Properties

Label 225.5.g.m.118.1
Level $225$
Weight $5$
Character 225.118
Analytic conductor $23.258$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,5,Mod(82,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.82"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 225.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-20,180,0,0,288,0,340,0,0,620] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2582416939\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 60x^{5} + 1973x^{4} - 3300x^{3} + 1800x^{2} + 31560x + 276676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 118.1
Root \(-5.02811 + 5.02811i\) of defining polynomial
Character \(\chi\) \(=\) 225.118
Dual form 225.5.g.m.82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.02811 + 5.02811i) q^{2} -34.5637i q^{4} +(38.5593 - 38.5593i) q^{7} +(93.3405 + 93.3405i) q^{8} +40.4333 q^{11} +(-20.8688 - 20.8688i) q^{13} +387.760i q^{14} -385.633 q^{16} +(15.8713 - 15.8713i) q^{17} +314.926i q^{19} +(-203.303 + 203.303i) q^{22} +(-572.869 - 572.869i) q^{23} +209.862 q^{26} +(-1332.75 - 1332.75i) q^{28} -824.433i q^{29} -1347.19 q^{31} +(445.555 - 445.555i) q^{32} +159.606i q^{34} +(589.843 - 589.843i) q^{37} +(-1583.48 - 1583.48i) q^{38} -1856.55 q^{41} +(671.078 + 671.078i) q^{43} -1397.53i q^{44} +5760.90 q^{46} +(504.865 - 504.865i) q^{47} -572.636i q^{49} +(-721.305 + 721.305i) q^{52} +(2251.32 + 2251.32i) q^{53} +7198.29 q^{56} +(4145.34 + 4145.34i) q^{58} -2585.03i q^{59} -3276.74 q^{61} +(6773.81 - 6773.81i) q^{62} -1689.53i q^{64} +(3428.94 - 3428.94i) q^{67} +(-548.573 - 548.573i) q^{68} +5679.51 q^{71} +(-4450.06 - 4450.06i) q^{73} +5931.59i q^{74} +10885.0 q^{76} +(1559.08 - 1559.08i) q^{77} -6465.77i q^{79} +(9334.92 - 9334.92i) q^{82} +(-621.380 - 621.380i) q^{83} -6748.50 q^{86} +(3774.07 + 3774.07i) q^{88} -1856.76i q^{89} -1609.37 q^{91} +(-19800.5 + 19800.5i) q^{92} +5077.03i q^{94} +(-12383.5 + 12383.5i) q^{97} +(2879.27 + 2879.27i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 20 q^{7} + 180 q^{8} + 288 q^{11} + 340 q^{13} + 620 q^{16} + 900 q^{17} + 1100 q^{22} - 1560 q^{23} + 3024 q^{26} - 3580 q^{28} - 512 q^{31} + 4980 q^{32} + 3820 q^{37} - 7680 q^{38} + 2712 q^{41}+ \cdots + 46440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.02811 + 5.02811i −1.25703 + 1.25703i −0.304522 + 0.952505i \(0.598497\pi\)
−0.952505 + 0.304522i \(0.901503\pi\)
\(3\) 0 0
\(4\) 34.5637i 2.16023i
\(5\) 0 0
\(6\) 0 0
\(7\) 38.5593 38.5593i 0.786924 0.786924i −0.194065 0.980989i \(-0.562167\pi\)
0.980989 + 0.194065i \(0.0621672\pi\)
\(8\) 93.3405 + 93.3405i 1.45845 + 1.45845i
\(9\) 0 0
\(10\) 0 0
\(11\) 40.4333 0.334160 0.167080 0.985943i \(-0.446566\pi\)
0.167080 + 0.985943i \(0.446566\pi\)
\(12\) 0 0
\(13\) −20.8688 20.8688i −0.123484 0.123484i 0.642664 0.766148i \(-0.277829\pi\)
−0.766148 + 0.642664i \(0.777829\pi\)
\(14\) 387.760i 1.97837i
\(15\) 0 0
\(16\) −385.633 −1.50638
\(17\) 15.8713 15.8713i 0.0549181 0.0549181i −0.679114 0.734032i \(-0.737636\pi\)
0.734032 + 0.679114i \(0.237636\pi\)
\(18\) 0 0
\(19\) 314.926i 0.872371i 0.899857 + 0.436185i \(0.143671\pi\)
−0.899857 + 0.436185i \(0.856329\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −203.303 + 203.303i −0.420048 + 0.420048i
\(23\) −572.869 572.869i −1.08293 1.08293i −0.996235 0.0866935i \(-0.972370\pi\)
−0.0866935 0.996235i \(-0.527630\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 209.862 0.310446
\(27\) 0 0
\(28\) −1332.75 1332.75i −1.69994 1.69994i
\(29\) 824.433i 0.980301i −0.871638 0.490151i \(-0.836942\pi\)
0.871638 0.490151i \(-0.163058\pi\)
\(30\) 0 0
\(31\) −1347.19 −1.40186 −0.700931 0.713229i \(-0.747232\pi\)
−0.700931 + 0.713229i \(0.747232\pi\)
\(32\) 445.555 445.555i 0.435112 0.435112i
\(33\) 0 0
\(34\) 159.606i 0.138067i
\(35\) 0 0
\(36\) 0 0
\(37\) 589.843 589.843i 0.430857 0.430857i −0.458063 0.888920i \(-0.651457\pi\)
0.888920 + 0.458063i \(0.151457\pi\)
\(38\) −1583.48 1583.48i −1.09659 1.09659i
\(39\) 0 0
\(40\) 0 0
\(41\) −1856.55 −1.10443 −0.552215 0.833702i \(-0.686217\pi\)
−0.552215 + 0.833702i \(0.686217\pi\)
\(42\) 0 0
\(43\) 671.078 + 671.078i 0.362941 + 0.362941i 0.864894 0.501954i \(-0.167385\pi\)
−0.501954 + 0.864894i \(0.667385\pi\)
\(44\) 1397.53i 0.721863i
\(45\) 0 0
\(46\) 5760.90 2.72254
\(47\) 504.865 504.865i 0.228549 0.228549i −0.583537 0.812086i \(-0.698332\pi\)
0.812086 + 0.583537i \(0.198332\pi\)
\(48\) 0 0
\(49\) 572.636i 0.238499i
\(50\) 0 0
\(51\) 0 0
\(52\) −721.305 + 721.305i −0.266755 + 0.266755i
\(53\) 2251.32 + 2251.32i 0.801468 + 0.801468i 0.983325 0.181857i \(-0.0582107\pi\)
−0.181857 + 0.983325i \(0.558211\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 7198.29 2.29537
\(57\) 0 0
\(58\) 4145.34 + 4145.34i 1.23227 + 1.23227i
\(59\) 2585.03i 0.742610i −0.928511 0.371305i \(-0.878910\pi\)
0.928511 0.371305i \(-0.121090\pi\)
\(60\) 0 0
\(61\) −3276.74 −0.880607 −0.440304 0.897849i \(-0.645129\pi\)
−0.440304 + 0.897849i \(0.645129\pi\)
\(62\) 6773.81 6773.81i 1.76218 1.76218i
\(63\) 0 0
\(64\) 1689.53i 0.412483i
\(65\) 0 0
\(66\) 0 0
\(67\) 3428.94 3428.94i 0.763854 0.763854i −0.213163 0.977017i \(-0.568376\pi\)
