645099\pi\)
−0.440218 + 0.897891i \(0.645099\pi\)
\(20\) 0 0
\(21\) 26.9301 1.28238
\(22\) 0 0
\(23\) −9.19372 −0.399727 −0.199863 0.979824i \(-0.564050\pi\)
−0.199863 + 0.979824i \(0.564050\pi\)
\(24\) 0 0
\(25\) 6.89699 0.275880
\(26\) 0 0
\(27\) 7.07886 0.262180
\(28\) 0 0
\(29\) 14.2032i 0.489766i −0.969553 0.244883i \(-0.921250\pi\)
0.969553 0.244883i \(-0.0787496\pi\)
\(30\) 0 0
\(31\) 23.2203i 0.749041i 0.927219 + 0.374520i \(0.122193\pi\)
−0.927219 + 0.374520i \(0.877807\pi\)
\(32\) 0 0
\(33\) 9.90433 0.300131
\(34\) 0 0
\(35\) 28.4297i 0.812276i
\(36\) 0 0
\(37\) 39.2466i 1.06072i −0.847773 0.530359i \(-0.822057\pi\)
0.847773 0.530359i \(-0.177943\pi\)
\(38\) 0 0
\(39\) −60.7572 −1.55788
\(40\) 0 0
\(41\) 78.3003i 1.90976i 0.296985 + 0.954882i \(0.404019\pi\)
−0.296985 + 0.954882i \(0.595981\pi\)
\(42\) 0 0
\(43\) 40.5013i 0.941890i 0.882163 + 0.470945i \(0.156087\pi\)
−0.882163 + 0.470945i \(0.843913\pi\)
\(44\) 0 0
\(45\) 30.8198i 0.684885i
\(46\) 0 0
\(47\) −28.9200 −0.615319 −0.307660 0.951496i \(-0.599546\pi\)
−0.307660 + 0.951496i \(0.599546\pi\)
\(48\) 0 0
\(49\) −4.35296 −0.0888359
\(50\) 0 0
\(51\) 56.7850 1.11343
\(52\) 0 0
\(53\) 96.6004i 1.82265i 0.411688 + 0.911325i \(0.364939\pi\)
−0.411688 + 0.911325i \(0.635061\pi\)
\(54\) 0 0
\(55\) 10.4558i 0.190106i
\(56\) 0 0
\(57\) 67.4205 1.18282
\(58\) 0 0
\(59\) −47.3123 −0.801904 −0.400952 0.916099i \(-0.631321\pi\)
−0.400952 + 0.916099i \(0.631321\pi\)
\(60\) 0 0
\(61\) 92.6486 1.51883 0.759415 0.650606i \(-0.225485\pi\)
0.759415 + 0.650606i \(0.225485\pi\)
\(62\) 0 0
\(63\) −48.4006 −0.768264
\(64\) 0 0
\(65\) 64.1404i 0.986776i
\(66\) 0 0
\(67\) 17.9997 0.268652 0.134326 0.990937i \(-0.457113\pi\)
0.134326 + 0.990937i \(0.457113\pi\)
\(68\) 0 0
\(69\) 37.0538 0.537011
\(70\) 0 0
\(71\) −22.2559 −0.313464 −0.156732 0.987641i \(-0.550096\pi\)
−0.156732 + 0.987641i \(0.550096\pi\)
\(72\) 0 0
\(73\) 7.30071i 0.100010i 0.998749 + 0.0500049i \(0.0159237\pi\)
−0.998749 + 0.0500049i \(0.984076\pi\)
\(74\) 0 0
\(75\) −27.7972 −0.370629
\(76\) 0 0
\(77\) 16.4203 0.213250
\(78\) 0 0
\(79\) 15.6568i 0.198188i 0.995078 + 0.0990939i \(0.0315944\pi\)
−0.995078 + 0.0990939i \(0.968406\pi\)
\(80\) 0 0
\(81\) −93.7226 −1.15707
\(82\) 0 0
\(83\) 3.48742i 0.0420171i 0.999779 + 0.0210086i \(0.00668773\pi\)
−0.999779 + 0.0210086i \(0.993312\pi\)
\(84\) 0 0
\(85\) 59.9471i 0.705260i
\(86\) 0 0
\(87\) 57.2438i 0.657974i
\(88\) 0 0
\(89\) 97.5347i 1.09590i −0.836512 0.547948i \(-0.815409\pi\)
0.836512 0.547948i \(-0.184591\pi\)
\(90\) 0 0
\(91\) −100.729 −1.10691
\(92\) 0 0
\(93\) 93.5855i 1.00630i
\(94\) 0 0
\(95\) 71.1748i 0.749209i
\(96\) 0 0
\(97\) 27.8558i 0.287174i −0.989638 0.143587i \(-0.954136\pi\)
0.989638 0.143587i \(-0.0458636\pi\)
\(98\) 0 0
\(99\) −17.8008 −0.179806
\(100\) 0 0
\(101\) −49.9764 −0.494816 −0.247408 0.968911i \(-0.579579\pi\)
−0.247408 + 0.968911i \(0.579579\pi\)
\(102\) 0 0
\(103\) −39.3526 −0.382064 −0.191032 0.981584i \(-0.561183\pi\)
−0.191032 + 0.981584i \(0.561183\pi\)
\(104\) 0 0
\(105\) 114.581i 1.09125i
\(106\) 0 0
\(107\) 10.3256 0.0965011 0.0482505 0.998835i \(-0.484635\pi\)
0.0482505 + 0.998835i \(0.484635\pi\)
\(108\) 0 0
\(109\) 74.1329i 0.680118i −0.940404 0.340059i \(-0.889553\pi\)
0.940404 0.340059i \(-0.110447\pi\)
\(110\) 0 0
\(111\) 158.177i 1.42502i
\(112\) 0 0
\(113\) 88.8153 0.785976 0.392988 0.919544i \(-0.371441\pi\)
0.392988 + 0.919544i \(0.371441\pi\)
\(114\) 0 0
\(115\) 39.1171i 0.340149i
\(116\) 0 0
\(117\) 109.197 0.933309
\(118\) 0 0
\(119\) 94.1432 0.791119
\(120\) 0 0
\(121\) −114.961 −0.950091
\(122\) 0 0
\(123\) 315.577i 2.56566i
\(124\) 0 0
\(125\) 135.714i 1.08571i
\(126\) 0 0
\(127\) 14.6041 0.114993 0.0574966 0.998346i \(-0.481688\pi\)
0.0574966 + 0.998346i \(0.481688\pi\)
\(128\) 0 0
\(129\) 163.234i 1.26538i
\(130\) 0 0
\(131\) 115.146i 0.878977i 0.898248 + 0.439488i \(0.144840\pi\)
