Properties

Label 225.5.d.c.224.7
Level $225$
Weight $5$
Character 225.224
Analytic conductor $23.258$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,5,Mod(224,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.224"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 225.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2582416939\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 44 x^{10} - 24 x^{9} + 968 x^{8} - 132 x^{7} - 10486 x^{6} + 2904 x^{5} + 56980 x^{4} + \cdots + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{10}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 224.7
Root \(0.136829 + 0.0566766i\) of defining polynomial
Character \(\chi\) \(=\) 225.224
Dual form 225.5.d.c.224.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80123 q^{2} -12.7556 q^{4} -12.1136i q^{7} -51.7953 q^{8} -60.4434i q^{11} +168.896i q^{13} -21.8194i q^{14} +110.794 q^{16} +377.366 q^{17} +45.1263 q^{19} -108.872i q^{22} +1.37206 q^{23} +304.221i q^{26} +154.516i q^{28} +1401.24i q^{29} +1605.80 q^{31} +1028.29 q^{32} +679.721 q^{34} -1324.72i q^{37} +81.2826 q^{38} +2354.07i q^{41} +468.707i q^{43} +770.991i q^{44} +2.47139 q^{46} +3910.98 q^{47} +2254.26 q^{49} -2154.37i q^{52} -3228.98 q^{53} +627.429i q^{56} +2523.94i q^{58} +2543.15i q^{59} -254.070 q^{61} +2892.40 q^{62} +79.4731 q^{64} -7493.35i q^{67} -4813.52 q^{68} +4143.85i q^{71} -3711.28i q^{73} -2386.11i q^{74} -575.612 q^{76} -732.189 q^{77} -80.2118 q^{79} +4240.21i q^{82} +5159.51 q^{83} +844.248i q^{86} +3130.68i q^{88} +5870.07i q^{89} +2045.95 q^{91} -17.5015 q^{92} +7044.55 q^{94} +8921.02i q^{97} +4060.43 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 184 q^{4} + 3632 q^{16} + 500 q^{19} + 3692 q^{31} + 7384 q^{34} + 19512 q^{46} + 6464 q^{49} + 21676 q^{61} + 72288 q^{64} - 49560 q^{76} - 7808 q^{79} + 34612 q^{91} - 132728 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80123 0.450306 0.225153 0.974323i \(-0.427712\pi\)
0.225153 + 0.974323i \(0.427712\pi\)
\(3\) 0 0
\(4\) −12.7556 −0.797224
\(5\) 0 0
\(6\) 0 0
\(7\) − 12.1136i − 0.247217i −0.992331 0.123609i \(-0.960553\pi\)
0.992331 0.123609i \(-0.0394467\pi\)
\(8\) −51.7953 −0.809302
\(9\) 0 0
\(10\) 0 0
\(11\) − 60.4434i − 0.499532i −0.968306 0.249766i \(-0.919646\pi\)
0.968306 0.249766i \(-0.0803537\pi\)
\(12\) 0 0
\(13\) 168.896i 0.999387i 0.866202 + 0.499694i \(0.166554\pi\)
−0.866202 + 0.499694i \(0.833446\pi\)
\(14\) − 21.8194i − 0.111323i
\(15\) 0 0
\(16\) 110.794 0.432790
\(17\) 377.366 1.30576 0.652882 0.757460i \(-0.273560\pi\)
0.652882 + 0.757460i \(0.273560\pi\)
\(18\) 0 0
\(19\) 45.1263 0.125004 0.0625018 0.998045i \(-0.480092\pi\)