0.977017 + 0.213163i \(0.0683764\pi\)
\(68\) −548.573 548.573i −0.118636 0.118636i
\(69\) 0 0
\(70\) 0 0
\(71\) 5679.51 1.12666 0.563331 0.826231i \(-0.309519\pi\)
0.563331 + 0.826231i \(0.309519\pi\)
\(72\) 0 0
\(73\) −4450.06 4450.06i −0.835065 0.835065i 0.153140 0.988205i \(-0.451061\pi\)
−0.988205 + 0.153140i \(0.951061\pi\)
\(74\) 5931.59i 1.08320i
\(75\) 0 0
\(76\) 10885.0 1.88453
\(77\) 1559.08 1559.08i 0.262958 0.262958i
\(78\) 0 0
\(79\) 6465.77i 1.03602i −0.855376 0.518008i \(-0.826674\pi\)
0.855376 0.518008i \(-0.173326\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9334.92 9334.92i 1.38830 1.38830i
\(83\) −621.380 621.380i −0.0901988 0.0901988i 0.660568 0.750766i \(-0.270316\pi\)
−0.750766 + 0.660568i \(0.770316\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6748.50 −0.912453
\(87\) 0 0
\(88\) 3774.07 + 3774.07i 0.487354 + 0.487354i
\(89\) 1856.76i 0.234410i −0.993108 0.117205i \(-0.962606\pi\)
0.993108 0.117205i \(-0.0373935\pi\)
\(90\) 0 0
\(91\) −1609.37 −0.194345
\(92\) −19800.5 + 19800.5i −2.33938 + 2.33938i
\(93\) 0 0
\(94\) 5077.03i 0.574585i
\(95\) 0 0
\(96\) 0 0
\(97\) −12383.5 + 12383.5i −1.31614 + 1.31614i −0.399332 + 0.916806i \(0.630758\pi\)
−0.916806 + 0.399332i \(0.869242\pi\)
\(98\) 2879.27 + 2879.27i 0.299800 + 0.299800i
\(99\) 0 0
\(100\) 0 0
\(101\) 189.344 0.0185613 0.00928067 0.999957i \(-0.497046\pi\)
0.00928067 + 0.999957i \(0.497046\pi\)
\(102\) 0 0
\(103\) −14330.9 14330.9i −1.35083 1.35083i −0.884736 0.466092i \(-0.845662\pi\)
−0.466092 0.884736i \(-0.654338\pi\)
\(104\) 3895.82i 0.360190i
\(105\) 0 0
\(106\) −22639.8 −2.01493
\(107\) −384.065 + 384.065i −0.0335457 + 0.0335457i −0.723681 0.690135i \(-0.757551\pi\)
0.690135 + 0.723681i \(0.257551\pi\)
\(108\) 0 0
\(109\) 14104.7i 1.18717i −0.804773 0.593583i \(-0.797713\pi\)
0.804773 0.593583i \(-0.202287\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −14869.7 + 14869.7i −1.18540 + 1.18540i
\(113\) −12599.1 12599.1i −0.986693 0.986693i 0.0132199 0.999913i \(-0.495792\pi\)
−0.999913 + 0.0132199i \(0.995792\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −28495.5 −2.11768
\(117\) 0 0
\(118\) 12997.8 + 12997.8i 0.933481 + 0.933481i
\(119\) 1223.97i 0.0864328i
\(120\) 0 0
\(121\) −13006.1 −0.888337
\(122\) 16475.8 16475.8i 1.10695 1.10695i
\(123\) 0 0
\(124\) 46563.9i 3.02835i
\(125\) 0 0
\(126\) 0 0
\(127\) 10957.5 10957.5i 0.679367 0.679367i −0.280490 0.959857i \(-0.590497\pi\)
0.959857 + 0.280490i \(0.0904970\pi\)
\(128\) 15624.0 + 15624.0i 0.953614 + 0.953614i
\(129\) 0 0
\(130\) 0 0
\(131\) −10872.8 −0.633579 −0.316789 0.948496i \(-0.602605\pi\)
−0.316789 + 0.948496i \(0.602605\pi\)
\(132\) 0 0
\(133\) 12143.3 + 12143.3i 0.686489 + 0.686489i
\(134\) 34482.2i 1.92037i
\(135\) 0 0
\(136\) 2962.88 0.160190
\(137\) −3387.27 + 3387.27i −0.180471 + 0.180471i −0.791561 0.611090i \(-0.790731\pi\)
0.611090 + 0.791561i \(0.290731\pi\)
\(138\) 0 0
\(139\) 6096.09i 0.315516i 0.987478 + 0.157758i \(0.0504266\pi\)
−0.987478 + 0.157758i \(0.949573\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −28557.2 + 28557.2i −1.41625 + 1.41625i
\(143\) −843.796 843.796i −0.0412634 0.0412634i
\(144\) 0 0
\(145\) 0 0
\(146\) 44750.8 2.09940
\(147\) 0 0
\(148\) −20387.2 20387.2i −0.930752 0.930752i
\(149\) 41060.3i 1.84948i −0.380600 0.924740i \(-0.624282\pi\)
0.380600 0.924740i \(-0.375718\pi\)
\(150\) 0 0
\(151\) 12096.5 0.530523 0.265262 0.964176i \(-0.414542\pi\)
0.265262 + 0.964176i \(0.414542\pi\)
\(152\) −29395.3 + 29395.3i −1.27231 + 1.27231i
\(153\) 0 0
\(154\) 15678.4i 0.661091i
\(155\) 0 0
\(156\) 0 0
\(157\) 21184.3 21184.3i 0.859440 0.859440i −0.131832 0.991272i \(-0.542086\pi\)
0.991272 + 0.131832i \(0.0420859\pi\)
\(158\) 32510.6 + 32510.6i 1.30230 + 1.30230i
\(159\) 0 0
\(160\) 0 0
\(161\) −44178.8 −1.70436
\(162\) 0 0
\(163\) −3953.29 3953.29i −0.148793 0.148793i 0.628786 0.777579i \(-0.283552\pi\)
−0.777579 + 0.628786i \(0.783552\pi\)
\(164\) 64169.2i 2.38583i
\(165\) 0 0
\(166\) 6248.73 0.226765
\(167\) −7863.94 + 7863.94i −0.281973 + 0.281973i −0.833895 0.551922i \(-0.813894\pi\)
0.551922 + 0.833895i \(0.313894\pi\)
\(168\) 0 0
\(169\) 27690.0i 0.969503i
\(170\) 0 0
\(171\) 0 0
\(172\) 23195.0 23195.0i 0.784037 0.784037i
\(173\) −20563.0 20563.0i −0.687059 0.687059i 0.274522 0.961581i \(-0.411480\pi\)
−0.961581 + 0.274522i \(0.911480\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −15592.4 −0.503371
\(177\) 0 0
\(178\) 9336.01 + 9336.01i 0.294660 + 0.294660i
\(179\) 11578.3i 0.361360i 0.983542 + 0.180680i \(0.0578298\pi\)
−0.983542 + 0.180680i \(0.942170\pi\)
\(180\) 0 0
\(181\) 15410.3 0.470385 0.235193 0.971949i \(-0.424428\pi\)
0.235193 + 0.971949i \(0.424428\pi\)
\(182\) 8092.11 8092.11i 0.244298 0.244298i
\(183\) 0 0
\(184\) 106944.i 3.15879i
\(185\) 0 0
\(186\) 0 0
\(187\) 641.731 641.731i 0.0183514 0.0183514i
\(188\) −17450.0 17450.0i −0.493720 0.493720i
\(189\) 0 0
\(190\) 0 0
\(191\) 8129.00 0.222828 0.111414 0.993774i \(-0.464462\pi\)
0.111414 + 0.993774i \(0.464462\pi\)
\(192\) 0 0
\(193\) 28495.5 + 28495.5i 0.765001 + 0.765001i 0.977222 0.212220i \(-0.0680695\pi\)
−0.212220 + 0.977222i \(0.568069\pi\)