−0.898248 + 0.439488i \(0.855160\pi\)
\(132\) 0 0
\(133\) 111.776 0.840419
\(134\) 0 0
\(135\) 30.1189i 0.223103i
\(136\) 0 0
\(137\) 87.0151 0.635147 0.317573 0.948234i \(-0.397132\pi\)
0.317573 + 0.948234i \(0.397132\pi\)
\(138\) 0 0
\(139\) 135.554i 0.975210i −0.873064 0.487605i \(-0.837871\pi\)
0.873064 0.487605i \(-0.162129\pi\)
\(140\) 0 0
\(141\) 116.557 0.826648
\(142\) 0 0
\(143\) −37.0459 −0.259062
\(144\) 0 0
\(145\) −60.4314 −0.416768
\(146\) 0 0
\(147\) 17.5439 0.119346
\(148\) 0 0
\(149\) 219.999 1.47650 0.738252 0.674525i \(-0.235651\pi\)
0.738252 + 0.674525i \(0.235651\pi\)
\(150\) 0 0
\(151\) 137.429i 0.910123i −0.890460 0.455062i \(-0.849617\pi\)
0.890460 0.455062i \(-0.150383\pi\)
\(152\) 0 0
\(153\) −102.058 −0.667046
\(154\) 0 0
\(155\) 98.7967 0.637398
\(156\) 0 0
\(157\) 90.6307i 0.577266i −0.957440 0.288633i \(-0.906799\pi\)
0.957440 0.288633i \(-0.0932007\pi\)
\(158\) 0 0
\(159\) 389.332i 2.44863i
\(160\) 0 0
\(161\) 61.4310 0.381559
\(162\) 0 0
\(163\) 43.8455i 0.268991i 0.990914 + 0.134495i \(0.0429414\pi\)
−0.990914 + 0.134495i \(0.957059\pi\)
\(164\) 0 0
\(165\) 42.1406i 0.255397i
\(166\) 0 0
\(167\) 137.139i 0.821193i 0.911817 + 0.410597i \(0.134680\pi\)
−0.911817 + 0.410597i \(0.865320\pi\)
\(168\) 0 0
\(169\) 58.2548 0.344703
\(170\) 0 0
\(171\) −121.173 −0.708614
\(172\) 0 0
\(173\) 34.4048i 0.198872i −0.995044 0.0994359i \(-0.968296\pi\)
0.995044 0.0994359i \(-0.0317038\pi\)
\(174\) 0 0
\(175\) −46.0846 −0.263341
\(176\) 0 0
\(177\) 190.685 1.07731
\(178\) 0 0
\(179\) 152.256 0.850591 0.425295 0.905055i \(-0.360170\pi\)
0.425295 + 0.905055i \(0.360170\pi\)
\(180\) 0 0
\(181\) 329.821 1.82221 0.911106 0.412171i \(-0.135229\pi\)
0.911106 + 0.412171i \(0.135229\pi\)
\(182\) 0 0
\(183\) −373.405 −2.04047
\(184\) 0 0
\(185\) −166.985 −0.902621
\(186\) 0 0
\(187\) 34.6239 0.185155
\(188\) 0 0
\(189\) −47.2999 −0.250264
\(190\) 0 0
\(191\) 363.082 1.90095 0.950476 0.310798i \(-0.100596\pi\)
0.950476 + 0.310798i \(0.100596\pi\)
\(192\) 0 0
\(193\) −3.72383 −0.0192944 −0.00964722 0.999953i \(-0.503071\pi\)
−0.00964722 + 0.999953i \(0.503071\pi\)
\(194\) 0 0
\(195\) 258.507i 1.32568i
\(196\) 0 0
\(197\) −132.379 −0.671975 −0.335988 0.941866i \(-0.609070\pi\)
−0.335988 + 0.941866i \(0.609070\pi\)
\(198\) 0 0
\(199\) 307.793i 1.54670i −0.633981 0.773349i \(-0.718580\pi\)
0.633981 0.773349i \(-0.281420\pi\)
\(200\) 0 0
\(201\) −72.5448 −0.360919
\(202\) 0 0
\(203\) 94.9038i 0.467506i
\(204\) 0 0
\(205\) 333.149 1.62512
\(206\) 0 0
\(207\) −66.5956 −0.321718
\(208\) 0 0
\(209\) 41.1088 0.196693
\(210\) 0 0
\(211\) −150.577 −0.713634 −0.356817 0.934174i \(-0.616138\pi\)
−0.356817 + 0.934174i \(0.616138\pi\)
\(212\) 0 0
\(213\) 89.6989 0.421121
\(214\) 0 0
\(215\) 172.323 0.801504
\(216\) 0 0
\(217\) 155.154i 0.714996i
\(218\) 0 0
\(219\) 29.4243i 0.134358i
\(220\) 0 0
\(221\) −212.397 −0.961074
\(222\) 0 0
\(223\) −103.866 −0.465766 −0.232883 0.972505i \(-0.574816\pi\)
−0.232883 + 0.972505i \(0.574816\pi\)
\(224\) 0 0
\(225\) 49.9591 0.222040
\(226\) 0 0
\(227\) 23.4658i 0.103374i 0.998663 + 0.0516868i \(0.0164598\pi\)
−0.998663 + 0.0516868i \(0.983540\pi\)
\(228\) 0 0
\(229\) 334.059i 1.45877i −0.684101 0.729387i \(-0.739805\pi\)
0.684101 0.729387i \(-0.260195\pi\)
\(230\) 0 0
\(231\) −66.1792 −0.286490
\(232\) 0 0
\(233\) 92.7672i 0.398143i −0.979985 0.199071i \(-0.936207\pi\)
0.979985 0.199071i \(-0.0637925\pi\)
\(234\) 0 0
\(235\) 123.048i 0.523608i
\(236\) 0 0
\(237\) 63.1023i 0.266254i
\(238\) 0 0
\(239\) 280.914i 1.17537i −0.809089 0.587686i \(-0.800039\pi\)
0.809089 0.587686i \(-0.199961\pi\)
\(240\) 0 0
\(241\) 94.4147 0.391762 0.195881 0.980628i \(-0.437243\pi\)
0.195881 + 0.980628i \(0.437243\pi\)
\(242\) 0 0
\(243\) 314.024 1.29228
\(244\) 0 0
\(245\) 18.5208i 0.0755952i
\(246\) 0 0
\(247\) −252.178 −1.02096
\(248\) 0 0
\(249\) 14.0555i 0.0564477i