0.0625018 + 0.998045i \(0.480092\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 108.872i − 0.224943i
\(23\) 1.37206 0.00259369 0.00129685 0.999999i \(-0.499587\pi\)
0.00129685 + 0.999999i \(0.499587\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 304.221i 0.450030i
\(27\) 0 0
\(28\) 154.516i 0.197087i
\(29\) 1401.24i 1.66615i 0.553156 + 0.833077i \(0.313423\pi\)
−0.553156 + 0.833077i \(0.686577\pi\)
\(30\) 0 0
\(31\) 1605.80 1.67097 0.835483 0.549517i \(-0.185188\pi\)
0.835483 + 0.549517i \(0.185188\pi\)
\(32\) 1028.29 1.00419
\(33\) 0 0
\(34\) 679.721 0.587994
\(35\) 0 0
\(36\) 0 0
\(37\) − 1324.72i − 0.967652i −0.875164 0.483826i \(-0.839247\pi\)
0.875164 0.483826i \(-0.160753\pi\)
\(38\) 81.2826 0.0562899
\(39\) 0 0
\(40\) 0 0
\(41\) 2354.07i 1.40040i 0.713948 + 0.700199i \(0.246905\pi\)
−0.713948 + 0.700199i \(0.753095\pi\)
\(42\) 0 0
\(43\) 468.707i 0.253492i 0.991935 + 0.126746i \(0.0404534\pi\)
−0.991935 + 0.126746i \(0.959547\pi\)
\(44\) 770.991i 0.398239i
\(45\) 0 0
\(46\) 2.47139 0.00116796
\(47\) 3910.98 1.77047 0.885237 0.465141i \(-0.153996\pi\)
0.885237 + 0.465141i \(0.153996\pi\)
\(48\) 0 0
\(49\) 2254.26 0.938884
\(50\) 0 0
\(51\) 0 0
\(52\) − 2154.37i − 0.796735i
\(53\) −3228.98 −1.14951 −0.574756 0.818325i \(-0.694903\pi\)
−0.574756 + 0.818325i \(0.694903\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 627.429i 0.200073i
\(57\) 0 0
\(58\) 2523.94i 0.750280i
\(59\) 2543.15i 0.730582i 0.930893 + 0.365291i \(0.119030\pi\)
−0.930893 + 0.365291i \(0.880970\pi\)
\(60\) 0 0
\(61\) −254.070 −0.0682800 −0.0341400 0.999417i \(-0.510869\pi\)
−0.0341400 + 0.999417i \(0.510869\pi\)
\(62\) 2892.40 0.752446
\(63\) 0 0
\(64\) 79.4731 0.0194026
\(65\) 0 0
\(66\) 0 0
\(67\) − 7493.35i − 1.66927i −0.550805 0.834634i \(-0.685679\pi\)
0.550805 0.834634i \(-0.314321\pi\)
\(68\) −4813.52 −1.04099
\(69\) 0 0
\(70\) 0 0
\(71\) 4143.85i 0.822029i 0.911629 + 0.411014i \(0.134825\pi\)
−0.911629 + 0.411014i \(0.865175\pi\)
\(72\) 0 0
\(73\) − 3711.28i − 0.696431i −0.937415 0.348215i \(-0.886788\pi\)
0.937415 0.348215i \(-0.113212\pi\)
\(74\) − 2386.11i − 0.435740i
\(75\) 0 0
\(76\) −575.612 −0.0996559
\(77\) −732.189 −0.123493
\(78\) 0 0
\(79\) −80.2118 −0.0128524 −0.00642620 0.999979i \(-0.502046\pi\)
−0.00642620 + 0.999979i \(0.502046\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4240.21i 0.630608i
\(83\) 5159.51 0.748949 0.374474 0.927237i \(-0.377823\pi\)
0.374474 + 0.927237i \(0.377823\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 844.248i 0.114149i
\(87\) 0 0
\(88\) 3130.68i 0.404272i
\(89\) 5870.07i 0.741076i 0.928817 + 0.370538i \(0.120827\pi\)
−0.928817 + 0.370538i \(0.879173\pi\)
\(90\) 0 0
\(91\) 2045.95 0.247065
\(92\) −17.5015 −0.00206775
\(93\) 0 0