\(194\) 124532.i 3.30884i
\(195\) 0 0
\(196\) −19792.4 −0.515213
\(197\) −14908.5 + 14908.5i −0.384150 + 0.384150i −0.872595 0.488445i \(-0.837564\pi\)
0.488445 + 0.872595i \(0.337564\pi\)
\(198\) 0 0
\(199\) 3870.42i 0.0977353i 0.998805 + 0.0488677i \(0.0155613\pi\)
−0.998805 + 0.0488677i \(0.984439\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −952.043 + 952.043i −0.0233321 + 0.0233321i
\(203\) −31789.6 31789.6i −0.771423 0.771423i
\(204\) 0 0
\(205\) 0 0
\(206\) 144115. 3.39606
\(207\) 0 0
\(208\) 8047.71 + 8047.71i 0.186014 + 0.186014i
\(209\) 12733.5i 0.291511i
\(210\) 0 0
\(211\) −17666.9 −0.396822 −0.198411 0.980119i \(-0.563578\pi\)
−0.198411 + 0.980119i \(0.563578\pi\)
\(212\) 77814.2 77814.2i 1.73136 1.73136i
\(213\) 0 0
\(214\) 3862.24i 0.0843358i
\(215\) 0 0
\(216\) 0 0
\(217\) −51946.6 + 51946.6i −1.10316 + 1.10316i
\(218\) 70920.0 + 70920.0i 1.49230 + 1.49230i
\(219\) 0 0
\(220\) 0 0
\(221\) −662.433 −0.0135630
\(222\) 0 0
\(223\) −10730.0 10730.0i −0.215768 0.215768i 0.590944 0.806713i \(-0.298755\pi\)
−0.806713 + 0.590944i \(0.798755\pi\)
\(224\) 34360.5i 0.684800i
\(225\) 0 0
\(226\) 126699. 2.48060
\(227\) −34199.9 + 34199.9i −0.663703 + 0.663703i −0.956251 0.292548i \(-0.905497\pi\)
0.292548 + 0.956251i \(0.405497\pi\)
\(228\) 0 0
\(229\) 73430.0i 1.40024i 0.714026 + 0.700120i \(0.246870\pi\)
−0.714026 + 0.700120i \(0.753130\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 76953.1 76953.1i 1.42972 1.42972i
\(233\) 18203.1 + 18203.1i 0.335300 + 0.335300i 0.854595 0.519295i \(-0.173805\pi\)
−0.519295 + 0.854595i \(0.673805\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −89348.2 −1.60421
\(237\) 0 0
\(238\) 6154.28 + 6154.28i 0.108648 + 0.108648i
\(239\) 102775.i 1.79925i 0.436661 + 0.899626i \(0.356161\pi\)
−0.436661 + 0.899626i \(0.643839\pi\)
\(240\) 0 0
\(241\) 69403.6 1.19495 0.597473 0.801889i \(-0.296172\pi\)
0.597473 + 0.801889i \(0.296172\pi\)
\(242\) 65396.3 65396.3i 1.11666 1.11666i
\(243\) 0 0
\(244\) 113256.i 1.90232i
\(245\) 0 0
\(246\) 0 0
\(247\) 6572.14 6572.14i 0.107724 0.107724i
\(248\) −125747. 125747.i −2.04454 2.04454i
\(249\) 0 0
\(250\) 0 0
\(251\) 40858.0 0.648530 0.324265 0.945966i \(-0.394883\pi\)
0.324265 + 0.945966i \(0.394883\pi\)
\(252\) 0 0
\(253\) −23163.0 23163.0i −0.361871 0.361871i
\(254\) 110191.i 1.70796i
\(255\) 0 0
\(256\) −130086. −1.98495
\(257\) 53271.7 53271.7i 0.806548 0.806548i −0.177562 0.984110i \(-0.556821\pi\)
0.984110 + 0.177562i \(0.0568211\pi\)
\(258\) 0 0
\(259\) 45487.9i 0.678103i
\(260\) 0 0
\(261\) 0 0
\(262\) 54669.8 54669.8i 0.796425 0.796425i
\(263\) 47788.6 + 47788.6i 0.690896 + 0.690896i 0.962429 0.271533i \(-0.0875306\pi\)
−0.271533 + 0.962429i \(0.587531\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −122116. −1.72587
\(267\) 0 0
\(268\) −118517. 118517.i −1.65010 1.65010i
\(269\) 130832.i 1.80805i −0.427483 0.904023i \(-0.640600\pi\)
0.427483 0.904023i \(-0.359400\pi\)
\(270\) 0 0
\(271\) −116029. −1.57989 −0.789945 0.613178i \(-0.789891\pi\)
−0.789945 + 0.613178i \(0.789891\pi\)
\(272\) −6120.51 + 6120.51i −0.0827274 + 0.0827274i
\(273\) 0 0
\(274\) 34063.1i 0.453715i
\(275\) 0 0
\(276\) 0 0
\(277\) −41111.1 + 41111.1i −0.535796 + 0.535796i −0.922291 0.386495i \(-0.873686\pi\)
0.386495 + 0.922291i \(0.373686\pi\)
\(278\) −30651.8 30651.8i −0.396613 0.396613i
\(279\) 0 0
\(280\) 0 0
\(281\) 61086.4 0.773627 0.386814 0.922158i \(-0.373576\pi\)
0.386814 + 0.922158i \(0.373576\pi\)
\(282\) 0 0
\(283\) −54739.9 54739.9i −0.683489 0.683489i 0.277296 0.960785i \(-0.410562\pi\)
−0.960785 + 0.277296i \(0.910562\pi\)
\(284\) 196305.i 2.43386i
\(285\) 0 0
\(286\) 8485.40 0.103739
\(287\) −71587.1 + 71587.1i −0.869103 + 0.869103i
\(288\) 0 0
\(289\) 83017.2i 0.993968i
\(290\) 0 0
\(291\) 0 0
\(292\) −153811. + 153811.i −1.80394 + 1.80394i
\(293\) −33601.9 33601.9i −0.391406 0.391406i 0.483782 0.875189i \(-0.339263\pi\)
−0.875189 + 0.483782i \(0.839263\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 110113. 1.25676
\(297\) 0 0
\(298\) 206456. + 206456.i 2.32485 + 2.32485i
\(299\) 23910.2i 0.267449i
\(300\) 0 0
\(301\) 51752.5 0.571214
\(302\) −60822.3 + 60822.3i −0.666882 + 0.666882i
\(303\) 0 0
\(304\) 121446.i 1.31412i
\(305\) 0 0
\(306\) 0 0
\(307\) −84437.4 + 84437.4i −0.895897 + 0.895897i −0.995070 0.0991732i \(-0.968380\pi\)
0.0991732 + 0.995070i \(0.468380\pi\)
\(308\) −53887.6 53887.6i −0.568051 0.568051i
\(309\) 0 0
\(310\) 0 0
\(311\) −93477.0 −0.966460 −0.483230 0.875493i \(-0.660537\pi\)
−0.483230 + 0.875493i \(0.660537\pi\)
\(312\) 0 0
\(313\) 6979.59 + 6979.59i 0.0712429 + 0.0712429i 0.741830 0.670588i \(-0.233958\pi\)
−0.670588 + 0.741830i \(0.733958\pi\)
\(314\) 213034.i 2.16068i
\(315\) 0 0
\(316\) −223481. −2.23804
\(317\) 41396.6 41396.6i 0.411951 0.411951i −0.470467 0.882418i \(-0.655914\pi\)
0.882418 + 0.470467i \(0.155914\pi\)
\(318\) 0 0
\(319\) 33334.6i 0.327577i
\(320\) 0 0
\(321\) 0 0
\(322\) 222136. 222136.i 2.14243 2.14243i
\(323\) 4998.29 + 4998.29i 0.0479090 + 0.0479090i
\(324\) 0 0
\(325\) 0 0
\(326\) 39755.1 0.374074
\(327\) 0 0
\(328\) −173291. 173291.i −1.61075 1.61075i
\(329\) 38934.5i 0.359702i
