Properties

Label 225.9.c.d.26.6
Level $225$
Weight $9$
Character 225.26
Analytic conductor $91.660$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,9,Mod(26,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.26"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 225.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-2524,0,0,6928] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.6601872638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 698x^{10} + 179931x^{8} + 20356724x^{6} + 872357011x^{4} + 2973132090x^{2} + 1458246969 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{25}\cdot 5^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.6
Root \(-14.9768i\) of defining polynomial
Character \(\chi\) \(=\) 225.26
Dual form 225.9.c.d.26.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.31273i q^{2} +202.524 q^{4} +3662.21 q^{7} -3353.06i q^{8} +13264.5i q^{11} -21608.3 q^{13} -26780.7i q^{14} +27326.1 q^{16} -117206. i q^{17} -255517. q^{19} +96999.9 q^{22} -421328. i q^{23} +158015. i q^{26} +741685. q^{28} -610903. i q^{29} -980464. q^{31} -1.05821e6i q^{32} -857097. q^{34} -300222. q^{37} +1.86853e6i q^{38} +1.06451e6i q^{41} +1.60840e6 q^{43} +2.68638e6i q^{44} -3.08106e6 q^{46} -757324. i q^{47} +7.64696e6 q^{49} -4.37619e6 q^{52} -3.30314e6i q^{53} -1.22796e7i q^{56} -4.46737e6 q^{58} -2.09416e7i q^{59} +2.16083e7 q^{61} +7.16987e6i q^{62} -742936. q^{64} +1.46747e7 q^{67} -2.37371e7i q^{68} +1.44676e7i q^{71} -2.16541e7 q^{73} +2.19544e6i q^{74} -5.17483e7 q^{76} +4.85774e7i q^{77} +4.05718e7 q^{79} +7.78449e6 q^{82} -4.84469e7i q^{83} -1.17618e7i q^{86} +4.44768e7 q^{88} +3.57780e7i q^{89} -7.91339e7 q^{91} -8.53291e7i q^{92} -5.53811e6 q^{94} +6.01429e7 q^{97} -5.59202e7i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2524 q^{4} + 6928 q^{7} - 124408 q^{13} + 297572 q^{16} + 124960 q^{19} + 1370512 q^{22} - 1114496 q^{28} - 620968 q^{31} + 7486496 q^{34} + 11533176 q^{37} - 14405296 q^{43} - 7161768 q^{46} + 21010156 q^{49}+ \cdots + 302816184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 7.31273i − 0.457046i −0.973539 0.228523i \(-0.926610\pi\)
0.973539 0.228523i \(-0.0733895\pi\)
\(3\) 0 0
\(4\) 202.524 0.791109
\(5\) 0 0
\(6\) 0 0
\(7\) 3662.21 1.52528 0.762642 0.646821i \(-0.223902\pi\)
0.762642 + 0.646821i \(0.223902\pi\)
\(8\) − 3353.06i − 0.818619i
\(9\) 0 0
\(10\) 0 0
\(11\) 13264.5i 0.905985i 0.891514 + 0.452992i \(0.149644\pi\)
−0.891514 + 0.452992i \(0.850356\pi\)
\(12\) 0 0
\(13\) −21608.3 −0.756565 −0.378283 0.925690i \(-0.623485\pi\)
−0.378283 + 0.925690i \(0.623485\pi\)
\(14\) − 26780.7i − 0.697124i
\(15\) 0 0
\(16\) 27326.1 0.416963
\(17\) − 117206.i − 1.40331i −0.712515 0.701657i \(-0.752444\pi\)
0.712515 0.701657i \(-0.247556\pi\)
\(18\) 0 0
\(19\) −255517. −1.96067 −0.980337 0.197330i \(-0.936773\pi\)
−0.980337 + 0.197330i \(0.936773\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 96999.9 0.414076
\(23\) − 421328.i − 1.50560i −0.658250 0.752799i \(-0.728703\pi\)
0.658250 0.752799i \(-0.271297\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 158015.i 0.345785i
\(27\) 0 0
\(28\) 741685. 1.20667
\(29\) − 610903.i − 0.863735i −0.901937 0.431867i \(-0.857855\pi\)
0.901937 0.431867i \(-0.142145\pi\)
\(30\) 0 0
\(31\) −980464. −1.06166 −0.530829 0.847479i \(-0.678119\pi\)
−0.530829 + 0.847479i \(0.678119\pi\)
\(32\) − 1.05821e6i − 1.00919i
\(33\) 0 0
\(34\) −857097. −0.641378
\(35\) 0 0
\(36\) 0 0
\(37\) −300222. −0.160190 −0.0800950 0.996787i \(-0.525522\pi\)
−0.0800950 + 0.996787i \(0.525522\pi\)
\(38\) 1.86853e6i 0.896118i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.06451e6i 0.376717i 0.982100 + 0.188359i \(0.0603167\pi\)
−0.982100 + 0.188359i \(0.939683\pi\)
\(42\) 0 0
\(43\) 1.60840e6 0.470458 0.235229 0.971940i \(-0.424416\pi\)
0.235229 + 0.971940i \(0.424416\pi\)
\(44\) 2.68638e6i 0.716733i
\(45\) 0 0
\(46\) −3.08106e6 −0.688127
\(47\) − 757324.i − 0.155200i −0.996985 0.0775998i \(-0.975274\pi\)
0.996985 0.0775998i \(-0.0247256\pi\)
\(48\) 0 0
\(49\) 7.64696e6 1.32649
\(50\) 0 0
\(51\) 0 0
\(52\) −4.37619e6 −0.598526
\(53\) − 3.30314e6i − 0.418623i −0.977849 0.209311i \(-0.932878\pi\)
0.977849 0.209311i \(-0.0671222\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 1.22796e7i − 1.24863i
\(57\) 0 0
\(58\) −4.46737e6 −0.394766
\(59\) − 2.09416e7i − 1.72823i −0.503293 0.864116i \(-0.667878\pi\)
0.503293 0.864116i \(-0.332122\pi\)
\(60\) 0 0
\(61\) 2.16083e7 1.56063 0.780316 0.625385i \(-0.215058\pi\)
0.780316 + 0.625385i \(0.215058\pi\)
\(62\) 7.16987e6i 0.485226i
\(63\) 0 0
\(64\) −742936. −0.0442824
\(65\) 0 0
\(66\) 0 0
\(67\) 1.46747e7 0.728231 0.364115 0.931354i \(-0.381371\pi\)