\(94\) 7044.55 0.797256
\(95\) 0 0
\(96\) 0 0
\(97\) 8921.02i 0.948137i 0.880488 + 0.474068i \(0.157215\pi\)
−0.880488 + 0.474068i \(0.842785\pi\)
\(98\) 4060.43 0.422785
\(99\) 0 0
\(100\) 0 0
\(101\) − 2618.57i − 0.256697i −0.991729 0.128349i \(-0.959032\pi\)
0.991729 0.128349i \(-0.0409676\pi\)
\(102\) 0 0
\(103\) − 9021.12i − 0.850327i −0.905116 0.425164i \(-0.860217\pi\)
0.905116 0.425164i \(-0.139783\pi\)
\(104\) − 8748.04i − 0.808805i
\(105\) 0 0
\(106\) −5816.12 −0.517632
\(107\) −17075.5 −1.49144 −0.745722 0.666257i \(-0.767895\pi\)
−0.745722 + 0.666257i \(0.767895\pi\)
\(108\) 0 0
\(109\) −11156.2 −0.938997 −0.469498 0.882933i \(-0.655565\pi\)
−0.469498 + 0.882933i \(0.655565\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 1342.12i − 0.106993i
\(113\) 15403.5 1.20632 0.603160 0.797621i \(-0.293908\pi\)
0.603160 + 0.797621i \(0.293908\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 17873.6i − 1.32830i
\(117\) 0 0
\(118\) 4580.80i 0.328986i
\(119\) − 4571.27i − 0.322807i
\(120\) 0 0
\(121\) 10987.6 0.750468
\(122\) −457.637 −0.0307469
\(123\) 0 0
\(124\) −20482.9 −1.33213
\(125\) 0 0
\(126\) 0 0
\(127\) 24976.5i 1.54855i 0.632852 + 0.774273i \(0.281884\pi\)
−0.632852 + 0.774273i \(0.718116\pi\)
\(128\) −16309.5 −0.995453
\(129\) 0 0
\(130\) 0 0
\(131\) − 17627.3i − 1.02717i −0.858039 0.513585i \(-0.828317\pi\)
0.858039 0.513585i \(-0.171683\pi\)
\(132\) 0 0
\(133\) − 546.643i − 0.0309030i
\(134\) − 13497.2i − 0.751682i
\(135\) 0 0
\(136\) −19545.8 −1.05676
\(137\) −24784.3 −1.32049 −0.660247 0.751049i \(-0.729548\pi\)
−0.660247 + 0.751049i \(0.729548\pi\)
\(138\) 0 0
\(139\) 241.690 0.0125092 0.00625460 0.999980i \(-0.498009\pi\)
0.00625460 + 0.999980i \(0.498009\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 7464.00i 0.370165i
\(143\) 10208.7 0.499226
\(144\) 0 0
\(145\) 0 0
\(146\) − 6684.85i − 0.313607i
\(147\) 0 0
\(148\) 16897.5i 0.771436i
\(149\) − 12802.4i − 0.576657i −0.957532 0.288328i \(-0.906901\pi\)
0.957532 0.288328i \(-0.0930995\pi\)
\(150\) 0 0
\(151\) −14780.0 −0.648218 −0.324109 0.946020i \(-0.605065\pi\)
−0.324109 + 0.946020i \(0.605065\pi\)
\(152\) −2337.33 −0.101166
\(153\) 0 0
\(154\) −1318.84 −0.0556096
\(155\) 0 0
\(156\) 0 0
\(157\) 9720.94i 0.394375i 0.980366 + 0.197187i \(0.0631807\pi\)
−0.980366 + 0.197187i \(0.936819\pi\)
\(158\) −144.480 −0.00578752
\(159\) 0 0
\(160\) 0 0
\(161\) − 16.6207i 0 0.000641204i
\(162\) 0 0
\(163\) − 34436.1i − 1.29610i −0.761597 0.648051i \(-0.775584\pi\)
0.761597 0.648051i \(-0.224416\pi\)
\(164\) − 30027.5i − 1.11643i
\(165\) 0 0
\(166\) 9293.44 0.337256
\(167\) −16921.4 −0.606740 −0.303370 0.952873i \(-0.598112\pi\)
−0.303370 + 0.952873i \(0.598112\pi\)