\(330\) 0 0
\(331\) 65879.3 0.601303 0.300651 0.953734i \(-0.402796\pi\)
0.300651 + 0.953734i \(0.402796\pi\)
\(332\) −21477.2 + 21477.2i −0.194851 + 0.194851i
\(333\) 0 0
\(334\) 79081.5i 0.708895i
\(335\) 0 0
\(336\) 0 0
\(337\) −18022.9 + 18022.9i −0.158696 + 0.158696i −0.781989 0.623293i \(-0.785795\pi\)
0.623293 + 0.781989i \(0.285795\pi\)
\(338\) 139228. + 139228.i 1.21869 + 1.21869i
\(339\) 0 0
\(340\) 0 0
\(341\) −54471.3 −0.468445
\(342\) 0 0
\(343\) 70500.4 + 70500.4i 0.599244 + 0.599244i
\(344\) 125277.i 1.05866i
\(345\) 0 0
\(346\) 206786. 1.72730
\(347\) −32583.8 + 32583.8i −0.270610 + 0.270610i −0.829346 0.558736i \(-0.811287\pi\)
0.558736 + 0.829346i \(0.311287\pi\)
\(348\) 0 0
\(349\) 54340.9i 0.446145i 0.974802 + 0.223072i \(0.0716086\pi\)
−0.974802 + 0.223072i \(0.928391\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18015.2 18015.2i 0.145397 0.145397i
\(353\) −11345.9 11345.9i −0.0910524 0.0910524i 0.660114 0.751166i \(-0.270508\pi\)
−0.751166 + 0.660114i \(0.770508\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −64176.7 −0.506381
\(357\) 0 0
\(358\) −58217.1 58217.1i −0.454239 0.454239i
\(359\) 26830.8i 0.208183i −0.994568 0.104091i \(-0.966807\pi\)
0.994568 0.104091i \(-0.0331934\pi\)
\(360\) 0 0
\(361\) 31142.7 0.238969
\(362\) −77484.6 + 77484.6i −0.591287 + 0.591287i
\(363\) 0 0
\(364\) 55626.0i 0.419832i
\(365\) 0 0
\(366\) 0 0
\(367\) 112367. 112367.i 0.834267 0.834267i −0.153830 0.988097i \(-0.549161\pi\)
0.988097 + 0.153830i \(0.0491609\pi\)
\(368\) 220917. + 220917.i 1.63130 + 1.63130i
\(369\) 0 0
\(370\) 0 0
\(371\) 173619. 1.26139
\(372\) 0 0
\(373\) 16877.0 + 16877.0i 0.121305 + 0.121305i 0.765153 0.643848i \(-0.222663\pi\)
−0.643848 + 0.765153i \(0.722663\pi\)
\(374\) 6453.38i 0.0461364i
\(375\) 0 0
\(376\) 94248.7 0.666653
\(377\) −17205.0 + 17205.0i −0.121052 + 0.121052i
\(378\) 0 0
\(379\) 50523.2i 0.351733i 0.984414 + 0.175866i \(0.0562726\pi\)
−0.984414 + 0.175866i \(0.943727\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −40873.5 + 40873.5i −0.280101 + 0.280101i
\(383\) 17592.0 + 17592.0i 0.119927 + 0.119927i 0.764523 0.644596i \(-0.222974\pi\)
−0.644596 + 0.764523i \(0.722974\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −286557. −1.92325
\(387\) 0 0
\(388\) 428022. + 428022.i 2.84317 + 2.84317i
\(389\) 6343.53i 0.0419210i −0.999780 0.0209605i \(-0.993328\pi\)
0.999780 0.0209605i \(-0.00667242\pi\)
\(390\) 0 0
\(391\) −18184.4 −0.118945
\(392\) 53450.1 53450.1i 0.347838 0.347838i
\(393\) 0 0
\(394\) 149923.i 0.965773i
\(395\) 0 0
\(396\) 0 0
\(397\) 145003. 145003.i 0.920018 0.920018i −0.0770121 0.997030i \(-0.524538\pi\)
0.997030 + 0.0770121i \(0.0245380\pi\)
\(398\) −19460.9 19460.9i −0.122856 0.122856i
\(399\) 0 0
\(400\) 0 0
\(401\) 299021. 1.85957 0.929786 0.368100i \(-0.119992\pi\)
0.929786 + 0.368100i \(0.119992\pi\)
\(402\) 0 0
\(403\) 28114.3 + 28114.3i 0.173108 + 0.173108i
\(404\) 6544.44i 0.0400968i
\(405\) 0 0
\(406\) 319683. 1.93940
\(407\) 23849.3 23849.3i 0.143975 0.143975i
\(408\) 0 0
\(409\) 17363.2i 0.103796i 0.998652 + 0.0518982i \(0.0165271\pi\)
−0.998652 + 0.0518982i \(0.983473\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −495331. + 495331.i −2.91811 + 2.91811i
\(413\) −99676.8 99676.8i −0.584378 0.584378i
\(414\) 0 0
\(415\) 0 0
\(416\) −18596.4 −0.107459
\(417\) 0 0
\(418\) −64025.4 64025.4i −0.366437 0.366437i
\(419\) 36236.3i 0.206403i 0.994660 + 0.103201i \(0.0329086\pi\)
−0.994660 + 0.103201i \(0.967091\pi\)
\(420\) 0 0
\(421\) −121899. −0.687761 −0.343881 0.939013i \(-0.611742\pi\)
−0.343881 + 0.939013i \(0.611742\pi\)
\(422\) 88831.2 88831.2i 0.498817 0.498817i
\(423\) 0 0
\(424\) 420280.i 2.33780i
\(425\) 0 0
\(426\) 0 0
\(427\) −126349. + 126349.i −0.692971 + 0.692971i
\(428\) 13274.7 + 13274.7i 0.0724666 + 0.0724666i
\(429\) 0 0
\(430\) 0 0
\(431\) −330169. −1.77739 −0.888693 0.458504i \(-0.848386\pi\)
−0.888693 + 0.458504i \(0.848386\pi\)
\(432\) 0 0
\(433\) −140458. 140458.i −0.749151 0.749151i 0.225169 0.974320i \(-0.427707\pi\)
−0.974320 + 0.225169i \(0.927707\pi\)
\(434\) 522387.i 2.77340i
\(435\) 0 0
\(436\) −487512. −2.56455
\(437\) 180411. 180411.i 0.944715 0.944715i
\(438\) 0 0
\(439\) 25797.9i 0.133861i −0.997758 0.0669306i \(-0.978679\pi\)
0.997758 0.0669306i \(-0.0213206\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3330.78 3330.78i 0.0170491 0.0170491i
\(443\) 131776. + 131776.i 0.671473 + 0.671473i 0.958056 0.286583i \(-0.0925193\pi\)
−0.286583 + 0.958056i \(0.592519\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 107903. 0.542454
\(447\) 0 0
\(448\) −65147.1 65147.1i −0.324593 0.324593i
\(449\) 133600.i 0.662697i 0.943508 + 0.331349i \(0.107504\pi\)
−0.943508 + 0.331349i \(0.892496\pi\)
\(450\) 0 0
\(451\) −75066.4 −0.369056
\(452\) −435471. + 435471.i −2.13149 + 2.13149i
\(453\) 0 0
\(454\) 343922.i 1.66858i
\(455\) 0 0
\(456\) 0 0
\(457\) 147483. 147483.i 0.706170 0.706170i −0.259558 0.965728i \(-0.583577\pi\)
0.965728 + 0.259558i \(0.0835768\pi\)
\(458\) −369214. 369214.i −1.76014 1.76014i
\(459\) 0 0
\(460\) 0 0
\(461\) −206578. −0.972034 −0.486017 0.873949i \(-0.661551\pi\)