\(250\) 0 0
\(251\) −82.4747 −0.328585 −0.164292 0.986412i \(-0.552534\pi\)
−0.164292 + 0.986412i \(0.552534\pi\)
\(252\) 0 0
\(253\) 22.5931 0.0893006
\(254\) 0 0
\(255\) 241.607i 0.947478i
\(256\) 0 0
\(257\) −3.35802 −0.0130662 −0.00653311 0.999979i \(-0.502080\pi\)
−0.00653311 + 0.999979i \(0.502080\pi\)
\(258\) 0 0
\(259\) 262.240i 1.01251i
\(260\) 0 0
\(261\) 102.883i 0.394186i
\(262\) 0 0
\(263\) 131.107i 0.498505i 0.968439 + 0.249252i \(0.0801849\pi\)
−0.968439 + 0.249252i \(0.919815\pi\)
\(264\) 0 0
\(265\) 411.012 1.55099
\(266\) 0 0
\(267\) 393.098i 1.47228i
\(268\) 0 0
\(269\) 172.580 0.641562 0.320781 0.947153i \(-0.396055\pi\)
0.320781 + 0.947153i \(0.396055\pi\)
\(270\) 0 0
\(271\) 261.014 0.963152 0.481576 0.876404i \(-0.340065\pi\)
0.481576 + 0.876404i \(0.340065\pi\)
\(272\) 0 0
\(273\) 405.970 1.48707
\(274\) 0 0
\(275\) −16.9490 −0.0616326
\(276\) 0 0
\(277\) −283.277 −1.02266 −0.511330 0.859384i \(-0.670847\pi\)
−0.511330 + 0.859384i \(0.670847\pi\)
\(278\) 0 0
\(279\) 168.198i 0.602862i
\(280\) 0 0
\(281\) 36.3551 0.129378 0.0646888 0.997905i \(-0.479395\pi\)
0.0646888 + 0.997905i \(0.479395\pi\)
\(282\) 0 0
\(283\) 301.611i 1.06576i −0.846190 0.532881i \(-0.821109\pi\)
0.846190 0.532881i \(-0.178891\pi\)
\(284\) 0 0
\(285\) 286.858i 1.00652i
\(286\) 0 0
\(287\) 523.191i 1.82296i
\(288\) 0 0
\(289\) −90.4887 −0.313110
\(290\) 0 0
\(291\) 112.268i 0.385802i
\(292\) 0 0
\(293\) 56.6144i 0.193223i 0.995322 + 0.0966116i \(0.0308005\pi\)
−0.995322 + 0.0966116i \(0.969200\pi\)
\(294\) 0 0
\(295\) 201.303i 0.682382i
\(296\) 0 0
\(297\) −17.3959 −0.0585721
\(298\) 0 0
\(299\) −138.595 −0.463528
\(300\) 0 0
\(301\) 270.623i 0.899080i
\(302\) 0 0
\(303\) 201.422 0.664758
\(304\) 0 0
\(305\) 394.198i 1.29245i
\(306\) 0 0
\(307\) 110.756i 0.360768i −0.983596 0.180384i \(-0.942266\pi\)
0.983596 0.180384i \(-0.0577340\pi\)
\(308\) 0 0
\(309\) 158.604 0.513282
\(310\) 0 0
\(311\) 234.379i 0.753629i −0.926289 0.376814i \(-0.877019\pi\)
0.926289 0.376814i \(-0.122981\pi\)
\(312\) 0 0
\(313\) 38.6992i 0.123640i 0.998087 + 0.0618199i \(0.0196904\pi\)
−0.998087 + 0.0618199i \(0.980310\pi\)
\(314\) 0 0
\(315\) 205.933i 0.653756i
\(316\) 0 0
\(317\) 46.6350i 0.147114i 0.997291 + 0.0735568i \(0.0234350\pi\)
−0.997291 + 0.0735568i \(0.976565\pi\)
\(318\) 0 0
\(319\) 34.9037i 0.109416i
\(320\) 0 0
\(321\) −41.6157 −0.129644
\(322\) 0 0
\(323\) 235.691 0.729694
\(324\) 0 0
\(325\) 103.972 0.319914
\(326\) 0 0
\(327\) 298.780i 0.913701i
\(328\) 0 0
\(329\) 193.239 0.587352
\(330\) 0 0
\(331\) 83.4597i 0.252144i −0.992021 0.126072i \(-0.959763\pi\)
0.992021 0.126072i \(-0.0402371\pi\)
\(332\) 0 0
\(333\) 284.287i 0.853714i
\(334\) 0 0
\(335\) 76.5844i 0.228610i
\(336\) 0 0
\(337\) 16.1289 0.0478601 0.0239300 0.999714i \(-0.492382\pi\)
0.0239300 + 0.999714i \(0.492382\pi\)
\(338\) 0 0
\(339\) −357.955 −1.05592
\(340\) 0 0
\(341\) 57.0625i 0.167339i
\(342\) 0 0
\(343\) 356.496 1.03935
\(344\) 0 0
\(345\) 157.655i 0.456971i
\(346\) 0 0
\(347\) 326.930 0.942161 0.471081 0.882090i \(-0.343864\pi\)
0.471081 + 0.882090i \(0.343864\pi\)
\(348\) 0 0
\(349\) 664.022 1.90264 0.951320 0.308204i \(-0.0997278\pi\)
0.951320 + 0.308204i \(0.0997278\pi\)
\(350\) 0 0
\(351\) 106.714 0.304028
\(352\) 0 0
\(353\) 467.667i 1.32484i 0.749134 + 0.662418i \(0.230470\pi\)
−0.749134 + 0.662418i \(0.769530\pi\)
\(354\) 0 0
\(355\) 94.6937i 0.266743i
\(356\) 0 0
\(357\) −379.429 −1.06283
\(358\) 0 0
\(359\) 406.278i 1.13169i −0.824511 0.565846i \(-0.808550\pi\)
0.824511 0.565846i \(-0.191450\pi\)
\(360\) 0 0
\(361\) −81.1651 −0.224834
\(362\) 0 0
\(363\) 463.331 1.27639
\(364\) 0 0
\(365\) 31.0628 0.0851036
\(366\) 0 0
\(367\) 63.4160i 0.172796i 0.996261 + 0.0863978i \(0.0275356\pi\)
−0.996261 + 0.0863978i \(0.972464\pi\)
\(368\) 0 0
\(369\) 567.177i 1.53706i
\(370\) 0 0
\(371\) 645.469i 1.73981i
\(372\) 0 0