\(168\) 0 0
\(169\) 35.0031 0.00122555
\(170\) 0 0
\(171\) 0 0
\(172\) − 5978.64i − 0.202090i
\(173\) 39172.9 1.30886 0.654431 0.756122i \(-0.272908\pi\)
0.654431 + 0.756122i \(0.272908\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 6696.79i − 0.216193i
\(177\) 0 0
\(178\) 10573.3i 0.333711i
\(179\) 51682.6i 1.61301i 0.591224 + 0.806507i \(0.298645\pi\)
−0.591224 + 0.806507i \(0.701355\pi\)
\(180\) 0 0
\(181\) 662.351 0.0202177 0.0101088 0.999949i \(-0.496782\pi\)
0.0101088 + 0.999949i \(0.496782\pi\)
\(182\) 3685.22 0.111255
\(183\) 0 0
\(184\) −71.0664 −0.00209908
\(185\) 0 0
\(186\) 0 0
\(187\) − 22809.3i − 0.652271i
\(188\) −49886.8 −1.41146
\(189\) 0 0
\(190\) 0 0
\(191\) 63272.8i 1.73440i 0.497956 + 0.867202i \(0.334084\pi\)
−0.497956 + 0.867202i \(0.665916\pi\)
\(192\) 0 0
\(193\) − 51567.4i − 1.38440i −0.721707 0.692198i \(-0.756642\pi\)
0.721707 0.692198i \(-0.243358\pi\)
\(194\) 16068.8i 0.426952i
\(195\) 0 0
\(196\) −28754.4 −0.748501
\(197\) −11639.8 −0.299926 −0.149963 0.988692i \(-0.547915\pi\)
−0.149963 + 0.988692i \(0.547915\pi\)
\(198\) 0 0
\(199\) 44340.2 1.11967 0.559837 0.828603i \(-0.310864\pi\)
0.559837 + 0.828603i \(0.310864\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 4716.63i − 0.115592i
\(203\) 16974.1 0.411902
\(204\) 0 0
\(205\) 0 0
\(206\) − 16249.1i − 0.382908i
\(207\) 0 0
\(208\) 18712.8i 0.432525i
\(209\) − 2727.59i − 0.0624433i
\(210\) 0 0
\(211\) 34425.8 0.773249 0.386624 0.922237i \(-0.373641\pi\)
0.386624 + 0.922237i \(0.373641\pi\)
\(212\) 41187.5 0.916418
\(213\) 0 0
\(214\) −30756.9 −0.671607
\(215\) 0 0
\(216\) 0 0
\(217\) − 19452.0i − 0.413091i
\(218\) −20094.9 −0.422836
\(219\) 0 0
\(220\) 0 0
\(221\) 63735.7i 1.30496i
\(222\) 0 0
\(223\) 80710.8i 1.62301i 0.584344 + 0.811506i \(0.301352\pi\)
−0.584344 + 0.811506i \(0.698648\pi\)
\(224\) − 12456.3i − 0.248253i
\(225\) 0 0
\(226\) 27745.2 0.543213
\(227\) 96827.1 1.87908 0.939539 0.342441i \(-0.111254\pi\)
0.939539 + 0.342441i \(0.111254\pi\)
\(228\) 0 0
\(229\) 63732.2 1.21531 0.607656 0.794200i \(-0.292110\pi\)
0.607656 + 0.794200i \(0.292110\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 72577.5i − 1.34842i
\(233\) −22886.7 −0.421571 −0.210786 0.977532i \(-0.567602\pi\)
−0.210786 + 0.977532i \(0.567602\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 32439.4i − 0.582437i
\(237\) 0 0
\(238\) − 8233.89i − 0.145362i
\(239\) 26181.9i 0.458358i 0.973384 + 0.229179i \(0.0736041\pi\)
−0.973384 + 0.229179i \(0.926396\pi\)
\(240\) 0 0
\(241\) 5080.09 0.0874657 0.0437328 0.999043i \(-0.486075\pi\)
0.0437328 + 0.999043i \(0.486075\pi\)
\(242\) 19791.1 0.337940
\(243\) 0 0
\(244\) 3240.81 0.0544345
\(245\) 0 0
\(246\) 0 0