0.364115 + 0.931354i \(0.381371\pi\)
\(68\) − 2.37371e7i − 1.11017i
\(69\) 0 0
\(70\) 0 0
\(71\) 1.44676e7i 0.569329i 0.958627 + 0.284665i \(0.0918823\pi\)
−0.958627 + 0.284665i \(0.908118\pi\)
\(72\) 0 0
\(73\) −2.16541e7 −0.762516 −0.381258 0.924469i \(-0.624509\pi\)
−0.381258 + 0.924469i \(0.624509\pi\)
\(74\) 2.19544e6i 0.0732142i
\(75\) 0 0
\(76\) −5.17483e7 −1.55111
\(77\) 4.85774e7i 1.38188i
\(78\) 0 0
\(79\) 4.05718e7 1.04164 0.520818 0.853667i \(-0.325627\pi\)
0.520818 + 0.853667i \(0.325627\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.78449e6 0.172177
\(83\) − 4.84469e7i − 1.02083i −0.859928 0.510416i \(-0.829492\pi\)
0.859928 0.510416i \(-0.170508\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 1.17618e7i − 0.215021i
\(87\) 0 0
\(88\) 4.44768e7 0.741656
\(89\) 3.57780e7i 0.570239i 0.958492 + 0.285119i \(0.0920332\pi\)
−0.958492 + 0.285119i \(0.907967\pi\)
\(90\) 0 0
\(91\) −7.91339e7 −1.15398
\(92\) − 8.53291e7i − 1.19109i
\(93\) 0 0
\(94\) −5.53811e6 −0.0709333
\(95\) 0 0
\(96\) 0 0
\(97\) 6.01429e7 0.679356 0.339678 0.940542i \(-0.389682\pi\)
0.339678 + 0.940542i \(0.389682\pi\)
\(98\) − 5.59202e7i − 0.606267i
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.09720e8i − 1.05438i −0.849746 0.527192i \(-0.823245\pi\)
0.849746 0.527192i \(-0.176755\pi\)
\(102\) 0 0
\(103\) −7.14368e6 −0.0634707 −0.0317353 0.999496i \(-0.510103\pi\)
−0.0317353 + 0.999496i \(0.510103\pi\)
\(104\) 7.24538e7i 0.619338i
\(105\) 0 0
\(106\) −2.41549e7 −0.191330
\(107\) 1.37428e8i 1.04843i 0.851587 + 0.524214i \(0.175641\pi\)
−0.851587 + 0.524214i \(0.824359\pi\)
\(108\) 0 0
\(109\) −6.92546e7 −0.490617 −0.245309 0.969445i \(-0.578889\pi\)
−0.245309 + 0.969445i \(0.578889\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00074e8 0.635988
\(113\) − 1.50284e8i − 0.921721i −0.887473 0.460861i \(-0.847541\pi\)
0.887473 0.460861i \(-0.152459\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 1.23723e8i − 0.683309i
\(117\) 0 0
\(118\) −1.53140e8 −0.789881
\(119\) − 4.29233e8i − 2.14045i
\(120\) 0 0
\(121\) 3.84112e7 0.179191
\(122\) − 1.58015e8i − 0.713280i
\(123\) 0 0
\(124\) −1.98567e8 −0.839888
\(125\) 0 0
\(126\) 0 0
\(127\) −3.74962e8 −1.44136 −0.720679 0.693269i \(-0.756170\pi\)
−0.720679 + 0.693269i \(0.756170\pi\)
\(128\) − 2.65469e8i − 0.988951i
\(129\) 0 0
\(130\) 0 0
\(131\) − 4.86380e8i − 1.65155i −0.564003 0.825773i \(-0.690739\pi\)
0.564003 0.825773i \(-0.309261\pi\)
\(132\) 0 0
\(133\) −9.35756e8 −2.99059
\(134\) − 1.07312e8i − 0.332835i
\(135\) 0 0
\(136\) −3.93000e8 −1.14878
\(137\) 2.90334e8i 0.824168i 0.911146 + 0.412084i \(0.135199\pi\)
−0.911146 + 0.412084i \(0.864801\pi\)
\(138\) 0 0
\(139\) 1.58457e6 0.00424476 0.00212238 0.999998i \(-0.499324\pi\)
0.00212238 + 0.999998i \(0.499324\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.05798e8 0.260210
\(143\) − 2.86623e8i − 0.685437i
\(144\) 0 0
\(145\) 0 0
\(146\) 1.58351e8i 0.348505i
\(147\) 0 0
\(148\) −6.08021e7 −0.126728
\(149\) 6.74094e8i 1.36765i 0.729645 + 0.683826i \(0.239685\pi\)
−0.729645 + 0.683826i \(0.760315\pi\)
\(150\) 0 0
\(151\) 1.30910e8 0.251805 0.125902 0.992043i \(-0.459817\pi\)
0.125902 + 0.992043i \(0.459817\pi\)
\(152\) 8.56764e8i 1.60504i
\(153\) 0 0
\(154\) 3.55234e8 0.631584
\(155\) 0 0
\(156\) 0 0
\(157\) 6.84598e8 1.12677 0.563387 0.826193i \(-0.309498\pi\)
0.563387 + 0.826193i \(0.309498\pi\)
\(158\) − 2.96691e8i − 0.476075i
\(159\) 0 0
\(160\) 0 0
\(161\) − 1.54299e9i − 2.29647i
\(162\) 0 0
\(163\) −1.45371e8 −0.205934 −0.102967 0.994685i \(-0.532834\pi\)
−0.102967 + 0.994685i \(0.532834\pi\)
\(164\) 2.15589e8i 0.298024i
\(165\) 0 0
\(166\) −3.54279e8 −0.466566
\(167\) − 2.37839e8i − 0.305786i −0.988243 0.152893i \(-0.951141\pi\)
0.988243 0.152893i \(-0.0488589\pi\)
\(168\) 0 0
\(169\) −3.48814e8 −0.427609
\(170\) 0 0
\(171\) 0 0
\(172\) 3.25740e8 0.372184
\(173\) − 1.18265e9i − 1.32029i −0.751137 0.660146i \(-0.770494\pi\)
0.751137 0.660146i \(-0.229506\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.62468e8i 0.377763i
\(177\) 0 0
\(178\) 2.61635e8 0.260625
\(179\) 9.82068e8i 0.956598i 0.878197 + 0.478299i \(0.158747\pi\)
−0.878197 + 0.478299i \(0.841253\pi\)
\(180\) 0 0
\(181\) −2.06622e9 −1.92514 −0.962569 0.271036i \(-0.912634\pi\)
−0.962569 + 0.271036i \(0.912634\pi\)
\(182\) 5.78685e8i 0.527420i
\(183\) 0 0
\(184\) −1.41274e9 −1.23251
\(185\) 0 0
\(186\) 0 0
\(187\) 1.55468e9 1.27138
\(188\) − 1.53376e8i − 0.122780i
\(189\) 0 0
\(190\) 0 0
\(191\) − 5.26889e8i − 0.395900i −0.980212 0.197950i \(-0.936572\pi\)
0.980212 0.197950i \(-0.0634284\pi\)
\(192\) 0 0
\(193\) −2.06017e9 −1.48482 −0.742412 0.669944i \(-0.766318\pi\)