\(373\) 538.512i 1.44373i −0.692033 0.721866i \(-0.743285\pi\)
0.692033 0.721866i \(-0.256715\pi\)
\(374\) 0 0
\(375\) 546.974i 1.45860i
\(376\) 0 0
\(377\) 214.113i 0.567940i
\(378\) 0 0
\(379\) −257.670 −0.679869 −0.339935 0.940449i \(-0.610405\pi\)
−0.339935 + 0.940449i \(0.610405\pi\)
\(380\) 0 0
\(381\) −58.8596 −0.154487
\(382\) 0 0
\(383\) 291.461 0.760994 0.380497 0.924782i \(-0.375753\pi\)
0.380497 + 0.924782i \(0.375753\pi\)
\(384\) 0 0
\(385\) 69.8643i 0.181466i
\(386\) 0 0
\(387\) 293.375i 0.758075i
\(388\) 0 0
\(389\) 147.113i 0.378183i −0.981959 0.189092i \(-0.939446\pi\)
0.981959 0.189092i \(-0.0605543\pi\)
\(390\) 0 0
\(391\) 129.534 0.331289
\(392\) 0 0
\(393\) 464.077i 1.18086i
\(394\) 0 0
\(395\) 66.6161 0.168648
\(396\) 0 0
\(397\) 281.789i 0.709797i 0.934905 + 0.354898i \(0.115485\pi\)
−0.934905 + 0.354898i \(0.884515\pi\)
\(398\) 0 0
\(399\) −450.493 −1.12906
\(400\) 0 0
\(401\) 311.189 0.776031 0.388016 0.921653i \(-0.373161\pi\)
0.388016 + 0.921653i \(0.373161\pi\)
\(402\) 0 0
\(403\) 350.045i 0.868598i
\(404\) 0 0
\(405\) 398.768i 0.984611i
\(406\) 0 0
\(407\) 96.4463i 0.236969i
\(408\) 0 0
\(409\) 40.7348 0.0995961 0.0497980 0.998759i \(-0.484142\pi\)
0.0497980 + 0.998759i \(0.484142\pi\)
\(410\) 0 0
\(411\) −350.700 −0.853285
\(412\) 0 0
\(413\) 316.134 0.765456
\(414\) 0 0
\(415\) 14.8382 0.0357546
\(416\) 0 0
\(417\) 546.329i 1.31014i
\(418\) 0 0
\(419\) 534.408i 1.27544i 0.770270 + 0.637718i \(0.220121\pi\)
−0.770270 + 0.637718i \(0.779879\pi\)
\(420\) 0 0
\(421\) −462.655 −1.09894 −0.549472 0.835512i \(-0.685171\pi\)
−0.549472 + 0.835512i \(0.685171\pi\)
\(422\) 0 0
\(423\) −209.485 −0.495237
\(424\) 0 0
\(425\) −97.1745 −0.228646
\(426\) 0 0
\(427\) −619.064 −1.44980
\(428\) 0 0
\(429\) 149.307 0.348036
\(430\) 0 0
\(431\) 176.518i 0.409556i 0.978808 + 0.204778i \(0.0656472\pi\)
−0.978808 + 0.204778i \(0.934353\pi\)
\(432\) 0 0
\(433\) 141.667i 0.327176i 0.986529 + 0.163588i \(0.0523068\pi\)
−0.986529 + 0.163588i \(0.947693\pi\)
\(434\) 0 0
\(435\) 243.559 0.559905
\(436\) 0 0
\(437\) 153.795 0.351933
\(438\) 0 0
\(439\) 39.1999 0.0892935 0.0446468 0.999003i \(-0.485784\pi\)
0.0446468 + 0.999003i \(0.485784\pi\)
\(440\) 0 0
\(441\) −31.5311 −0.0714991
\(442\) 0 0
\(443\) 830.230i 1.87411i −0.349184 0.937054i \(-0.613541\pi\)
0.349184 0.937054i \(-0.386459\pi\)
\(444\) 0 0
\(445\) −414.987 −0.932556
\(446\) 0 0
\(447\) −886.670 −1.98360
\(448\) 0 0
\(449\) 361.534 0.805197 0.402599 0.915377i \(-0.368107\pi\)
0.402599 + 0.915377i \(0.368107\pi\)
\(450\) 0 0
\(451\) 192.419i 0.426649i
\(452\) 0 0
\(453\) 553.883i 1.22270i
\(454\) 0 0
\(455\) 428.576i 0.941926i
\(456\) 0 0
\(457\) 723.336i 1.58279i −0.611303 0.791396i \(-0.709354\pi\)
0.611303 0.791396i \(-0.290646\pi\)
\(458\) 0 0
\(459\) −99.7370 −0.217292
\(460\) 0 0
\(461\) −428.479 −0.929456 −0.464728 0.885454i \(-0.653848\pi\)
−0.464728 + 0.885454i \(0.653848\pi\)
\(462\) 0 0
\(463\) 251.468i 0.543128i −0.962420 0.271564i \(-0.912459\pi\)
0.962420 0.271564i \(-0.0875408\pi\)
\(464\) 0 0
\(465\) −398.184 −0.856310
\(466\) 0 0
\(467\) −723.554 −1.54937 −0.774683 0.632350i \(-0.782090\pi\)
−0.774683 + 0.632350i \(0.782090\pi\)
\(468\) 0 0
\(469\) −120.271 −0.256442
\(470\) 0 0
\(471\) 365.272i 0.775525i
\(472\) 0 0
\(473\) 99.5297i 0.210422i
\(474\) 0 0
\(475\) −115.375 −0.242894
\(476\) 0 0
\(477\) 699.735i 1.46695i
\(478\) 0 0
\(479\) 445.530i 0.930126i 0.885278 + 0.465063i \(0.153968\pi\)
−0.885278 + 0.465063i \(0.846032\pi\)
\(480\) 0 0
\(481\) 591.641i 1.23002i
\(482\) 0 0
\(483\) −247.587 −0.512603
\(484\) 0 0
\(485\) −118.520 −0.244371
\(486\) 0 0
\(487\) 288.547i 0.592500i 0.955110 + 0.296250i \(0.0957361\pi\)
−0.955110 + 0.296250i \(0.904264\pi\)
\(488\) 0 0
\(489\) 176.712i 0.361374i
\(490\) 0 0
\(491\) 273.941 0.557924 0.278962 0.960302i \(-0.410010\pi\)
0.278962 + 0.960302i \(0.410010\pi\)