\(247\) 7621.67i 0.124927i
\(248\) −83172.8 −1.35231
\(249\) 0 0
\(250\) 0 0
\(251\) 23074.8i 0.366260i 0.983089 + 0.183130i \(0.0586230\pi\)
−0.983089 + 0.183130i \(0.941377\pi\)
\(252\) 0 0
\(253\) − 82.9321i − 0.00129563i
\(254\) 44988.3i 0.697320i
\(255\) 0 0
\(256\) −30648.7 −0.467661
\(257\) 51974.3 0.786905 0.393452 0.919345i \(-0.371281\pi\)
0.393452 + 0.919345i \(0.371281\pi\)
\(258\) 0 0
\(259\) −16047.1 −0.239220
\(260\) 0 0
\(261\) 0 0
\(262\) − 31750.7i − 0.462541i
\(263\) 24353.6 0.352089 0.176044 0.984382i \(-0.443670\pi\)
0.176044 + 0.984382i \(0.443670\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 984.628i − 0.0139158i
\(267\) 0 0
\(268\) 95582.0i 1.33078i
\(269\) 98409.2i 1.35998i 0.733223 + 0.679988i \(0.238015\pi\)
−0.733223 + 0.679988i \(0.761985\pi\)
\(270\) 0 0
\(271\) 135833. 1.84956 0.924778 0.380508i \(-0.124251\pi\)
0.924778 + 0.380508i \(0.124251\pi\)
\(272\) 41810.0 0.565122
\(273\) 0 0
\(274\) −44642.2 −0.594627
\(275\) 0 0
\(276\) 0 0
\(277\) − 19597.6i − 0.255413i −0.991812 0.127706i \(-0.959238\pi\)
0.991812 0.127706i \(-0.0407615\pi\)
\(278\) 435.339 0.00563297
\(279\) 0 0
\(280\) 0 0
\(281\) − 25457.8i − 0.322409i −0.986921 0.161205i \(-0.948462\pi\)
0.986921 0.161205i \(-0.0515379\pi\)
\(282\) 0 0
\(283\) − 88022.8i − 1.09906i −0.835473 0.549531i \(-0.814806\pi\)
0.835473 0.549531i \(-0.185194\pi\)
\(284\) − 52857.2i − 0.655341i
\(285\) 0 0
\(286\) 18388.1 0.224805
\(287\) 28516.3 0.346202
\(288\) 0 0
\(289\) 58883.9 0.705020
\(290\) 0 0
\(291\) 0 0
\(292\) 47339.5i 0.555211i
\(293\) 91729.0 1.06849 0.534246 0.845329i \(-0.320596\pi\)
0.534246 + 0.845329i \(0.320596\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 68614.1i 0.783123i
\(297\) 0 0
\(298\) − 23059.9i − 0.259672i
\(299\) 231.736i 0.00259210i
\(300\) 0 0
\(301\) 5677.75 0.0626676
\(302\) −26622.2 −0.291897
\(303\) 0 0
\(304\) 4999.74 0.0541004
\(305\) 0 0
\(306\) 0 0
\(307\) − 1346.81i − 0.0142899i −0.999974 0.00714494i \(-0.997726\pi\)
0.999974 0.00714494i \(-0.00227433\pi\)
\(308\) 9339.50 0.0984515
\(309\) 0 0
\(310\) 0 0
\(311\) 48663.9i 0.503137i 0.967839 + 0.251568i \(0.0809464\pi\)
−0.967839 + 0.251568i \(0.919054\pi\)
\(312\) 0 0
\(313\) 106387.i 1.08593i 0.839757 + 0.542963i \(0.182698\pi\)
−0.839757 + 0.542963i \(0.817302\pi\)
\(314\) 17509.6i 0.177589i
\(315\) 0 0
\(316\) 1023.15 0.0102462
\(317\) −92241.5 −0.917926 −0.458963 0.888455i \(-0.651779\pi\)
−0.458963 + 0.888455i \(0.651779\pi\)
\(318\) 0 0
\(319\) 84695.5 0.832298
\(320\) 0 0
\(321\) 0 0
\(322\) − 29.9376i 0 0.000288738i
\(323\) 17029.1 0.163225
\(324\) 0 0
\(325\) 0 0
\(326\) − 62027.2i − 0.583643i
\(327\) 0 0
\(328\) − 121930.i − 1.13334i
\(329\) − 47376.1i − 0.437691i