−0.742412 + 0.669944i \(0.766318\pi\)
\(194\) − 4.39809e8i − 0.310497i
\(195\) 0 0
\(196\) 1.54869e9 1.04940
\(197\) − 7.95356e8i − 0.528077i −0.964512 0.264038i \(-0.914945\pi\)
0.964512 0.264038i \(-0.0850545\pi\)
\(198\) 0 0
\(199\) 6.52669e8 0.416180 0.208090 0.978110i \(-0.433275\pi\)
0.208090 + 0.978110i \(0.433275\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −8.02349e8 −0.481901
\(203\) − 2.23725e9i − 1.31744i
\(204\) 0 0
\(205\) 0 0
\(206\) 5.22398e7i 0.0290090i
\(207\) 0 0
\(208\) −5.90470e8 −0.315460
\(209\) − 3.38931e9i − 1.77634i
\(210\) 0 0
\(211\) 1.73985e7 0.00877774 0.00438887 0.999990i \(-0.498603\pi\)
0.00438887 + 0.999990i \(0.498603\pi\)
\(212\) − 6.68964e8i − 0.331176i
\(213\) 0 0
\(214\) 1.00497e9 0.479179
\(215\) 0 0
\(216\) 0 0
\(217\) −3.59066e9 −1.61933
\(218\) 5.06440e8i 0.224234i
\(219\) 0 0
\(220\) 0 0
\(221\) 2.53262e9i 1.06170i
\(222\) 0 0
\(223\) 4.65947e9 1.88416 0.942079 0.335392i \(-0.108869\pi\)
0.942079 + 0.335392i \(0.108869\pi\)
\(224\) − 3.87539e9i − 1.53930i
\(225\) 0 0
\(226\) −1.09899e9 −0.421269
\(227\) 1.44662e9i 0.544819i 0.962181 + 0.272410i \(0.0878206\pi\)
−0.962181 + 0.272410i \(0.912179\pi\)
\(228\) 0 0
\(229\) 2.56679e8 0.0933358 0.0466679 0.998910i \(-0.485140\pi\)
0.0466679 + 0.998910i \(0.485140\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.04840e9 −0.707069
\(233\) 3.63538e9i 1.23346i 0.787173 + 0.616732i \(0.211544\pi\)
−0.787173 + 0.616732i \(0.788456\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 4.24118e9i − 1.36722i
\(237\) 0 0
\(238\) −3.13887e9 −0.978285
\(239\) 5.83715e9i 1.78900i 0.447072 + 0.894498i \(0.352467\pi\)
−0.447072 + 0.894498i \(0.647533\pi\)
\(240\) 0 0
\(241\) 3.30480e9 0.979663 0.489831 0.871817i \(-0.337058\pi\)
0.489831 + 0.871817i \(0.337058\pi\)
\(242\) − 2.80891e8i − 0.0818986i
\(243\) 0 0
\(244\) 4.37619e9 1.23463
\(245\) 0 0
\(246\) 0 0
\(247\) 5.52128e9 1.48338
\(248\) 3.28756e9i 0.869093i
\(249\) 0 0
\(250\) 0 0
\(251\) 4.21438e8i 0.106179i 0.998590 + 0.0530895i \(0.0169069\pi\)
−0.998590 + 0.0530895i \(0.983093\pi\)
\(252\) 0 0
\(253\) 5.58872e9 1.36405
\(254\) 2.74199e9i 0.658767i
\(255\) 0 0
\(256\) −2.13150e9 −0.496278
\(257\) − 3.67809e9i − 0.843121i −0.906800 0.421561i \(-0.861482\pi\)
0.906800 0.421561i \(-0.138518\pi\)
\(258\) 0 0
\(259\) −1.09948e9 −0.244335
\(260\) 0 0
\(261\) 0 0
\(262\) −3.55676e9 −0.754831
\(263\) 3.78322e9i 0.790750i 0.918520 + 0.395375i \(0.129385\pi\)
−0.918520 + 0.395375i \(0.870615\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6.84293e9i 1.36683i
\(267\) 0 0
\(268\) 2.97197e9 0.576110
\(269\) − 4.61132e9i − 0.880676i −0.897832 0.440338i \(-0.854859\pi\)
0.897832 0.440338i \(-0.145141\pi\)
\(270\) 0 0
\(271\) 5.25945e9 0.975132 0.487566 0.873086i \(-0.337885\pi\)
0.487566 + 0.873086i \(0.337885\pi\)
\(272\) − 3.20279e9i − 0.585131i
\(273\) 0 0
\(274\) 2.12313e9 0.376682
\(275\) 0 0
\(276\) 0 0
\(277\) 6.49623e9 1.10342 0.551712 0.834035i \(-0.313975\pi\)
0.551712 + 0.834035i \(0.313975\pi\)
\(278\) − 1.15875e7i − 0.00194005i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.12110e10i 1.79812i 0.437826 + 0.899060i \(0.355749\pi\)
−0.437826 + 0.899060i \(0.644251\pi\)
\(282\) 0 0
\(283\) 4.03832e9 0.629585 0.314793 0.949160i \(-0.398065\pi\)
0.314793 + 0.949160i \(0.398065\pi\)
\(284\) 2.93004e9i 0.450402i
\(285\) 0 0
\(286\) −2.09600e9 −0.313276
\(287\) 3.89847e9i 0.574601i
\(288\) 0 0
\(289\) −6.76153e9 −0.969290
\(290\) 0 0
\(291\) 0 0
\(292\) −4.38548e9 −0.603234
\(293\) − 9.12329e9i − 1.23789i −0.785435 0.618944i \(-0.787561\pi\)
0.785435 0.618944i \(-0.212439\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.00666e9i 0.131135i
\(297\) 0 0
\(298\) 4.92947e9 0.625079
\(299\) 9.10417e9i 1.13908i
\(300\) 0 0
\(301\) 5.89030e9 0.717582
\(302\) − 9.57307e8i − 0.115086i
\(303\) 0 0
\(304\) −6.98229e9 −0.817529
\(305\) 0 0
\(306\) 0 0
\(307\) 1.19827e9 0.134896 0.0674481 0.997723i \(-0.478514\pi\)
0.0674481 + 0.997723i \(0.478514\pi\)
\(308\) 9.83810e9i 1.09322i
\(309\) 0 0
\(310\) 0 0
\(311\) 7.25355e9i 0.775370i 0.921792 + 0.387685i \(0.126725\pi\)
−0.921792 + 0.387685i \(0.873275\pi\)
\(312\) 0 0
\(313\) −7.48886e9 −0.780258 −0.390129 0.920760i \(-0.627570\pi\)
−0.390129 + 0.920760i \(0.627570\pi\)
\(314\) − 5.00628e9i − 0.514987i
\(315\) 0 0
\(316\) 8.21677e9 0.824049
\(317\) 2.06905e9i 0.204897i 0.994738 + 0.102448i \(0.0326676\pi\)
−0.994738 + 0.102448i \(0.967332\pi\)
\(318\) 0 0
\(319\) 8.10334e9 0.782531
\(320\) 0 0
\(321\) 0 0
\(322\) −1.12835e10 −1.04959
\(323\) 2.99482e10i 2.75144i
\(324\) 0 0
\(325\) 0 0
\(326\) 1.06306e9i 0.0941211i
\(327\) 0 0
\(328\) 3.56938e9 0.308388