\(492\) 0 0
\(493\) 200.115i 0.405913i
\(494\) 0 0
\(495\) 75.7380i 0.153006i
\(496\) 0 0
\(497\) 148.711 0.299217
\(498\) 0 0
\(499\) 774.221i 1.55155i 0.631012 + 0.775773i \(0.282640\pi\)
−0.631012 + 0.775773i \(0.717360\pi\)
\(500\) 0 0
\(501\) 552.717i 1.10323i
\(502\) 0 0
\(503\) −414.999 −0.825048 −0.412524 0.910947i \(-0.635353\pi\)
−0.412524 + 0.910947i \(0.635353\pi\)
\(504\) 0 0
\(505\) 212.638i 0.421065i
\(506\) 0 0
\(507\) −234.786 −0.463089
\(508\) 0 0
\(509\) 138.696 0.272487 0.136243 0.990675i \(-0.456497\pi\)
0.136243 + 0.990675i \(0.456497\pi\)
\(510\) 0 0
\(511\) 48.7822i 0.0954642i
\(512\) 0 0
\(513\) −118.417 −0.230833
\(514\) 0 0
\(515\) 167.436i 0.325119i
\(516\) 0 0
\(517\) 71.0693 0.137465
\(518\) 0 0
\(519\) 138.663i 0.267173i
\(520\) 0 0
\(521\) 879.921 1.68891 0.844454 0.535629i \(-0.179925\pi\)
0.844454 + 0.535629i \(0.179925\pi\)
\(522\) 0 0
\(523\) 284.281i 0.543559i 0.962360 + 0.271779i \(0.0876121\pi\)
−0.962360 + 0.271779i \(0.912388\pi\)
\(524\) 0 0
\(525\) 185.736 0.353784
\(526\) 0 0
\(527\) 327.160i 0.620796i
\(528\) 0 0
\(529\) −444.476 −0.840219
\(530\) 0 0
\(531\) −342.712 −0.645408
\(532\) 0 0
\(533\) 1180.38i 2.21459i
\(534\) 0 0
\(535\) 43.9330i 0.0821178i
\(536\) 0 0
\(537\) −613.642 −1.14272
\(538\) 0 0
\(539\) 10.6972 0.0198463
\(540\) 0 0
\(541\) −185.988 −0.343786 −0.171893 0.985116i \(-0.554988\pi\)
−0.171893 + 0.985116i \(0.554988\pi\)
\(542\) 0 0
\(543\) −1329.29 −2.44804
\(544\) 0 0
\(545\) −315.418 −0.578748
\(546\) 0 0
\(547\) 637.414i 1.16529i −0.812727 0.582645i \(-0.802018\pi\)
0.812727 0.582645i \(-0.197982\pi\)
\(548\) 0 0
\(549\) 671.110 1.22242
\(550\) 0 0
\(551\) 237.595i 0.431208i
\(552\) 0 0
\(553\) 104.617i 0.189180i
\(554\) 0 0
\(555\) 673.005 1.21262
\(556\) 0 0
\(557\) 258.749 0.464541 0.232271 0.972651i \(-0.425385\pi\)
0.232271 + 0.972651i \(0.425385\pi\)
\(558\) 0 0
\(559\) 610.556i 1.09223i
\(560\) 0 0
\(561\) −139.546 −0.248745
\(562\) 0 0
\(563\) −358.152 434.392i −0.636149 0.771566i
\(564\) 0 0
\(565\) 377.888i 0.668828i
\(566\) 0 0
\(567\) 626.240 1.10448
\(568\) 0 0
\(569\) 415.359i 0.729981i −0.931011 0.364991i \(-0.881072\pi\)
0.931011 0.364991i \(-0.118928\pi\)
\(570\) 0 0
\(571\) 348.772i 0.610810i 0.952223 + 0.305405i \(0.0987918\pi\)
−0.952223 + 0.305405i \(0.901208\pi\)
\(572\) 0 0
\(573\) −1463.34 −2.55382
\(574\) 0 0
\(575\) −63.4090 −0.110276
\(576\) 0 0
\(577\) 464.581i 0.805166i −0.915384 0.402583i \(-0.868113\pi\)
0.915384 0.402583i \(-0.131887\pi\)
\(578\) 0 0
\(579\) 15.0083 0.0259210
\(580\) 0 0
\(581\) 23.3024i 0.0401074i
\(582\) 0 0
\(583\) 237.390i 0.407187i
\(584\) 0 0
\(585\) 464.608i 0.794202i
\(586\) 0 0
\(587\) 1012.69i 1.72519i 0.505893 + 0.862596i \(0.331163\pi\)
−0.505893 + 0.862596i \(0.668837\pi\)
\(588\) 0 0
\(589\) 388.435i 0.659482i
\(590\) 0 0
\(591\) 533.532 0.902762
\(592\) 0 0
\(593\) −1119.79 −1.88836 −0.944178 0.329436i \(-0.893141\pi\)
−0.944178 + 0.329436i \(0.893141\pi\)
\(594\) 0 0
\(595\) 400.557i 0.673205i
\(596\) 0 0
\(597\) 1240.51i 2.07790i
\(598\) 0 0
\(599\) 1041.44 1.73863 0.869316 0.494257i \(-0.164560\pi\)
0.869316 + 0.494257i \(0.164560\pi\)
\(600\) 0 0
\(601\) 908.444i 1.51155i −0.654829 0.755777i \(-0.727259\pi\)
0.654829 0.755777i \(-0.272741\pi\)
\(602\) 0 0
\(603\) 130.383 0.216223
\(604\) 0 0
\(605\) 489.132i 0.808482i
\(606\) 0 0
\(607\) −699.315 −1.15208 −0.576042 0.817420i \(-0.695404\pi\)
−0.576042 + 0.817420i \(0.695404\pi\)
\(608\) 0 0
\(609\) 382.494i 0.628069i
\(610\) 0 0
\(611\) −435.968 −0.713532
\(612\) 0 0
\(613\) 368.757i 0.601562i 0.953693 + 0.300781i \(0.0972473\pi\)
−0.953693 + 0.300781i \(0.902753\pi\)
\(614\) 0 0
\(615\) −1342.70 −2.18326
\(616\) 0 0
\(617\) 724.386i 1.17404i 0.809571 + 0.587022i \(0.199700\pi\)
−0.809571 + 0.587022i \(0.800300\pi\)
\(618\) 0 0
\(619\) 226.575i 0.366034i 0.983110 + 0.183017i \(0.0585863\pi\)