\(330\) 0 0
\(331\) −160354. −1.46361 −0.731803 0.681516i \(-0.761321\pi\)
−0.731803 + 0.681516i \(0.761321\pi\)
\(332\) −65812.5 −0.597080
\(333\) 0 0
\(334\) −30479.2 −0.273219
\(335\) 0 0
\(336\) 0 0
\(337\) 213689.i 1.88158i 0.338996 + 0.940788i \(0.389913\pi\)
−0.338996 + 0.940788i \(0.610087\pi\)
\(338\) 63.0484 0.000551875 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 97059.9i − 0.834701i
\(342\) 0 0
\(343\) − 56392.1i − 0.479325i
\(344\) − 24276.8i − 0.205152i
\(345\) 0 0
\(346\) 70559.3 0.589389
\(347\) −61402.4 −0.509948 −0.254974 0.966948i \(-0.582067\pi\)
−0.254974 + 0.966948i \(0.582067\pi\)
\(348\) 0 0
\(349\) −215730. −1.77117 −0.885585 0.464477i \(-0.846242\pi\)
−0.885585 + 0.464477i \(0.846242\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 62153.4i − 0.501625i
\(353\) −13643.8 −0.109493 −0.0547465 0.998500i \(-0.517435\pi\)
−0.0547465 + 0.998500i \(0.517435\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 74876.1i − 0.590804i
\(357\) 0 0
\(358\) 93092.0i 0.726351i
\(359\) − 130543.i − 1.01290i −0.862270 0.506449i \(-0.830958\pi\)
0.862270 0.506449i \(-0.169042\pi\)
\(360\) 0 0
\(361\) −128285. −0.984374
\(362\) 1193.04 0.00910414
\(363\) 0 0
\(364\) −26097.3 −0.196967
\(365\) 0 0
\(366\) 0 0
\(367\) − 168011.i − 1.24740i −0.781663 0.623701i \(-0.785628\pi\)
0.781663 0.623701i \(-0.214372\pi\)
\(368\) 152.017 0.00112252
\(369\) 0 0
\(370\) 0 0
\(371\) 39114.6i 0.284179i
\(372\) 0 0
\(373\) − 158259.i − 1.13750i −0.822510 0.568750i \(-0.807427\pi\)
0.822510 0.568750i \(-0.192573\pi\)
\(374\) − 41084.6i − 0.293722i
\(375\) 0 0
\(376\) −202570. −1.43285
\(377\) −236664. −1.66513
\(378\) 0 0
\(379\) 18061.8 0.125743 0.0628715 0.998022i \(-0.479974\pi\)
0.0628715 + 0.998022i \(0.479974\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 113969.i 0.781013i
\(383\) −110035. −0.750126 −0.375063 0.926999i \(-0.622379\pi\)
−0.375063 + 0.926999i \(0.622379\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 92884.5i − 0.623403i
\(387\) 0 0
\(388\) − 113793.i − 0.755877i
\(389\) − 247517.i − 1.63571i −0.575425 0.817855i \(-0.695163\pi\)
0.575425 0.817855i \(-0.304837\pi\)
\(390\) 0 0
\(391\) 517.769 0.00338675
\(392\) −116760. −0.759840
\(393\) 0 0
\(394\) −20966.0 −0.135059
\(395\) 0 0
\(396\) 0 0
\(397\) 170927.i 1.08450i 0.840218 + 0.542249i \(0.182427\pi\)
−0.840218 + 0.542249i \(0.817573\pi\)
\(398\) 79866.7 0.504196
\(399\) 0 0
\(400\) 0 0
\(401\) − 209413.i − 1.30231i −0.758944 0.651156i \(-0.774284\pi\)
0.758944 0.651156i \(-0.225716\pi\)
\(402\) 0 0
\(403\) 271213.i 1.66994i
\(404\) 33401.4i 0.204645i
\(405\) 0 0
\(406\) 30574.1 0.185482
\(407\) −80070.3 −0.483374
\(408\) 0 0