\(329\) − 2.77348e9i − 0.236723i
\(330\) 0 0
\(331\) −1.57907e9 −0.131549 −0.0657747 0.997834i \(-0.520952\pi\)
−0.0657747 + 0.997834i \(0.520952\pi\)
\(332\) − 9.81166e9i − 0.807589i
\(333\) 0 0
\(334\) −1.73925e9 −0.139758
\(335\) 0 0
\(336\) 0 0
\(337\) −7.38336e9 −0.572446 −0.286223 0.958163i \(-0.592400\pi\)
−0.286223 + 0.958163i \(0.592400\pi\)
\(338\) 2.55078e9i 0.195437i
\(339\) 0 0
\(340\) 0 0
\(341\) − 1.30054e10i − 0.961847i
\(342\) 0 0
\(343\) 6.89287e9 0.497993
\(344\) − 5.39307e9i − 0.385126i
\(345\) 0 0
\(346\) −8.64836e9 −0.603434
\(347\) − 1.61084e10i − 1.11105i −0.831500 0.555525i \(-0.812517\pi\)
0.831500 0.555525i \(-0.187483\pi\)
\(348\) 0 0
\(349\) 1.35263e10 0.911755 0.455877 0.890043i \(-0.349326\pi\)
0.455877 + 0.890043i \(0.349326\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.40367e10 0.914311
\(353\) 2.27293e10i 1.46382i 0.681402 + 0.731910i \(0.261371\pi\)
−0.681402 + 0.731910i \(0.738629\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.24591e9i 0.451121i
\(357\) 0 0
\(358\) 7.18160e9 0.437209
\(359\) 3.00848e10i 1.81121i 0.424118 + 0.905607i \(0.360584\pi\)
−0.424118 + 0.905607i \(0.639416\pi\)
\(360\) 0 0
\(361\) 4.83054e10 2.84424
\(362\) 1.51097e10i 0.879876i
\(363\) 0 0
\(364\) −1.60265e10 −0.912922
\(365\) 0 0
\(366\) 0 0
\(367\) −2.14496e10 −1.18237 −0.591187 0.806535i \(-0.701340\pi\)
−0.591187 + 0.806535i \(0.701340\pi\)
\(368\) − 1.15133e10i − 0.627780i
\(369\) 0 0
\(370\) 0 0
\(371\) − 1.20968e10i − 0.638519i
\(372\) 0 0
\(373\) −2.84075e10 −1.46757 −0.733783 0.679384i \(-0.762247\pi\)
−0.733783 + 0.679384i \(0.762247\pi\)
\(374\) − 1.13690e10i − 0.581079i
\(375\) 0 0
\(376\) −2.53936e9 −0.127049
\(377\) 1.32006e10i 0.653472i
\(378\) 0 0
\(379\) −6.45475e9 −0.312840 −0.156420 0.987691i \(-0.549995\pi\)
−0.156420 + 0.987691i \(0.549995\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.85299e9 −0.180944
\(383\) − 1.84124e10i − 0.855686i −0.903853 0.427843i \(-0.859274\pi\)
0.903853 0.427843i \(-0.140726\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.50655e10i 0.678632i
\(387\) 0 0
\(388\) 1.21804e10 0.537445
\(389\) − 2.20288e10i − 0.962037i −0.876710 0.481019i \(-0.840267\pi\)
0.876710 0.481019i \(-0.159733\pi\)
\(390\) 0 0
\(391\) −4.93823e10 −2.11283
\(392\) − 2.56407e10i − 1.08589i
\(393\) 0 0
\(394\) −5.81623e9 −0.241355
\(395\) 0 0
\(396\) 0 0
\(397\) 1.19815e10 0.482336 0.241168 0.970483i \(-0.422470\pi\)
0.241168 + 0.970483i \(0.422470\pi\)
\(398\) − 4.77279e9i − 0.190213i
\(399\) 0 0
\(400\) 0 0
\(401\) − 9.80577e9i − 0.379231i −0.981858 0.189616i \(-0.939276\pi\)
0.981858 0.189616i \(-0.0607242\pi\)
\(402\) 0 0
\(403\) 2.11861e10 0.803214
\(404\) − 2.22208e10i − 0.834133i
\(405\) 0 0
\(406\) −1.63604e10 −0.602131
\(407\) − 3.98230e9i − 0.145130i
\(408\) 0 0
\(409\) 6.12299e9 0.218812 0.109406 0.993997i \(-0.465105\pi\)
0.109406 + 0.993997i \(0.465105\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.44677e9 −0.0502122
\(413\) − 7.66925e10i − 2.63604i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.28661e10i 0.763518i
\(417\) 0 0
\(418\) −2.47851e10 −0.811869
\(419\) 1.08044e10i 0.350546i 0.984520 + 0.175273i \(0.0560808\pi\)
−0.984520 + 0.175273i \(0.943919\pi\)
\(420\) 0 0
\(421\) −1.55252e10 −0.494208 −0.247104 0.968989i \(-0.579479\pi\)
−0.247104 + 0.968989i \(0.579479\pi\)
\(422\) − 1.27231e8i − 0.00401183i
\(423\) 0 0
\(424\) −1.10756e10 −0.342692
\(425\) 0 0
\(426\) 0 0
\(427\) 7.91340e10 2.38041
\(428\) 2.78324e10i 0.829421i
\(429\) 0 0
\(430\) 0 0
\(431\) − 1.83165e10i − 0.530802i −0.964138 0.265401i \(-0.914496\pi\)
0.964138 0.265401i \(-0.0855044\pi\)
\(432\) 0 0
\(433\) −3.10188e10 −0.882415 −0.441208 0.897405i \(-0.645450\pi\)
−0.441208 + 0.897405i \(0.645450\pi\)
\(434\) 2.62575e10i 0.740108i
\(435\) 0 0
\(436\) −1.40257e10 −0.388132
\(437\) 1.07657e11i 2.95199i
\(438\) 0 0
\(439\) 2.60289e10 0.700805 0.350403 0.936599i \(-0.386045\pi\)
0.350403 + 0.936599i \(0.386045\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.85204e10 0.485245
\(443\) − 6.47619e10i − 1.68153i −0.541401 0.840765i \(-0.682106\pi\)
0.541401 0.840765i \(-0.317894\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 3.40735e10i − 0.861146i
\(447\) 0 0
\(448\) −2.72078e9 −0.0675433
\(449\) 2.72508e10i 0.670493i 0.942130 + 0.335246i \(0.108820\pi\)
−0.942130 + 0.335246i \(0.891180\pi\)
\(450\) 0 0
\(451\) −1.41203e10 −0.341300
\(452\) − 3.04362e10i − 0.729182i
\(453\) 0 0
\(454\) 1.05788e10 0.249007
\(455\) 0 0
\(456\) 0 0
\(457\) −3.41731e10 −0.783465 −0.391733 0.920079i \(-0.628124\pi\)
−0.391733 + 0.920079i \(0.628124\pi\)
\(458\) − 1.87702e9i − 0.0426587i
\(459\) 0 0
\(460\) 0 0