−0.486017 + 0.873949i \(0.661551\pi\)
\(462\) 0 0
\(463\) 156702. + 156702.i 0.730990 + 0.730990i 0.970816 0.239826i \(-0.0770904\pi\)
−0.239826 + 0.970816i \(0.577090\pi\)
\(464\) 317928.i 1.47670i
\(465\) 0 0
\(466\) −183055. −0.842963
\(467\) −100008. + 100008.i −0.458566 + 0.458566i −0.898184 0.439619i \(-0.855114\pi\)
0.439619 + 0.898184i \(0.355114\pi\)
\(468\) 0 0
\(469\) 264435.i 1.20219i
\(470\) 0 0
\(471\) 0 0
\(472\) 241288. 241288.i 1.08306 1.08306i
\(473\) 27133.9 + 27133.9i 0.121280 + 0.121280i
\(474\) 0 0
\(475\) 0 0
\(476\) −42305.1 −0.186715
\(477\) 0 0
\(478\) −516764. 516764.i −2.26171 2.26171i
\(479\) 124818.i 0.544010i −0.962296 0.272005i \(-0.912313\pi\)
0.962296 0.272005i \(-0.0876867\pi\)
\(480\) 0 0
\(481\) −24618.7 −0.106408
\(482\) −348969. + 348969.i −1.50208 + 1.50208i
\(483\) 0 0
\(484\) 449541.i 1.91902i
\(485\) 0 0
\(486\) 0 0
\(487\) 106165. 106165.i 0.447635 0.447635i −0.446932 0.894568i \(-0.647484\pi\)
0.894568 + 0.446932i \(0.147484\pi\)
\(488\) −305853. 305853.i −1.28432 1.28432i
\(489\) 0 0
\(490\) 0 0
\(491\) −185092. −0.767758 −0.383879 0.923383i \(-0.625412\pi\)
−0.383879 + 0.923383i \(0.625412\pi\)
\(492\) 0 0
\(493\) −13084.9 13084.9i −0.0538363 0.0538363i
\(494\) 66090.8i 0.270824i
\(495\) 0 0
\(496\) 519520. 2.11173
\(497\) 218998. 218998.i 0.886598 0.886598i
\(498\) 0 0
\(499\) 482480.i 1.93766i −0.247723 0.968831i \(-0.579682\pi\)
0.247723 0.968831i \(-0.420318\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −205439. + 205439.i −0.815220 + 0.815220i
\(503\) 224311. + 224311.i 0.886572 + 0.886572i 0.994192 0.107620i \(-0.0343230\pi\)
−0.107620 + 0.994192i \(0.534323\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 232932. 0.909763
\(507\) 0 0
\(508\) −378732. 378732.i −1.46759 1.46759i
\(509\) 390482.i 1.50718i 0.657344 + 0.753591i \(0.271680\pi\)
−0.657344 + 0.753591i \(0.728320\pi\)
\(510\) 0 0
\(511\) −343182. −1.31426
\(512\) 404102. 404102.i 1.54153 1.54153i
\(513\) 0 0
\(514\) 535711.i 2.02770i
\(515\) 0 0
\(516\) 0 0
\(517\) 20413.4 20413.4i 0.0763719 0.0763719i
\(518\) 228718. + 228718.i 0.852394 + 0.852394i
\(519\) 0 0
\(520\) 0 0
\(521\) 71234.7 0.262432 0.131216 0.991354i \(-0.458112\pi\)
0.131216 + 0.991354i \(0.458112\pi\)
\(522\) 0 0
\(523\) 26895.3 + 26895.3i 0.0983272 + 0.0983272i 0.754559 0.656232i \(-0.227851\pi\)
−0.656232 + 0.754559i \(0.727851\pi\)
\(524\) 375806.i 1.36868i
\(525\) 0 0
\(526\) −480573. −1.73695
\(527\) −21381.7 + 21381.7i −0.0769876 + 0.0769876i
\(528\) 0 0
\(529\) 376517.i 1.34547i
\(530\) 0 0
\(531\) 0 0
\(532\) 419718. 419718.i 1.48298 1.48298i
\(533\) 38744.0 + 38744.0i 0.136380 + 0.136380i
\(534\) 0 0
\(535\) 0 0
\(536\) 640119. 2.22808
\(537\) 0 0
\(538\) 657838. + 657838.i 2.27276 + 2.27276i
\(539\) 23153.6i 0.0796967i
\(540\) 0 0
\(541\) 293490. 1.00276 0.501382 0.865226i \(-0.332825\pi\)
0.501382 + 0.865226i \(0.332825\pi\)
\(542\) 583405. 583405.i 1.98596 1.98596i
\(543\) 0 0
\(544\) 14143.1i 0.0477911i
\(545\) 0 0
\(546\) 0 0
\(547\) −178128. + 178128.i −0.595330 + 0.595330i −0.939066 0.343736i \(-0.888307\pi\)
0.343736 + 0.939066i \(0.388307\pi\)
\(548\) 117077. + 117077.i 0.389860 + 0.389860i
\(549\) 0 0
\(550\) 0 0
\(551\) 259635. 0.855186
\(552\) 0 0
\(553\) −249316. 249316.i −0.815266 0.815266i
\(554\) 413422.i 1.34702i
\(555\) 0 0
\(556\) 210704. 0.681589
\(557\) 122805. 122805.i 0.395827 0.395827i −0.480931 0.876758i \(-0.659701\pi\)
0.876758 + 0.480931i \(0.159701\pi\)
\(558\) 0 0
\(559\) 28009.2i 0.0896349i
\(560\) 0 0
\(561\) 0 0
\(562\) −307149. + 307149.i −0.972470 + 0.972470i
\(563\) −86662.0 86662.0i −0.273408 0.273408i 0.557062 0.830471i \(-0.311928\pi\)
−0.830471 + 0.557062i \(0.811928\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 550477. 1.71833
\(567\) 0 0
\(568\) 530128. + 530128.i 1.64318 + 1.64318i
\(569\) 358179.i 1.10631i −0.833080 0.553153i \(-0.813425\pi\)
0.833080 0.553153i \(-0.186575\pi\)
\(570\) 0 0
\(571\) 420094. 1.28847 0.644234 0.764828i \(-0.277176\pi\)
0.644234 + 0.764828i \(0.277176\pi\)
\(572\) −29164.8 + 29164.8i −0.0891387 + 0.0891387i
\(573\) 0 0
\(574\) 719896.i 2.18497i
\(575\) 0 0
\(576\) 0 0
\(577\) 167153. 167153.i 0.502068 0.502068i −0.410012 0.912080i \(-0.634476\pi\)
0.912080 + 0.410012i \(0.134476\pi\)
\(578\) −417419. 417419.i −1.24944 1.24944i
\(579\) 0 0
\(580\) 0 0
\(581\) −47919.9 −0.141959
\(582\) 0 0
\(583\) 91028.5 + 91028.5i 0.267818 + 0.267818i
\(584\) 830742.i 2.43579i
\(585\) 0 0
\(586\) 337908. 0.984017
\(587\) −43094.6 + 43094.6i −0.125068 + 0.125068i −0.766870 0.641802i \(-0.778187\pi\)
0.641802 + 0.766870i \(0.278187\pi\)
\(588\) 0 0
\(589\) 424265.i 1.22294i
\(590\) 0 0
\(591\) 0 0
\(592\) −227463. + 227463.i −0.649033 + 0.649033i
\(593\) −114499. 114499.i −0.325605 0.325605i 0.525307 0.850912i \(-0.323950\pi\)
−0.850912 + 0.525307i \(0.823950\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.41920e6 −3.99531
\(597\) 0 0
\(598\) −120223. 120223.i −0.336191 0.336191i
\(599\) 282109.i 0.786254i 0.919484 + 0.393127i \(0.128607\pi\)
−0.919484 + 0.393127i \(0.871393\pi\)
\(600\) 0 0
\(601\) −155225. −0.429747 −0.214874 0.976642i \(-0.568934\pi\)