\(409\) −47045.0 −0.281233 −0.140617 0.990064i \(-0.544908\pi\)
−0.140617 + 0.990064i \(0.544908\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 115070.i 0.677902i
\(413\) 30806.8 0.180612
\(414\) 0 0
\(415\) 0 0
\(416\) 173675.i 1.00357i
\(417\) 0 0
\(418\) − 4913.00i − 0.0281186i
\(419\) 88341.4i 0.503195i 0.967832 + 0.251597i \(0.0809559\pi\)
−0.967832 + 0.251597i \(0.919044\pi\)
\(420\) 0 0
\(421\) −146004. −0.823759 −0.411879 0.911238i \(-0.635127\pi\)
−0.411879 + 0.911238i \(0.635127\pi\)
\(422\) 62008.6 0.348199
\(423\) 0 0
\(424\) 167246. 0.930301
\(425\) 0 0
\(426\) 0 0
\(427\) 3077.71i 0.0168800i
\(428\) 217809. 1.18901
\(429\) 0 0
\(430\) 0 0
\(431\) − 38335.8i − 0.206372i −0.994662 0.103186i \(-0.967096\pi\)
0.994662 0.103186i \(-0.0329036\pi\)
\(432\) 0 0
\(433\) − 236134.i − 1.25946i −0.776815 0.629728i \(-0.783166\pi\)
0.776815 0.629728i \(-0.216834\pi\)
\(434\) − 35037.5i − 0.186018i
\(435\) 0 0
\(436\) 142304. 0.748591
\(437\) 61.9161 0.000324221 0
\(438\) 0 0
\(439\) −240933. −1.25017 −0.625083 0.780558i \(-0.714935\pi\)
−0.625083 + 0.780558i \(0.714935\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 114802.i 0.587633i
\(443\) −70261.5 −0.358022 −0.179011 0.983847i \(-0.557290\pi\)
−0.179011 + 0.983847i \(0.557290\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 145378.i 0.730853i
\(447\) 0 0
\(448\) − 962.708i − 0.00479666i
\(449\) − 93152.3i − 0.462062i −0.972946 0.231031i \(-0.925790\pi\)
0.972946 0.231031i \(-0.0742100\pi\)
\(450\) 0 0
\(451\) 142288. 0.699544
\(452\) −196481. −0.961707
\(453\) 0 0
\(454\) 174407. 0.846161
\(455\) 0 0
\(456\) 0 0
\(457\) − 145652.i − 0.697406i −0.937233 0.348703i \(-0.886622\pi\)
0.937233 0.348703i \(-0.113378\pi\)
\(458\) 114796. 0.547263
\(459\) 0 0
\(460\) 0 0
\(461\) − 128000.i − 0.602294i −0.953578 0.301147i \(-0.902630\pi\)
0.953578 0.301147i \(-0.0973695\pi\)
\(462\) 0 0
\(463\) − 112886.i − 0.526597i −0.964714 0.263298i \(-0.915190\pi\)
0.964714 0.263298i \(-0.0848104\pi\)
\(464\) 155249.i 0.721096i
\(465\) 0 0
\(466\) −41224.1 −0.189836
\(467\) 317214. 1.45452 0.727258 0.686364i \(-0.240794\pi\)
0.727258 + 0.686364i \(0.240794\pi\)
\(468\) 0 0
\(469\) −90771.7 −0.412672
\(470\) 0 0
\(471\) 0 0
\(472\) − 131723.i − 0.591261i
\(473\) 28330.3 0.126628
\(474\) 0 0
\(475\) 0 0
\(476\) 58309.2i 0.257350i
\(477\) 0 0
\(478\) 47159.4i 0.206402i
\(479\) 374765.i 1.63338i 0.577073 + 0.816692i \(0.304195\pi\)
−0.577073 + 0.816692i \(0.695805\pi\)
\(480\) 0 0
\(481\) 223740. 0.967059
\(482\) 9150.40 0.0393864
\(483\) 0 0
\(484\) −140153. −0.598291
\(485\) 0 0
\(486\) 0 0
\(487\) 47680.4i 0.201040i 0.994935 + 0.100520i \(0.0320506\pi\)
−0.994935 + 0.100520i \(0.967949\pi\)
\(488\) 13159.6 0.0552591