\(461\) − 3.70973e10i − 0.821370i −0.911777 0.410685i \(-0.865290\pi\)
0.911777 0.410685i \(-0.134710\pi\)
\(462\) 0 0
\(463\) −5.13571e9 −0.111757 −0.0558787 0.998438i \(-0.517796\pi\)
−0.0558787 + 0.998438i \(0.517796\pi\)
\(464\) − 1.66936e10i − 0.360146i
\(465\) 0 0
\(466\) 2.65846e10 0.563749
\(467\) − 5.10012e9i − 0.107229i −0.998562 0.0536146i \(-0.982926\pi\)
0.998562 0.0536146i \(-0.0170742\pi\)
\(468\) 0 0
\(469\) 5.37417e10 1.11076
\(470\) 0 0
\(471\) 0 0
\(472\) −7.02185e10 −1.41476
\(473\) 2.13347e10i 0.426228i
\(474\) 0 0
\(475\) 0 0
\(476\) − 8.69301e10i − 1.69333i
\(477\) 0 0
\(478\) 4.26855e10 0.817653
\(479\) − 9.29660e9i − 0.176597i −0.996094 0.0882983i \(-0.971857\pi\)
0.996094 0.0882983i \(-0.0281429\pi\)
\(480\) 0 0
\(481\) 6.48727e9 0.121194
\(482\) − 2.41671e10i − 0.447751i
\(483\) 0 0
\(484\) 7.77920e9 0.141760
\(485\) 0 0
\(486\) 0 0
\(487\) 6.22466e10 1.10662 0.553312 0.832974i \(-0.313364\pi\)
0.553312 + 0.832974i \(0.313364\pi\)
\(488\) − 7.24539e10i − 1.27756i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.18310e10i 0.203561i 0.994807 + 0.101781i \(0.0324540\pi\)
−0.994807 + 0.101781i \(0.967546\pi\)
\(492\) 0 0
\(493\) −7.16016e10 −1.21209
\(494\) − 4.03756e10i − 0.677971i
\(495\) 0 0
\(496\) −2.67923e10 −0.442673
\(497\) 5.29834e10i 0.868389i
\(498\) 0 0
\(499\) 4.35370e7 0.000702193 0 0.000351096 1.00000i \(-0.499888\pi\)
0.000351096 1.00000i \(0.499888\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3.08186e9 0.0485286
\(503\) − 2.42920e10i − 0.379483i −0.981834 0.189741i \(-0.939235\pi\)
0.981834 0.189741i \(-0.0607649\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 4.08688e10i − 0.623433i
\(507\) 0 0
\(508\) −7.59387e10 −1.14027
\(509\) − 5.82458e10i − 0.867748i −0.900974 0.433874i \(-0.857146\pi\)
0.900974 0.433874i \(-0.142854\pi\)
\(510\) 0 0
\(511\) −7.93019e10 −1.16305
\(512\) − 5.23731e10i − 0.762129i
\(513\) 0 0
\(514\) −2.68969e10 −0.385345
\(515\) 0 0
\(516\) 0 0
\(517\) 1.00455e10 0.140608
\(518\) 8.04016e9i 0.111672i
\(519\) 0 0
\(520\) 0 0
\(521\) 4.94448e10i 0.671073i 0.942027 + 0.335536i \(0.108918\pi\)
−0.942027 + 0.335536i \(0.891082\pi\)
\(522\) 0 0
\(523\) −7.26221e10 −0.970648 −0.485324 0.874334i \(-0.661298\pi\)
−0.485324 + 0.874334i \(0.661298\pi\)
\(524\) − 9.85036e10i − 1.30655i
\(525\) 0 0
\(526\) 2.76657e10 0.361409
\(527\) 1.14916e11i 1.48984i
\(528\) 0 0
\(529\) −9.92066e10 −1.26683
\(530\) 0 0
\(531\) 0 0
\(532\) −1.89513e11 −2.36588
\(533\) − 2.30023e10i − 0.285011i
\(534\) 0 0
\(535\) 0 0
\(536\) − 4.92050e10i − 0.596143i
\(537\) 0 0
\(538\) −3.37213e10 −0.402509
\(539\) 1.01433e11i 1.20178i
\(540\) 0 0
\(541\) −3.33242e10 −0.389019 −0.194509 0.980901i \(-0.562311\pi\)
−0.194509 + 0.980901i \(0.562311\pi\)
\(542\) − 3.84610e10i − 0.445680i
\(543\) 0 0
\(544\) −1.24029e11 −1.41621
\(545\) 0 0
\(546\) 0 0
\(547\) 1.41404e11 1.57947 0.789736 0.613447i \(-0.210217\pi\)
0.789736 + 0.613447i \(0.210217\pi\)
\(548\) 5.87996e10i 0.652007i
\(549\) 0 0
\(550\) 0 0
\(551\) 1.56096e11i 1.69350i
\(552\) 0 0
\(553\) 1.48582e11 1.58879
\(554\) − 4.75052e10i − 0.504315i
\(555\) 0 0
\(556\) 3.20914e8 0.00335807
\(557\) − 1.67388e11i − 1.73901i −0.493921 0.869507i \(-0.664437\pi\)
0.493921 0.869507i \(-0.335563\pi\)
\(558\) 0 0
\(559\) −3.47548e10 −0.355932
\(560\) 0 0
\(561\) 0 0
\(562\) 8.19829e10 0.821822
\(563\) − 1.23714e11i − 1.23136i −0.787997 0.615679i \(-0.788882\pi\)
0.787997 0.615679i \(-0.211118\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 2.95311e10i − 0.287749i
\(567\) 0 0
\(568\) 4.85108e10 0.466064
\(569\) 1.69396e11i 1.61604i 0.589152 + 0.808022i \(0.299462\pi\)
−0.589152 + 0.808022i \(0.700538\pi\)
\(570\) 0 0
\(571\) 1.05597e11 0.993359 0.496679 0.867934i \(-0.334553\pi\)
0.496679 + 0.867934i \(0.334553\pi\)
\(572\) − 5.80481e10i − 0.542255i
\(573\) 0 0
\(574\) 2.85084e10 0.262619
\(575\) 0 0
\(576\) 0 0
\(577\) 3.71561e10 0.335218 0.167609 0.985854i \(-0.446395\pi\)
0.167609 + 0.985854i \(0.446395\pi\)
\(578\) 4.94453e10i 0.443010i
\(579\) 0 0
\(580\) 0 0
\(581\) − 1.77423e11i − 1.55706i
\(582\) 0 0
\(583\) 4.38145e10 0.379266
\(584\) 7.26076e10i 0.624210i
\(585\) 0 0
\(586\) −6.67162e10 −0.565771
\(587\) 1.85072e11i 1.55879i 0.626530 + 0.779397i \(0.284474\pi\)
−0.626530 + 0.779397i \(0.715526\pi\)
\(588\) 0 0
\(589\) 2.50525e11 2.08157
\(590\) 0 0
\(591\) 0 0
\(592\) −8.20390e9 −0.0667934
\(593\) 5.13565e10i 0.415314i 0.978202 + 0.207657i \(0.0665838\pi\)
−0.978202 + 0.207657i \(0.933416\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.36520e11i 1.08196i
\(597\) 0 0
\(598\) 6.65763e10 0.520613
\(599\) 1.99249e11i 1.54771i 0.633362 + 0.773855i \(0.281674\pi\)