−0.983110 + 0.183017i \(0.941414\pi\)
\(620\) 0 0
\(621\) −65.0811 −0.104800
\(622\) 0 0
\(623\) 651.712i 1.04609i
\(624\) 0 0
\(625\) −405.007 −0.648011
\(626\) 0 0
\(627\) −165.682 −0.264246
\(628\) 0 0
\(629\) 552.961i 0.879111i
\(630\) 0 0
\(631\) 489.789 0.776210 0.388105 0.921615i \(-0.373130\pi\)
0.388105 + 0.921615i \(0.373130\pi\)
\(632\) 0 0
\(633\) 606.875 0.958728
\(634\) 0 0
\(635\) 62.1372i 0.0978538i
\(636\) 0 0
\(637\) −65.6207 −0.103015
\(638\) 0 0
\(639\) −161.213 −0.252290
\(640\) 0 0
\(641\) 330.916i 0.516249i −0.966112 0.258125i \(-0.916895\pi\)
0.966112 0.258125i \(-0.0831045\pi\)
\(642\) 0 0
\(643\) 1005.42i 1.56364i 0.623507 + 0.781818i \(0.285707\pi\)
−0.623507 + 0.781818i \(0.714293\pi\)
\(644\) 0 0
\(645\) −694.521 −1.07678
\(646\) 0 0
\(647\) 151.293 0.233837 0.116919 0.993141i \(-0.462698\pi\)
0.116919 + 0.993141i \(0.462698\pi\)
\(648\) 0 0
\(649\) 116.267 0.179149
\(650\) 0 0
\(651\) 625.323i 0.960558i
\(652\) 0 0
\(653\) −1274.74 −1.95213 −0.976066 0.217476i \(-0.930218\pi\)
−0.976066 + 0.217476i \(0.930218\pi\)
\(654\) 0 0
\(655\) 489.919 0.747968
\(656\) 0 0
\(657\) 52.8835i 0.0804923i
\(658\) 0 0
\(659\) 332.781i 0.504979i −0.967600 0.252490i \(-0.918751\pi\)
0.967600 0.252490i \(-0.0812494\pi\)
\(660\) 0 0
\(661\) 538.739i 0.815036i 0.913197 + 0.407518i \(0.133606\pi\)
−0.913197 + 0.407518i \(0.866394\pi\)
\(662\) 0 0
\(663\) 856.033 1.29115
\(664\) 0 0
\(665\) 475.579i 0.715156i
\(666\) 0 0
\(667\) 130.580i 0.195773i
\(668\) 0 0
\(669\) 418.614 0.625731
\(670\) 0 0
\(671\) −227.679 −0.339313
\(672\) 0 0
\(673\) 113.060 0.167994 0.0839970 0.996466i \(-0.473231\pi\)
0.0839970 + 0.996466i \(0.473231\pi\)
\(674\) 0 0
\(675\) 48.8229 0.0723301
\(676\) 0 0
\(677\) 375.558i 0.554738i 0.960763 + 0.277369i \(0.0894625\pi\)
−0.960763 + 0.277369i \(0.910537\pi\)
\(678\) 0 0
\(679\) 186.128i 0.274121i
\(680\) 0 0
\(681\) 94.5751i 0.138877i
\(682\) 0 0
\(683\) −250.675 −0.367021 −0.183511 0.983018i \(-0.558746\pi\)
−0.183511 + 0.983018i \(0.558746\pi\)
\(684\) 0 0
\(685\) 370.229i 0.540480i
\(686\) 0 0
\(687\) 1346.37i 1.95978i
\(688\) 0 0
\(689\) 1456.25i 2.11357i
\(690\) 0 0
\(691\) 898.966i 1.30096i 0.759522 + 0.650482i \(0.225433\pi\)
−0.759522 + 0.650482i \(0.774567\pi\)
\(692\) 0 0
\(693\) 118.942 0.171633
\(694\) 0 0
\(695\) −576.751 −0.829857
\(696\) 0 0
\(697\) 1103.20i 1.58279i
\(698\) 0 0
\(699\) 373.883i 0.534883i
\(700\) 0 0
\(701\) 637.027i 0.908741i 0.890813 + 0.454370i \(0.150136\pi\)
−0.890813 + 0.454370i \(0.849864\pi\)
\(702\) 0 0
\(703\) 656.527i 0.933894i
\(704\) 0 0
\(705\) 495.924i 0.703438i
\(706\) 0 0
\(707\) 333.935 0.472326
\(708\) 0 0
\(709\) 520.466 0.734085 0.367042 0.930204i \(-0.380370\pi\)
0.367042 + 0.930204i \(0.380370\pi\)
\(710\) 0 0
\(711\) 113.412i 0.159510i
\(712\) 0 0
\(713\) 213.481i 0.299412i
\(714\) 0 0
\(715\) 157.622i 0.220450i
\(716\) 0 0
\(717\) 1132.18i 1.57905i
\(718\) 0 0
\(719\) 1002.60 1.39443 0.697216 0.716861i \(-0.254422\pi\)
0.697216 + 0.716861i \(0.254422\pi\)
\(720\) 0 0
\(721\) 262.948 0.364699
\(722\) 0 0
\(723\) −380.523 −0.526311
\(724\) 0 0
\(725\) 97.9595i 0.135117i
\(726\) 0 0
\(727\) 832.460i 1.14506i 0.819883 + 0.572531i \(0.194038\pi\)
−0.819883 + 0.572531i \(0.805962\pi\)
\(728\) 0 0
\(729\) −422.118 −0.579037
\(730\) 0 0
\(731\) 570.639i 0.780628i
\(732\) 0 0
\(733\) −377.212 −0.514614 −0.257307 0.966330i \(-0.582835\pi\)
−0.257307 + 0.966330i \(0.582835\pi\)
\(734\) 0 0
\(735\) 74.6451i 0.101558i
\(736\) 0 0
\(737\) −44.2332 −0.0600180
\(738\) 0 0
\(739\) −905.019 −1.22465 −0.612327 0.790605i \(-0.709766\pi\)
−0.612327 + 0.790605i \(0.709766\pi\)
\(740\) 0 0
\(741\) 1016.36 1.37161
\(742\) 0 0
\(743\) 314.877i 0.423791i 0.977292 + 0.211896i \(0.0679637\pi\)
−0.977292 + 0.211896i \(0.932036\pi\)
\(744\) 0 0
\(745\) 936.044i 1.25644i
\(746\) 0 0
\(747\) 25.2615i 0.0338173i
\(748\) 0 0
\(749\) −68.9941 −0.0921150