−0.214874 + 0.976642i \(0.568934\pi\)
\(602\) −260217. + 260217.i −0.718031 + 0.718031i
\(603\) 0 0
\(604\) 418099.i 1.14605i
\(605\) 0 0
\(606\) 0 0
\(607\) 262539. 262539.i 0.712553 0.712553i −0.254516 0.967069i \(-0.581916\pi\)
0.967069 + 0.254516i \(0.0819160\pi\)
\(608\) 140317. + 140317.i 0.379579 + 0.379579i
\(609\) 0 0
\(610\) 0 0
\(611\) −21071.9 −0.0564444
\(612\) 0 0
\(613\) 98919.2 + 98919.2i 0.263245 + 0.263245i 0.826371 0.563126i \(-0.190402\pi\)
−0.563126 + 0.826371i \(0.690402\pi\)
\(614\) 849121.i 2.25233i
\(615\) 0 0
\(616\) 291051. 0.767021
\(617\) −440524. + 440524.i −1.15717 + 1.15717i −0.172095 + 0.985080i \(0.555053\pi\)
−0.985080 + 0.172095i \(0.944947\pi\)
\(618\) 0 0
\(619\) 468975.i 1.22396i 0.790871 + 0.611982i \(0.209628\pi\)
−0.790871 + 0.611982i \(0.790372\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 470012. 470012.i 1.21487 1.21487i
\(623\) −71595.5 71595.5i −0.184463 0.184463i
\(624\) 0 0
\(625\) 0 0
\(626\) −70188.3 −0.179108
\(627\) 0 0
\(628\) −732210. 732210.i −1.85659 1.85659i
\(629\) 18723.2i 0.0473237i
\(630\) 0 0
\(631\) 327190. 0.821752 0.410876 0.911691i \(-0.365223\pi\)
0.410876 + 0.911691i \(0.365223\pi\)
\(632\) 603519. 603519.i 1.51097 1.51097i
\(633\) 0 0
\(634\) 416293.i 1.03567i
\(635\) 0 0
\(636\) 0 0
\(637\) −11950.2 + 11950.2i −0.0294509 + 0.0294509i
\(638\) 167610. + 167610.i 0.411773 + 0.411773i
\(639\) 0 0
\(640\) 0 0
\(641\) 584738. 1.42313 0.711567 0.702619i \(-0.247986\pi\)
0.711567 + 0.702619i \(0.247986\pi\)
\(642\) 0 0
\(643\) 202062. + 202062.i 0.488723 + 0.488723i 0.907903 0.419180i \(-0.137682\pi\)
−0.419180 + 0.907903i \(0.637682\pi\)
\(644\) 1.52699e6i 3.68183i
\(645\) 0 0
\(646\) −50263.9 −0.120446
\(647\) 119543. 119543.i 0.285573 0.285573i −0.549754 0.835327i \(-0.685278\pi\)
0.835327 + 0.549754i \(0.185278\pi\)
\(648\) 0 0
\(649\) 104521.i 0.248150i
\(650\) 0 0
\(651\) 0 0
\(652\) −136640. + 136640.i −0.321428 + 0.321428i
\(653\) −279985. 279985.i −0.656611 0.656611i 0.297965 0.954577i \(-0.403692\pi\)
−0.954577 + 0.297965i \(0.903692\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 715946. 1.66369
\(657\) 0 0
\(658\) 195767. + 195767.i 0.452155 + 0.452155i
\(659\) 171782.i 0.395555i −0.980247 0.197778i \(-0.936628\pi\)
0.980247 0.197778i \(-0.0633724\pi\)
\(660\) 0 0
\(661\) 566188. 1.29586 0.647929 0.761701i \(-0.275635\pi\)
0.647929 + 0.761701i \(0.275635\pi\)
\(662\) −331248. + 331248.i −0.755854 + 0.755854i
\(663\) 0 0
\(664\) 116000.i 0.263100i
\(665\) 0 0
\(666\) 0 0
\(667\) −472292. + 472292.i −1.06160 + 1.06160i
\(668\) 271807. + 271807.i 0.609128 + 0.609128i
\(669\) 0 0
\(670\) 0 0
\(671\) −132489. −0.294263
\(672\) 0 0
\(673\) 115466. + 115466.i 0.254932 + 0.254932i 0.822989 0.568057i \(-0.192305\pi\)
−0.568057 + 0.822989i \(0.692305\pi\)
\(674\) 181243.i 0.398970i
\(675\) 0 0
\(676\) −957070. −2.09435
\(677\) 255557. 255557.i 0.557584 0.557584i −0.371035 0.928619i \(-0.620997\pi\)
0.928619 + 0.371035i \(0.120997\pi\)
\(678\) 0 0
\(679\) 955001.i 2.07140i
\(680\) 0 0
\(681\) 0 0
\(682\) 273888. 273888.i 0.588849 0.588849i
\(683\) 97131.8 + 97131.8i 0.208219 + 0.208219i 0.803510 0.595291i \(-0.202963\pi\)
−0.595291 + 0.803510i \(0.702963\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −708967. −1.50653
\(687\) 0 0
\(688\) −258789. 258789.i −0.546726 0.546726i
\(689\) 93965.1i 0.197937i
\(690\) 0 0
\(691\) −40145.6 −0.0840778 −0.0420389 0.999116i \(-0.513385\pi\)
−0.0420389 + 0.999116i \(0.513385\pi\)
\(692\) −710734. + 710734.i −1.48421 + 1.48421i
\(693\) 0 0
\(694\) 327670.i 0.680327i
\(695\) 0 0
\(696\) 0 0
\(697\) −29465.9 + 29465.9i −0.0606532 + 0.0606532i
\(698\) −273232. 273232.i −0.560816 0.560816i
\(699\) 0 0
\(700\) 0 0
\(701\) −225909. −0.459724 −0.229862 0.973223i \(-0.573828\pi\)
−0.229862 + 0.973223i \(0.573828\pi\)
\(702\) 0 0
\(703\) 185757. + 185757.i 0.375867 + 0.375867i
\(704\) 68313.3i 0.137835i
\(705\) 0 0
\(706\) 114097. 0.228911
\(707\) 7300.97 7300.97i 0.0146064 0.0146064i
\(708\) 0 0
\(709\) 459779.i 0.914654i −0.889299 0.457327i \(-0.848807\pi\)
0.889299 0.457327i \(-0.151193\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 173311. 173311.i 0.341875 0.341875i
\(713\) 771763. + 771763.i 1.51812 + 1.51812i
\(714\) 0 0
\(715\) 0 0
\(716\) 400191. 0.780622
\(717\) 0 0
\(718\) 134908. + 134908.i 0.261691 + 0.261691i
\(719\) 633365.i 1.22517i 0.790405 + 0.612585i \(0.209870\pi\)
−0.790405 + 0.612585i \(0.790130\pi\)
\(720\) 0 0
\(721\) −1.10518e6 −2.12600
\(722\) −156589. + 156589.i −0.300391 + 0.300391i
\(723\) 0 0
\(724\) 532637.i 1.01614i
\(725\) 0 0
\(726\) 0 0
\(727\) −483916. + 483916.i −0.915590 + 0.915590i −0.996705 0.0811152i \(-0.974152\pi\)
0.0811152 + 0.996705i \(0.474152\pi\)
\(728\) −150220. 150220.i −0.283442 0.283442i
\(729\) 0 0
\(730\) 0 0
\(731\) 21301.8 0.0398641
\(732\) 0 0
\(733\) 79446.4 + 79446.4i 0.147865 + 0.147865i 0.777164 0.629298i \(-0.216658\pi\)
−0.629298 + 0.777164i \(0.716658\pi\)
\(734\) 1.12998e6i 2.09739i
\(735\) 0 0
\(736\) −510489. −0.942390
\(737\) 138643. 138643.i 0.255249 0.255249i
\(738\) 0 0
\(739\) 885328.i 1.62112i 0.585655 + 0.810561i \(0.300837\pi\)