−0.633362 + 0.773855i \(0.718326\pi\)
\(600\) 0 0
\(601\) 5.62386e10 0.431059 0.215530 0.976497i \(-0.430852\pi\)
0.215530 + 0.976497i \(0.430852\pi\)
\(602\) − 4.30742e10i − 0.327968i
\(603\) 0 0
\(604\) 2.65123e10 0.199205
\(605\) 0 0
\(606\) 0 0
\(607\) −3.56822e10 −0.262843 −0.131422 0.991327i \(-0.541954\pi\)
−0.131422 + 0.991327i \(0.541954\pi\)
\(608\) 2.70391e11i 1.97869i
\(609\) 0 0
\(610\) 0 0
\(611\) 1.63645e10i 0.117419i
\(612\) 0 0
\(613\) −2.17689e11 −1.54168 −0.770839 0.637030i \(-0.780163\pi\)
−0.770839 + 0.637030i \(0.780163\pi\)
\(614\) − 8.76259e9i − 0.0616537i
\(615\) 0 0
\(616\) 1.62883e11 1.13124
\(617\) 1.60556e11i 1.10786i 0.832563 + 0.553931i \(0.186873\pi\)
−0.832563 + 0.553931i \(0.813127\pi\)
\(618\) 0 0
\(619\) −2.22627e11 −1.51640 −0.758202 0.652019i \(-0.773922\pi\)
−0.758202 + 0.652019i \(0.773922\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 5.30432e10 0.354379
\(623\) 1.31027e11i 0.869776i
\(624\) 0 0
\(625\) 0 0
\(626\) 5.47640e10i 0.356613i
\(627\) 0 0
\(628\) 1.38647e11 0.891402
\(629\) 3.51879e10i 0.224797i
\(630\) 0 0
\(631\) −9.64259e10 −0.608242 −0.304121 0.952633i \(-0.598363\pi\)
−0.304121 + 0.952633i \(0.598363\pi\)
\(632\) − 1.36040e11i − 0.852703i
\(633\) 0 0
\(634\) 1.51304e10 0.0936471
\(635\) 0 0
\(636\) 0 0
\(637\) −1.65238e11 −1.00358
\(638\) − 5.92575e10i − 0.357652i
\(639\) 0 0
\(640\) 0 0
\(641\) 2.06616e11i 1.22386i 0.790912 + 0.611930i \(0.209607\pi\)
−0.790912 + 0.611930i \(0.790393\pi\)
\(642\) 0 0
\(643\) 5.65637e10 0.330898 0.165449 0.986218i \(-0.447093\pi\)
0.165449 + 0.986218i \(0.447093\pi\)
\(644\) − 3.12493e11i − 1.81676i
\(645\) 0 0
\(646\) 2.19003e11 1.25753
\(647\) − 2.46730e10i − 0.140801i −0.997519 0.0704003i \(-0.977572\pi\)
0.997519 0.0704003i \(-0.0224277\pi\)
\(648\) 0 0
\(649\) 2.77780e11 1.56575
\(650\) 0 0
\(651\) 0 0
\(652\) −2.94411e10 −0.162916
\(653\) 2.77278e11i 1.52498i 0.647002 + 0.762488i \(0.276023\pi\)
−0.647002 + 0.762488i \(0.723977\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 2.90890e10i 0.157077i
\(657\) 0 0
\(658\) −2.02817e10 −0.108193
\(659\) − 2.79317e11i − 1.48100i −0.672054 0.740502i \(-0.734588\pi\)
0.672054 0.740502i \(-0.265412\pi\)
\(660\) 0 0
\(661\) 3.58762e9 0.0187932 0.00939661 0.999956i \(-0.497009\pi\)
0.00939661 + 0.999956i \(0.497009\pi\)
\(662\) 1.15473e10i 0.0601241i
\(663\) 0 0
\(664\) −1.62446e11 −0.835671
\(665\) 0 0
\(666\) 0 0
\(667\) −2.57391e11 −1.30044
\(668\) − 4.81681e10i − 0.241910i
\(669\) 0 0
\(670\) 0 0
\(671\) 2.86623e11i 1.41391i
\(672\) 0 0
\(673\) 1.74585e11 0.851034 0.425517 0.904950i \(-0.360092\pi\)
0.425517 + 0.904950i \(0.360092\pi\)
\(674\) 5.39925e10i 0.261634i
\(675\) 0 0
\(676\) −7.06432e10 −0.338286
\(677\) 9.83100e10i 0.467997i 0.972237 + 0.233999i \(0.0751811\pi\)
−0.972237 + 0.233999i \(0.924819\pi\)
\(678\) 0 0
\(679\) 2.20256e11 1.03621
\(680\) 0 0
\(681\) 0 0
\(682\) −9.51049e10 −0.439608
\(683\) − 1.22852e11i − 0.564548i −0.959334 0.282274i \(-0.908911\pi\)
0.959334 0.282274i \(-0.0910888\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 5.04057e10i − 0.227606i
\(687\) 0 0
\(688\) 4.39514e10 0.196164
\(689\) 7.13750e10i 0.316715i
\(690\) 0 0
\(691\) 2.59741e11 1.13927 0.569637 0.821896i \(-0.307084\pi\)
0.569637 + 0.821896i \(0.307084\pi\)
\(692\) − 2.39514e11i − 1.04450i
\(693\) 0 0
\(694\) −1.17796e11 −0.507800
\(695\) 0 0
\(696\) 0 0
\(697\) 1.24767e11 0.528652
\(698\) − 9.89143e10i − 0.416714i
\(699\) 0 0
\(700\) 0 0
\(701\) − 1.03431e11i − 0.428332i −0.976797 0.214166i \(-0.931297\pi\)
0.976797 0.214166i \(-0.0687033\pi\)
\(702\) 0 0
\(703\) 7.67118e10 0.314081
\(704\) − 9.85469e9i − 0.0401192i
\(705\) 0 0
\(706\) 1.66213e11 0.669032
\(707\) − 4.01816e11i − 1.60823i
\(708\) 0 0
\(709\) 1.57054e11 0.621533 0.310767 0.950486i \(-0.399414\pi\)
0.310767 + 0.950486i \(0.399414\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.19966e11 0.466808
\(713\) 4.13097e11i 1.59843i
\(714\) 0 0
\(715\) 0 0
\(716\) 1.98892e11i 0.756774i
\(717\) 0 0
\(718\) 2.20002e11 0.827807
\(719\) − 1.04101e11i − 0.389527i −0.980850 0.194764i \(-0.937606\pi\)
0.980850 0.194764i \(-0.0623940\pi\)
\(720\) 0 0
\(721\) −2.61616e10 −0.0968108
\(722\) − 3.53244e11i − 1.29995i
\(723\) 0 0
\(724\) −4.18459e11 −1.52300
\(725\) 0 0
\(726\) 0 0
\(727\) −1.97631e10 −0.0707484 −0.0353742 0.999374i \(-0.511262\pi\)
−0.0353742 + 0.999374i \(0.511262\pi\)
\(728\) 2.65341e11i 0.944667i
\(729\) 0 0
\(730\) 0 0
\(731\) − 1.88515e11i − 0.660201i
\(732\) 0 0
\(733\) 4.69549e11 1.62654 0.813270 0.581887i \(-0.197685\pi\)
0.813270 + 0.581887i \(0.197685\pi\)
\(734\) 1.56855e11i 0.540399i
\(735\) 0 0
\(736\) −4.45855e11 −1.51944