\(750\) 0 0
\(751\) −452.327 −0.602299 −0.301149 0.953577i \(-0.597370\pi\)
−0.301149 + 0.953577i \(0.597370\pi\)
\(752\) 0 0
\(753\) 332.401 0.441435
\(754\) 0 0
\(755\) −584.726 −0.774472
\(756\) 0 0
\(757\) 596.036 0.787366 0.393683 0.919246i \(-0.371201\pi\)
0.393683 + 0.919246i \(0.371201\pi\)
\(758\) 0 0
\(759\) −91.0576 −0.119970
\(760\) 0 0
\(761\) 205.721i 0.270330i −0.990823 0.135165i \(-0.956844\pi\)
0.990823 0.135165i \(-0.0431564\pi\)
\(762\) 0 0
\(763\) 495.344i 0.649206i
\(764\) 0 0
\(765\) 434.233i 0.567625i
\(766\) 0 0
\(767\) −713.232 −0.929898
\(768\) 0 0
\(769\) 906.018i 1.17818i −0.808069 0.589088i \(-0.799487\pi\)
0.808069 0.589088i \(-0.200513\pi\)
\(770\) 0 0
\(771\) 13.5339 0.0175537
\(772\) 0 0
\(773\) 992.037 1.28336 0.641679 0.766973i \(-0.278238\pi\)
0.641679 + 0.766973i \(0.278238\pi\)
\(774\) 0 0
\(775\) 160.150i 0.206645i
\(776\) 0 0
\(777\) 1056.91i 1.36025i
\(778\) 0 0
\(779\) 1309.83i 1.68142i
\(780\) 0 0
\(781\) 54.6927 0.0700291
\(782\) 0 0
\(783\) 100.543i 0.128407i
\(784\) 0 0
\(785\) −385.612 −0.491226
\(786\) 0 0
\(787\) 617.318i 0.784394i 0.919881 + 0.392197i \(0.128285\pi\)
−0.919881 + 0.392197i \(0.871715\pi\)
\(788\) 0 0
\(789\) 528.404i 0.669714i
\(790\) 0 0
\(791\) −593.450 −0.750253
\(792\) 0 0
\(793\) 1396.68 1.76126
\(794\) 0 0
\(795\) −1656.52 −2.08367
\(796\) 0 0
\(797\) 789.555i 0.990658i −0.868705 0.495329i \(-0.835047\pi\)
0.868705 0.495329i \(-0.164953\pi\)
\(798\) 0 0
\(799\) 407.466 0.509969
\(800\) 0 0
\(801\) 706.503i 0.882026i
\(802\) 0 0
\(803\) 17.9411i 0.0223426i
\(804\) 0 0
\(805\) 261.374i 0.324689i
\(806\) 0 0
\(807\) −695.556 −0.861904
\(808\) 0 0
\(809\) −802.650 −0.992150 −0.496075 0.868280i \(-0.665226\pi\)
−0.496075 + 0.868280i \(0.665226\pi\)
\(810\) 0 0
\(811\) 699.255 0.862214 0.431107 0.902301i \(-0.358123\pi\)
0.431107 + 0.902301i \(0.358123\pi\)
\(812\) 0 0
\(813\) −1051.97 −1.29394
\(814\) 0 0
\(815\) 186.552 0.228898
\(816\) 0 0
\(817\) 677.516i 0.829273i
\(818\) 0 0
\(819\) −729.638 −0.890889
\(820\) 0 0
\(821\) 363.539 0.442800 0.221400 0.975183i \(-0.428937\pi\)
0.221400 + 0.975183i \(0.428937\pi\)
\(822\) 0 0
\(823\) 1054.92i 1.28180i −0.767625 0.640900i \(-0.778561\pi\)
0.767625 0.640900i \(-0.221439\pi\)
\(824\) 0 0
\(825\) 68.3100 0.0828000
\(826\) 0 0
\(827\) 261.052i 0.315661i −0.987466 0.157830i \(-0.949550\pi\)
0.987466 0.157830i \(-0.0504500\pi\)
\(828\) 0 0
\(829\) 1185.82i 1.43043i −0.698907 0.715213i \(-0.746330\pi\)
0.698907 0.715213i \(-0.253670\pi\)
\(830\) 0 0
\(831\) 1141.70 1.37389
\(832\) 0 0
\(833\) 61.3306 0.0736262
\(834\) 0 0
\(835\) 583.495 0.698797
\(836\) 0 0
\(837\) 164.373i 0.196384i
\(838\) 0 0
\(839\) 110.824 0.132091 0.0660456 0.997817i \(-0.478962\pi\)
0.0660456 + 0.997817i \(0.478962\pi\)
\(840\) 0 0
\(841\) 639.268 0.760129
\(842\) 0 0
\(843\) −146.523 −0.173812
\(844\) 0 0
\(845\) 247.860i 0.293326i
\(846\) 0 0
\(847\) 768.151 0.906908
\(848\) 0 0
\(849\) 1215.59i 1.43179i
\(850\) 0 0
\(851\) 360.822i 0.423998i
\(852\) 0 0
\(853\) 558.243i 0.654446i 0.944947 + 0.327223i \(0.106113\pi\)
−0.944947 + 0.327223i \(0.893887\pi\)
\(854\) 0 0
\(855\) 515.562i 0.602997i
\(856\) 0 0
\(857\) 234.119i 0.273185i 0.990627 + 0.136592i \(0.0436151\pi\)
−0.990627 + 0.136592i \(0.956385\pi\)
\(858\) 0 0
\(859\) 920.390 1.07147 0.535733 0.844387i \(-0.320035\pi\)
0.535733 + 0.844387i \(0.320035\pi\)
\(860\) 0 0
\(861\) 2108.63i 2.44905i
\(862\) 0 0
\(863\) 639.808 0.741376 0.370688 0.928757i \(-0.379122\pi\)
0.370688 + 0.928757i \(0.379122\pi\)
\(864\) 0 0
\(865\) −146.384 −0.169231
\(866\) 0 0
\(867\) 364.700 0.420646
\(868\) 0 0
\(869\) 38.4758i 0.0442760i
\(870\) 0 0
\(871\) 271.345 0.311532
\(872\) 0 0
\(873\) 201.777i 0.231130i
\(874\) 0 0
\(875\) 906.821i 1.03637i
\(876\) 0 0
\(877\) 973.200 1.10969 0.554846 0.831953i \(-0.312777\pi\)
0.554846 + 0.831953i \(0.312777\pi\)