−0.585655 + 0.810561i \(0.699163\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −872975. + 872975.i −1.58560 + 1.58560i
\(743\) 693877. + 693877.i 1.25691 + 1.25691i 0.952560 + 0.304352i \(0.0984400\pi\)
0.304352 + 0.952560i \(0.401560\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −169719. −0.304967
\(747\) 0 0
\(748\) −22180.6 22180.6i −0.0396434 0.0396434i
\(749\) 29618.5i 0.0527959i
\(750\) 0 0
\(751\) −1.03267e6 −1.83097 −0.915487 0.402347i \(-0.868194\pi\)
−0.915487 + 0.402347i \(0.868194\pi\)
\(752\) −194692. + 194692.i −0.344281 + 0.344281i
\(753\) 0 0
\(754\) 173017.i 0.304331i
\(755\) 0 0
\(756\) 0 0
\(757\) 366937. 366937.i 0.640323 0.640323i −0.310312 0.950635i \(-0.600433\pi\)
0.950635 + 0.310312i \(0.100433\pi\)
\(758\) −254036. 254036.i −0.442137 0.442137i
\(759\) 0 0
\(760\) 0 0
\(761\) 721432. 1.24574 0.622868 0.782327i \(-0.285967\pi\)
0.622868 + 0.782327i \(0.285967\pi\)
\(762\) 0 0
\(763\) −543867. 543867.i −0.934209 0.934209i
\(764\) 280969.i 0.481361i
\(765\) 0 0
\(766\) −176909. −0.301504
\(767\) −53946.5 + 53946.5i −0.0917007 + 0.0917007i
\(768\) 0 0
\(769\) 543034.i 0.918279i 0.888364 + 0.459139i \(0.151842\pi\)
−0.888364 + 0.459139i \(0.848158\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 984913. 984913.i 1.65258 1.65258i
\(773\) −501793. 501793.i −0.839780 0.839780i 0.149050 0.988830i \(-0.452378\pi\)
−0.988830 + 0.149050i \(0.952378\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2.31177e6 −3.83903
\(777\) 0 0
\(778\) 31895.9 + 31895.9i 0.0526958 + 0.0526958i
\(779\) 584675.i 0.963473i
\(780\) 0 0
\(781\) 229641. 0.376485
\(782\) 91433.1 91433.1i 0.149517 0.149517i
\(783\) 0 0
\(784\) 220827.i 0.359269i
\(785\) 0 0
\(786\) 0 0
\(787\) 219605. 219605.i 0.354562 0.354562i −0.507242 0.861804i \(-0.669335\pi\)
0.861804 + 0.507242i \(0.169335\pi\)
\(788\) 515293. + 515293.i 0.829854 + 0.829854i
\(789\) 0 0
\(790\) 0 0
\(791\) −971623. −1.55290
\(792\) 0 0
\(793\) 68381.7 + 68381.7i 0.108741 + 0.108741i
\(794\) 1.45818e6i 2.31298i
\(795\) 0 0
\(796\) 133776. 0.211131
\(797\) −311150. + 311150.i −0.489839 + 0.489839i −0.908255 0.418416i \(-0.862585\pi\)
0.418416 + 0.908255i \(0.362585\pi\)
\(798\) 0 0
\(799\) 16025.8i 0.0251030i
\(800\) 0 0
\(801\) 0 0
\(802\) −1.50351e6 + 1.50351e6i −2.33753 + 2.33753i
\(803\) −179931. 179931.i −0.279045 0.279045i
\(804\) 0 0
\(805\) 0 0
\(806\) −282723. −0.435202
\(807\) 0 0
\(808\) 17673.5 + 17673.5i 0.0270707 + 0.0270707i
\(809\) 827176.i 1.26387i 0.775023 + 0.631933i \(0.217738\pi\)
−0.775023 + 0.631933i \(0.782262\pi\)
\(810\) 0 0
\(811\) 1.22035e6 1.85542 0.927711 0.373300i \(-0.121774\pi\)
0.927711 + 0.373300i \(0.121774\pi\)
\(812\) −1.09877e6 + 1.09877e6i −1.66645 + 1.66645i
\(813\) 0 0
\(814\) 239834.i 0.361961i
\(815\) 0 0
\(816\) 0 0
\(817\) −211340. + 211340.i −0.316619 + 0.316619i
\(818\) −87303.8 87303.8i −0.130475 0.130475i
\(819\) 0 0
\(820\) 0 0
\(821\) 1.13223e6 1.67977 0.839884 0.542766i \(-0.182623\pi\)
0.839884 + 0.542766i \(0.182623\pi\)
\(822\) 0 0
\(823\) −504583. 504583.i −0.744961 0.744961i 0.228567 0.973528i \(-0.426596\pi\)
−0.973528 + 0.228567i \(0.926596\pi\)
\(824\) 2.67531e6i 3.94022i
\(825\) 0 0
\(826\) 1.00237e6 1.46916
\(827\) −707633. + 707633.i −1.03466 + 1.03466i −0.0352807 + 0.999377i \(0.511233\pi\)
−0.999377 + 0.0352807i \(0.988767\pi\)
\(828\) 0 0
\(829\) 846141.i 1.23121i −0.788053 0.615607i \(-0.788911\pi\)
0.788053 0.615607i \(-0.211089\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −35258.5 + 35258.5i −0.0509352 + 0.0509352i
\(833\) −9088.50 9088.50i −0.0130979 0.0130979i
\(834\) 0 0
\(835\) 0 0
\(836\) 440117. 0.629732
\(837\) 0 0
\(838\) −182200. 182200.i −0.259454 0.259454i
\(839\) 499671.i 0.709839i −0.934897 0.354920i \(-0.884508\pi\)
0.934897 0.354920i \(-0.115492\pi\)
\(840\) 0 0
\(841\) 27590.7 0.0390096
\(842\) 612924. 612924.i 0.864534 0.864534i
\(843\) 0 0
\(844\) 610635.i 0.857229i
\(845\) 0 0
\(846\) 0 0
\(847\) −501508. + 501508.i −0.699054 + 0.699054i
\(848\) −868184. 868184.i −1.20731 1.20731i
\(849\) 0 0
\(850\) 0 0
\(851\) −675806. −0.933175
\(852\) 0 0
\(853\) 175495. + 175495.i 0.241194 + 0.241194i 0.817344 0.576150i \(-0.195446\pi\)
−0.576150 + 0.817344i \(0.695446\pi\)
\(854\) 1.27059e6i 1.74217i
\(855\) 0 0
\(856\) −71697.7 −0.0978492
\(857\) 932907. 932907.i 1.27021 1.27021i 0.324237 0.945976i \(-0.394892\pi\)
0.945976 0.324237i \(-0.105108\pi\)
\(858\) 0 0
\(859\) 318689.i 0.431897i −0.976405 0.215948i \(-0.930716\pi\)
0.976405 0.215948i \(-0.0692843\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.66012e6 1.66012e6i 2.23422 2.23422i
\(863\) −834366. 834366.i −1.12030 1.12030i −0.991696 0.128606i \(-0.958950\pi\)
−0.128606 0.991696i \(-0.541050\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.41247e6 1.88341
\(867\) 0 0
\(868\) 1.79547e6 + 1.79547e6i 2.38308 + 2.38308i
\(869\) 261433.i 0.346195i
\(870\) 0 0
\(871\) −143116. −0.188648
\(872\) 1.31654e6 1.31654e6i 1.73142 1.73142i
\(873\) 0 0
\(874\) 1.81426e6i 2.37507i
\(875\) 0 0
\(876\) 0 0
\(877\) 218162. 218162.i 0.283648 0.283648i −0.550914 0.834562i \(-0.685721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(878\) 129714. + 129714.i 0.168267 + 0.168267i