\(737\) 1.94652e11i 0.659766i
\(738\) 0 0
\(739\) 2.48981e10 0.0834813 0.0417406 0.999128i \(-0.486710\pi\)
0.0417406 + 0.999128i \(0.486710\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −8.84604e10 −0.291832
\(743\) − 1.84452e11i − 0.605241i −0.953111 0.302621i \(-0.902139\pi\)
0.953111 0.302621i \(-0.0978615\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.07736e11i 0.670744i
\(747\) 0 0
\(748\) 3.14861e11 1.00580
\(749\) 5.03288e11i 1.59915i
\(750\) 0 0
\(751\) −4.71095e10 −0.148098 −0.0740489 0.997255i \(-0.523592\pi\)
−0.0740489 + 0.997255i \(0.523592\pi\)
\(752\) − 2.06947e10i − 0.0647125i
\(753\) 0 0
\(754\) 9.65321e10 0.298666
\(755\) 0 0
\(756\) 0 0
\(757\) 6.14374e11 1.87089 0.935447 0.353467i \(-0.114997\pi\)
0.935447 + 0.353467i \(0.114997\pi\)
\(758\) 4.72018e10i 0.142982i
\(759\) 0 0
\(760\) 0 0
\(761\) 5.20082e11i 1.55072i 0.631520 + 0.775359i \(0.282431\pi\)
−0.631520 + 0.775359i \(0.717569\pi\)
\(762\) 0 0
\(763\) −2.53625e11 −0.748331
\(764\) − 1.06708e11i − 0.313200i
\(765\) 0 0
\(766\) −1.34645e11 −0.391088
\(767\) 4.52512e11i 1.30752i
\(768\) 0 0
\(769\) 3.46901e11 0.991974 0.495987 0.868330i \(-0.334806\pi\)
0.495987 + 0.868330i \(0.334806\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.17235e11 −1.17466
\(773\) − 7.16096e10i − 0.200564i −0.994959 0.100282i \(-0.968025\pi\)
0.994959 0.100282i \(-0.0319745\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 2.01663e11i − 0.556134i
\(777\) 0 0
\(778\) −1.61090e11 −0.439695
\(779\) − 2.72001e11i − 0.738619i
\(780\) 0 0
\(781\) −1.91906e11 −0.515804
\(782\) 3.61119e11i 0.965659i
\(783\) 0 0
\(784\) 2.08962e11 0.553099
\(785\) 0 0
\(786\) 0 0
\(787\) 2.58944e11 0.675004 0.337502 0.941325i \(-0.390418\pi\)
0.337502 + 0.941325i \(0.390418\pi\)
\(788\) − 1.61079e11i − 0.417766i
\(789\) 0 0
\(790\) 0 0
\(791\) − 5.50372e11i − 1.40589i
\(792\) 0 0
\(793\) −4.66917e11 −1.18072
\(794\) − 8.76175e10i − 0.220449i
\(795\) 0 0
\(796\) 1.32181e11 0.329244
\(797\) 9.11965e10i 0.226019i 0.993594 + 0.113009i \(0.0360490\pi\)
−0.993594 + 0.113009i \(0.963951\pi\)
\(798\) 0 0
\(799\) −8.87631e10 −0.217794
\(800\) 0 0
\(801\) 0 0
\(802\) −7.17069e10 −0.173326
\(803\) − 2.87232e11i − 0.690828i
\(804\) 0 0
\(805\) 0 0
\(806\) − 1.54928e11i − 0.367105i
\(807\) 0 0
\(808\) −3.67896e11 −0.863138
\(809\) 1.88801e11i 0.440767i 0.975413 + 0.220384i \(0.0707309\pi\)
−0.975413 + 0.220384i \(0.929269\pi\)
\(810\) 0 0
\(811\) 7.11503e11 1.64472 0.822362 0.568964i \(-0.192656\pi\)
0.822362 + 0.568964i \(0.192656\pi\)
\(812\) − 4.53098e11i − 1.04224i
\(813\) 0 0
\(814\) −2.91215e10 −0.0663309
\(815\) 0 0
\(816\) 0 0
\(817\) −4.10974e11 −0.922415
\(818\) − 4.47758e10i − 0.100007i
\(819\) 0 0
\(820\) 0 0
\(821\) 2.66425e10i 0.0586411i 0.999570 + 0.0293205i \(0.00933435\pi\)
−0.999570 + 0.0293205i \(0.990666\pi\)
\(822\) 0 0
\(823\) −5.69829e11 −1.24207 −0.621033 0.783784i \(-0.713287\pi\)
−0.621033 + 0.783784i \(0.713287\pi\)
\(824\) 2.39532e10i 0.0519583i
\(825\) 0 0
\(826\) −5.60832e11 −1.20479
\(827\) 2.83844e11i 0.606816i 0.952861 + 0.303408i \(0.0981245\pi\)
−0.952861 + 0.303408i \(0.901875\pi\)
\(828\) 0 0
\(829\) −8.79841e11 −1.86288 −0.931442 0.363889i \(-0.881449\pi\)
−0.931442 + 0.363889i \(0.881449\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.60535e10 0.0335025
\(833\) − 8.96271e11i − 1.86149i
\(834\) 0 0
\(835\) 0 0
\(836\) − 6.86417e11i − 1.40528i
\(837\) 0 0
\(838\) 7.90098e10 0.160216
\(839\) − 3.79708e11i − 0.766305i −0.923685 0.383153i \(-0.874838\pi\)
0.923685 0.383153i \(-0.125162\pi\)
\(840\) 0 0
\(841\) 1.27044e11 0.253962
\(842\) 1.13532e11i 0.225876i
\(843\) 0 0
\(844\) 3.52362e9 0.00694415
\(845\) 0 0
\(846\) 0 0
\(847\) 1.40670e11 0.273318
\(848\) − 9.02618e10i − 0.174550i
\(849\) 0 0
\(850\) 0 0
\(851\) 1.26492e11i 0.241182i
\(852\) 0 0
\(853\) −4.18933e11 −0.791314 −0.395657 0.918398i \(-0.629483\pi\)
−0.395657 + 0.918398i \(0.629483\pi\)
\(854\) − 5.78685e11i − 1.08796i
\(855\) 0 0
\(856\) 4.60803e11 0.858263
\(857\) 9.86863e11i 1.82950i 0.404015 + 0.914752i \(0.367614\pi\)
−0.404015 + 0.914752i \(0.632386\pi\)
\(858\) 0 0
\(859\) 6.76444e11 1.24239 0.621197 0.783655i \(-0.286647\pi\)
0.621197 + 0.783655i \(0.286647\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.33943e11 −0.242601
\(863\) 1.65158e11i 0.297753i 0.988856 + 0.148876i \(0.0475657\pi\)
−0.988856 + 0.148876i \(0.952434\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.26832e11i 0.403304i
\(867\) 0 0
\(868\) −7.27195e11 −1.28107
\(869\) 5.38166e11i 0.943707i
\(870\) 0 0
\(871\) −3.17094e11 −0.550954
\(872\) 2.32215e11i 0.401628i
\(873\) 0 0
\(874\) 7.87263e11 1.34919
\(875\) 0 0
\(876\) 0 0