\(878\) 0 0
\(879\) 228.175i 0.259585i
\(880\) 0 0
\(881\) −133.233 −0.151229 −0.0756147 0.997137i \(-0.524092\pi\)
−0.0756147 + 0.997137i \(0.524092\pi\)
\(882\) 0 0
\(883\) 1380.72i 1.56367i −0.623485 0.781835i \(-0.714284\pi\)
0.623485 0.781835i \(-0.285716\pi\)
\(884\) 0 0
\(885\) 811.317i 0.916743i
\(886\) 0 0
\(887\) 1074.34 1.21121 0.605603 0.795767i \(-0.292932\pi\)
0.605603 + 0.795767i \(0.292932\pi\)
\(888\) 0 0
\(889\) −97.5826 −0.109767
\(890\) 0 0
\(891\) 230.318 0.258494
\(892\) 0 0
\(893\) 483.782 0.541749
\(894\) 0 0
\(895\) 647.812i 0.723812i
\(896\) 0 0
\(897\) 558.584 0.622725
\(898\) 0 0
\(899\) 329.803 0.366855
\(900\) 0 0
\(901\) 1361.04i 1.51059i
\(902\) 0 0
\(903\) 1090.70i 1.20787i
\(904\) 0 0
\(905\) 1403.31i 1.55062i
\(906\) 0 0
\(907\) 540.676 0.596114 0.298057 0.954548i \(-0.403661\pi\)
0.298057 + 0.954548i \(0.403661\pi\)
\(908\) 0 0
\(909\) −362.009 −0.398250
\(910\) 0 0
\(911\) 1474.26i 1.61828i −0.587614 0.809141i \(-0.699933\pi\)
0.587614 0.809141i \(-0.300067\pi\)
\(912\) 0 0
\(913\) 8.57015i 0.00938680i
\(914\) 0 0
\(915\) 1588.75i 1.73634i
\(916\) 0 0
\(917\) 769.387i 0.839027i
\(918\) 0 0
\(919\) 1540.17i 1.67591i −0.545736 0.837957i \(-0.683750\pi\)
0.545736 0.837957i \(-0.316250\pi\)
\(920\) 0 0
\(921\) 446.382i 0.484671i
\(922\) 0 0
\(923\) −335.507 −0.363497
\(924\) 0 0
\(925\) 270.683i 0.292631i
\(926\) 0 0
\(927\) −285.055 −0.307502
\(928\) 0 0
\(929\) 1165.91i 1.25501i 0.778611 + 0.627507i \(0.215925\pi\)
−0.778611 + 0.627507i \(0.784075\pi\)
\(930\) 0 0
\(931\) 72.8175 0.0782143
\(932\) 0 0
\(933\) 944.624i 1.01246i
\(934\) 0 0
\(935\) 147.317i 0.157558i
\(936\) 0 0
\(937\) 1406.47i 1.50104i 0.660848 + 0.750520i \(0.270197\pi\)
−0.660848 + 0.750520i \(0.729803\pi\)
\(938\) 0 0
\(939\) 155.971i 0.166103i
\(940\) 0 0
\(941\) 832.947i 0.885172i −0.896726 0.442586i \(-0.854061\pi\)
0.896726 0.442586i \(-0.145939\pi\)
\(942\) 0 0
\(943\) 719.871i 0.763384i
\(944\) 0 0
\(945\) 201.250i 0.212963i
\(946\) 0 0
\(947\) 23.1923i 0.0244903i −0.999925 0.0122452i \(-0.996102\pi\)
0.999925 0.0122452i \(-0.00389785\pi\)
\(948\) 0 0
\(949\) 110.058i 0.115973i
\(950\) 0 0
\(951\) 187.955i 0.197639i
\(952\) 0 0
\(953\) 1517.73 1.59258 0.796290 0.604914i \(-0.206793\pi\)
0.796290 + 0.604914i \(0.206793\pi\)
\(954\) 0 0
\(955\) 1544.83i 1.61762i
\(956\) 0 0
\(957\) 140.673i 0.146994i
\(958\) 0 0
\(959\) −581.421 −0.606279
\(960\) 0 0
\(961\) 421.819 0.438938
\(962\) 0 0
\(963\) 74.7947 0.0776684
\(964\) 0 0
\(965\) 15.8440i 0.0164187i
\(966\) 0 0
\(967\) 933.308 0.965158 0.482579 0.875852i \(-0.339700\pi\)
0.482579 + 0.875852i \(0.339700\pi\)
\(968\) 0 0
\(969\) −949.915 −0.980304
\(970\) 0 0
\(971\) 949.908i 0.978278i 0.872206 + 0.489139i \(0.162689\pi\)
−0.872206 + 0.489139i \(0.837311\pi\)
\(972\) 0 0
\(973\) 905.752i 0.930886i
\(974\) 0 0
\(975\) −419.042 −0.429786
\(976\) 0 0
\(977\) 1319.54i 1.35061i 0.737540 + 0.675304i \(0.235988\pi\)
−0.737540 + 0.675304i \(0.764012\pi\)
\(978\) 0 0
\(979\) 239.686i 0.244828i
\(980\) 0 0
\(981\) 536.989i 0.547390i
\(982\) 0 0
\(983\) 648.594i 0.659811i −0.944014 0.329906i \(-0.892983\pi\)
0.944014 0.329906i \(-0.107017\pi\)
\(984\) 0 0
\(985\) 563.242i 0.571819i
\(986\) 0 0
\(987\) −778.818 −0.789076
\(988\) 0 0
\(989\) 372.357i 0.376499i
\(990\) 0 0
\(991\) 330.317 0.333317 0.166658 0.986015i \(-0.446702\pi\)
0.166658 + 0.986015i \(0.446702\pi\)
\(992\) 0 0
\(993\) 336.371i 0.338742i
\(994\) 0 0
\(995\) −1309.59 −1.31617
\(996\) 0 0
\(997\) 250.592 0.251346 0.125673 0.992072i \(-0.459891\pi\)
0.125673 + 0.992072i \(0.459891\pi\)
\(998\) 0 0
\(999\) 277.821i 0.278099i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2252.3.d.b.1125.14 yes 76
563.562 odd 2 inner 2252.3.d.b.1125.13 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2252.3.d.b.1125.13 76 563.562 odd 2 inner
2252.3.d.b.1125.14 yes 76 1.1 even 1 trivial