\(879\) 0 0
\(880\) 0 0
\(881\) 279844. 0.360549 0.180274 0.983616i \(-0.442301\pi\)
0.180274 + 0.983616i \(0.442301\pi\)
\(882\) 0 0
\(883\) −269641. 269641.i −0.345831 0.345831i 0.512723 0.858554i \(-0.328637\pi\)
−0.858554 + 0.512723i \(0.828637\pi\)
\(884\) 22896.2i 0.0292994i
\(885\) 0 0
\(886\) −1.32517e6 −1.68812
\(887\) 566987. 566987.i 0.720653 0.720653i −0.248085 0.968738i \(-0.579801\pi\)
0.968738 + 0.248085i \(0.0798013\pi\)
\(888\) 0 0
\(889\) 845027.i 1.06922i
\(890\) 0 0
\(891\) 0 0
\(892\) −370867. + 370867.i −0.466110 + 0.466110i
\(893\) 158995. + 158995.i 0.199380 + 0.199380i
\(894\) 0 0
\(895\) 0 0
\(896\) 1.20490e6 1.50084
\(897\) 0 0
\(898\) −671758. 671758.i −0.833029 0.833029i
\(899\) 1.11067e6i 1.37425i
\(900\) 0 0
\(901\) 71463.1 0.0880303
\(902\) 377442. 377442.i 0.463913 0.463913i
\(903\) 0 0
\(904\) 2.35201e6i 2.87808i
\(905\) 0 0
\(906\) 0 0
\(907\) −256644. + 256644.i −0.311973 + 0.311973i −0.845674 0.533700i \(-0.820801\pi\)
0.533700 + 0.845674i \(0.320801\pi\)
\(908\) 1.18208e6 + 1.18208e6i 1.43375 + 1.43375i
\(909\) 0 0
\(910\) 0 0
\(911\) 143826. 0.173301 0.0866506 0.996239i \(-0.472384\pi\)
0.0866506 + 0.996239i \(0.472384\pi\)
\(912\) 0 0
\(913\) −25124.4 25124.4i −0.0301408 0.0301408i
\(914\) 1.48312e6i 1.77535i
\(915\) 0 0
\(916\) 2.53801e6 3.02485
\(917\) −419249. + 419249.i −0.498578 + 0.498578i
\(918\) 0 0
\(919\) 993411.i 1.17625i 0.808772 + 0.588123i \(0.200133\pi\)
−0.808772 + 0.588123i \(0.799867\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.03869e6 1.03869e6i 1.22187 1.22187i
\(923\) −118525. 118525.i −0.139125 0.139125i
\(924\) 0 0
\(925\) 0 0
\(926\) −1.57582e6 −1.83775
\(927\) 0 0
\(928\) −367330. 367330.i −0.426541 0.426541i
\(929\) 1.39909e6i 1.62112i −0.585658 0.810558i \(-0.699164\pi\)
0.585658 0.810558i \(-0.300836\pi\)
\(930\) 0 0
\(931\) 180338. 0.208059
\(932\) 629168. 629168.i 0.724327 0.724327i
\(933\) 0 0
\(934\) 1.00570e6i 1.15286i
\(935\) 0 0
\(936\) 0 0
\(937\) −482443. + 482443.i −0.549499 + 0.549499i −0.926296 0.376797i \(-0.877025\pi\)
0.376797 + 0.926296i \(0.377025\pi\)
\(938\) 1.32961e6 + 1.32961e6i 1.51119 + 1.51119i
\(939\) 0 0
\(940\) 0 0
\(941\) −494897. −0.558902 −0.279451 0.960160i \(-0.590152\pi\)
−0.279451 + 0.960160i \(0.590152\pi\)
\(942\) 0 0
\(943\) 1.06356e6 + 1.06356e6i 1.19602 + 1.19602i
\(944\) 996871.i 1.11865i
\(945\) 0 0
\(946\) −272864. −0.304905
\(947\) −1.05460e6 + 1.05460e6i −1.17595 + 1.17595i −0.195183 + 0.980767i \(0.562530\pi\)
−0.980767 + 0.195183i \(0.937470\pi\)
\(948\) 0 0
\(949\) 185735.i 0.206235i
\(950\) 0 0
\(951\) 0 0
\(952\) 114246. 114246.i 0.126058 0.126058i
\(953\) −319054. 319054.i −0.351300 0.351300i 0.509293 0.860593i \(-0.329907\pi\)
−0.860593 + 0.509293i \(0.829907\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.55229e6 3.88681
\(957\) 0 0
\(958\) 627599. + 627599.i 0.683835 + 0.683835i
\(959\) 261221.i 0.284034i
\(960\) 0 0
\(961\) 891397. 0.965216
\(962\) 123785. 123785.i 0.133758 0.133758i
\(963\) 0 0
\(964\) 2.39885e6i 2.58136i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.01810e6 1.01810e6i 1.08877 1.08877i 0.0931182 0.995655i \(-0.470317\pi\)
0.995655 0.0931182i \(-0.0296835\pi\)
\(968\) −1.21400e6 1.21400e6i −1.29559 1.29559i
\(969\) 0 0
\(970\) 0 0
\(971\) −610675. −0.647696 −0.323848 0.946109i \(-0.604977\pi\)
−0.323848 + 0.946109i \(0.604977\pi\)
\(972\) 0 0
\(973\) 235061. + 235061.i 0.248287 + 0.248287i
\(974\) 1.06762e6i 1.12538i
\(975\) 0 0
\(976\) 1.26362e6 1.32653
\(977\) −90031.7 + 90031.7i −0.0943206 + 0.0943206i −0.752693 0.658372i \(-0.771245\pi\)
0.658372 + 0.752693i \(0.271245\pi\)
\(978\) 0 0
\(979\) 75075.1i 0.0783305i
\(980\) 0 0
\(981\) 0 0
\(982\) 930662. 930662.i 0.965093 0.965093i
\(983\) 406452. + 406452.i 0.420632 + 0.420632i 0.885421 0.464790i \(-0.153870\pi\)
−0.464790 + 0.885421i \(0.653870\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 131584. 0.135347
\(987\) 0 0
\(988\) −227158. 227158.i −0.232709 0.232709i
\(989\) 768879.i 0.786078i
\(990\) 0 0
\(991\) −563990. −0.574281 −0.287140 0.957889i \(-0.592705\pi\)
−0.287140 + 0.957889i \(0.592705\pi\)
\(992\) −600246. + 600246.i −0.609967 + 0.609967i
\(993\) 0 0
\(994\) 2.20229e6i 2.22896i
\(995\) 0 0
\(996\) 0 0
\(997\) −49988.1 + 49988.1i −0.0502894 + 0.0502894i −0.731804 0.681515i \(-0.761321\pi\)
0.681515 + 0.731804i \(0.261321\pi\)
\(998\) 2.42596e6 + 2.42596e6i 2.43569 + 2.43569i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.5.g.m.118.1 8
3.2 odd 2 75.5.f.e.43.4 8
5.2 odd 4 inner 225.5.g.m.82.1 8
5.3 odd 4 45.5.g.e.37.4 8
5.4 even 2 45.5.g.e.28.4 8
15.2 even 4 75.5.f.e.7.4 8
15.8 even 4 15.5.f.a.7.1 8
15.14 odd 2 15.5.f.a.13.1 yes 8
60.23 odd 4 240.5.bg.c.97.3 8
60.59 even 2 240.5.bg.c.193.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.f.a.7.1 8 15.8 even 4
15.5.f.a.13.1 yes 8 15.14 odd 2
45.5.g.e.28.4 8 5.4 even 2
45.5.g.e.37.4 8 5.3 odd 4
75.5.f.e.7.4 8 15.2 even 4
75.5.f.e.43.4 8 3.2 odd 2
225.5.g.m.82.1 8 5.2 odd 4 inner
225.5.g.m.118.1 8 1.1 even 1 trivial
240.5.bg.c.97.3 8 60.23 odd 4
240.5.bg.c.193.3 8 60.59 even 2