\(877\) 5.00676e11 0.846366 0.423183 0.906044i \(-0.360913\pi\)
0.423183 + 0.906044i \(0.360913\pi\)
\(878\) − 1.90342e11i − 0.320300i
\(879\) 0 0
\(880\) 0 0
\(881\) − 5.49244e11i − 0.911720i −0.890051 0.455860i \(-0.849332\pi\)
0.890051 0.455860i \(-0.150668\pi\)
\(882\) 0 0
\(883\) −2.56467e10 −0.0421880 −0.0210940 0.999777i \(-0.506715\pi\)
−0.0210940 + 0.999777i \(0.506715\pi\)
\(884\) 5.12917e11i 0.839920i
\(885\) 0 0
\(886\) −4.73586e11 −0.768536
\(887\) − 6.24010e11i − 1.00809i −0.863679 0.504043i \(-0.831845\pi\)
0.863679 0.504043i \(-0.168155\pi\)
\(888\) 0 0
\(889\) −1.37319e12 −2.19848
\(890\) 0 0
\(891\) 0 0
\(892\) 9.43655e11 1.49057
\(893\) 1.93509e11i 0.304296i
\(894\) 0 0
\(895\) 0 0
\(896\) − 9.72204e11i − 1.50843i
\(897\) 0 0
\(898\) 1.99278e11 0.306446
\(899\) 5.98969e11i 0.916991i
\(900\) 0 0
\(901\) −3.87148e11 −0.587459
\(902\) 1.03258e11i 0.155990i
\(903\) 0 0
\(904\) −5.03912e11 −0.754538
\(905\) 0 0
\(906\) 0 0
\(907\) −5.76568e11 −0.851964 −0.425982 0.904732i \(-0.640071\pi\)
−0.425982 + 0.904732i \(0.640071\pi\)
\(908\) 2.92976e11i 0.431012i
\(909\) 0 0
\(910\) 0 0
\(911\) − 7.32970e11i − 1.06417i −0.846690 0.532087i \(-0.821408\pi\)
0.846690 0.532087i \(-0.178592\pi\)
\(912\) 0 0
\(913\) 6.42625e11 0.924858
\(914\) 2.49899e11i 0.358079i
\(915\) 0 0
\(916\) 5.19836e10 0.0738388
\(917\) − 1.78122e12i − 2.51908i
\(918\) 0 0
\(919\) −4.30705e11 −0.603834 −0.301917 0.953334i \(-0.597627\pi\)
−0.301917 + 0.953334i \(0.597627\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.71283e11 −0.375403
\(923\) − 3.12620e11i − 0.430735i
\(924\) 0 0
\(925\) 0 0
\(926\) 3.75561e10i 0.0510783i
\(927\) 0 0
\(928\) −6.46465e11 −0.871672
\(929\) − 1.10110e12i − 1.47831i −0.673538 0.739153i \(-0.735226\pi\)
0.673538 0.739153i \(-0.264774\pi\)
\(930\) 0 0
\(931\) −1.95393e12 −2.60082
\(932\) 7.36252e11i 0.975805i
\(933\) 0 0
\(934\) −3.72958e10 −0.0490086
\(935\) 0 0
\(936\) 0 0
\(937\) 5.55540e11 0.720704 0.360352 0.932816i \(-0.382657\pi\)
0.360352 + 0.932816i \(0.382657\pi\)
\(938\) − 3.92998e11i − 0.507667i
\(939\) 0 0
\(940\) 0 0
\(941\) 1.21149e11i 0.154512i 0.997011 + 0.0772558i \(0.0246158\pi\)
−0.997011 + 0.0772558i \(0.975384\pi\)
\(942\) 0 0
\(943\) 4.48509e11 0.567185
\(944\) − 5.72253e11i − 0.720609i
\(945\) 0 0
\(946\) 1.56015e11 0.194806
\(947\) 6.98500e11i 0.868494i 0.900794 + 0.434247i \(0.142985\pi\)
−0.900794 + 0.434247i \(0.857015\pi\)
\(948\) 0 0
\(949\) 4.67908e11 0.576893
\(950\) 0 0
\(951\) 0 0
\(952\) −1.43925e12 −1.75221
\(953\) − 1.47296e12i − 1.78575i −0.450304 0.892875i \(-0.648685\pi\)
0.450304 0.892875i \(-0.351315\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.18216e12i 1.41529i
\(957\) 0 0
\(958\) −6.79835e10 −0.0807127
\(959\) 1.06326e12i 1.25709i
\(960\) 0 0
\(961\) 1.08419e11 0.127119
\(962\) − 4.74397e10i − 0.0553913i
\(963\) 0 0
\(964\) 6.69301e11 0.775020
\(965\) 0 0
\(966\) 0 0
\(967\) 1.18280e12 1.35271 0.676357 0.736574i \(-0.263557\pi\)
0.676357 + 0.736574i \(0.263557\pi\)
\(968\) − 1.28795e11i − 0.146689i
\(969\) 0 0
\(970\) 0 0
\(971\) − 1.90694e11i − 0.214517i −0.994231 0.107258i \(-0.965793\pi\)
0.994231 0.107258i \(-0.0342072\pi\)
\(972\) 0 0
\(973\) 5.80303e9 0.00647446
\(974\) − 4.55193e11i − 0.505777i
\(975\) 0 0
\(976\) 5.90470e11 0.650727
\(977\) − 8.63910e11i − 0.948179i −0.880477 0.474090i \(-0.842777\pi\)
0.880477 0.474090i \(-0.157223\pi\)
\(978\) 0 0
\(979\) −4.74579e11 −0.516628
\(980\) 0 0
\(981\) 0 0
\(982\) 8.65169e10 0.0930368
\(983\) − 5.38400e11i − 0.576621i −0.957537 0.288311i \(-0.906906\pi\)
0.957537 0.288311i \(-0.0930936\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.23603e11i 0.553981i
\(987\) 0 0
\(988\) 1.11819e12 1.17351
\(989\) − 6.77666e11i − 0.708321i
\(990\) 0 0
\(991\) 5.65493e11 0.586317 0.293159 0.956064i \(-0.405294\pi\)
0.293159 + 0.956064i \(0.405294\pi\)
\(992\) 1.03754e12i 1.07142i
\(993\) 0 0
\(994\) 3.87453e11 0.396893
\(995\) 0 0
\(996\) 0 0
\(997\) −7.32546e11 −0.741403 −0.370702 0.928752i \(-0.620883\pi\)
−0.370702 + 0.928752i \(0.620883\pi\)
\(998\) − 3.18374e8i 0 0.000320934i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.9.c.d.26.6 12
3.2 odd 2 inner 225.9.c.d.26.7 12
5.2 odd 4 225.9.d.c.224.13 24
5.3 odd 4 225.9.d.c.224.12 24
5.4 even 2 45.9.c.a.26.7 yes 12
15.2 even 4 225.9.d.c.224.11 24
15.8 even 4 225.9.d.c.224.14 24
15.14 odd 2 45.9.c.a.26.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.9.c.a.26.6 12 15.14 odd 2
45.9.c.a.26.7 yes 12 5.4 even 2
225.9.c.d.26.6 12 1.1 even 1 trivial
225.9.c.d.26.7 12 3.2 odd 2 inner
225.9.d.c.224.11 24 15.2 even 4
225.9.d.c.224.12 24 5.3 odd 4
225.9.d.c.224.13 24 5.2 odd 4
225.9.d.c.224.14 24 15.8 even 4