\(489\) 0 0
\(490\) 0 0
\(491\) − 153766.i − 0.637817i −0.947786 0.318908i \(-0.896684\pi\)
0.947786 0.318908i \(-0.103316\pi\)
\(492\) 0 0
\(493\) 528779.i 2.17561i
\(494\) 13728.3i 0.0562554i
\(495\) 0 0
\(496\) 177913. 0.723178
\(497\) 50197.0 0.203220
\(498\) 0 0
\(499\) 348851. 1.40100 0.700501 0.713651i \(-0.252960\pi\)
0.700501 + 0.713651i \(0.252960\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 41562.9i 0.164929i
\(503\) −269552. −1.06539 −0.532693 0.846308i \(-0.678820\pi\)
−0.532693 + 0.846308i \(0.678820\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 149.379i 0 0.000583431i
\(507\) 0 0
\(508\) − 318590.i − 1.23454i
\(509\) − 177376.i − 0.684636i −0.939584 0.342318i \(-0.888788\pi\)
0.939584 0.342318i \(-0.111212\pi\)
\(510\) 0 0
\(511\) −44957.1 −0.172170
\(512\) 205747. 0.784862
\(513\) 0 0
\(514\) 93617.4 0.354348
\(515\) 0 0
\(516\) 0 0
\(517\) − 236393.i − 0.884409i
\(518\) −28904.5 −0.107722
\(519\) 0 0
\(520\) 0 0
\(521\) 233062.i 0.858609i 0.903160 + 0.429305i \(0.141241\pi\)
−0.903160 + 0.429305i \(0.858759\pi\)
\(522\) 0 0
\(523\) 315841.i 1.15469i 0.816501 + 0.577345i \(0.195911\pi\)
−0.816501 + 0.577345i \(0.804089\pi\)
\(524\) 224846.i 0.818885i
\(525\) 0 0
\(526\) 43866.4 0.158548
\(527\) 605973. 2.18189
\(528\) 0 0
\(529\) −279839. −0.999993
\(530\) 0 0
\(531\) 0 0
\(532\) 6972.76i 0.0246366i
\(533\) −397594. −1.39954
\(534\) 0 0
\(535\) 0 0
\(536\) 388120.i 1.35094i
\(537\) 0 0
\(538\) 177257.i 0.612406i
\(539\) − 136255.i − 0.469003i
\(540\) 0 0
\(541\) −186404. −0.636886 −0.318443 0.947942i \(-0.603160\pi\)
−0.318443 + 0.947942i \(0.603160\pi\)
\(542\) 244666. 0.832867
\(543\) 0 0
\(544\) 388042. 1.31123
\(545\) 0 0
\(546\) 0 0
\(547\) − 443355.i − 1.48176i −0.671639 0.740879i \(-0.734409\pi\)
0.671639 0.740879i \(-0.265591\pi\)
\(548\) 316139. 1.05273
\(549\) 0 0
\(550\) 0 0
\(551\) 63232.6i 0.208275i
\(552\) 0 0
\(553\) 971.657i 0.00317733i
\(554\) − 35299.7i − 0.115014i
\(555\) 0 0
\(556\) −3082.90 −0.00997263
\(557\) −82562.1 −0.266116 −0.133058 0.991108i \(-0.542480\pi\)
−0.133058 + 0.991108i \(0.542480\pi\)
\(558\) 0 0
\(559\) −79163.0 −0.253337
\(560\) 0 0
\(561\) 0 0
\(562\) − 45855.2i − 0.145183i
\(563\) −518910. −1.63710 −0.818550 0.574435i \(-0.805222\pi\)
−0.818550 + 0.574435i \(0.805222\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 158549.i − 0.494915i
\(567\) 0 0
\(568\) − 214632.i − 0.665269i
\(569\) 152195.i 0.470085i 0.971985 + 0.235042i \(0.0755229\pi\)
−0.971985 + 0.235042i \(0.924477\pi\)
\(570\) 0 0
\(571\) 414409. 1.27103 0.635516 0.772088i \(-0.280787\pi\)
0.635516 + 0.772088i \(0.280787\pi\)
\(572\) −130218. −0.397995
\(573\) 0 0
\(574\) 51364.4 0.155897
\(575\) 0 0
\(576\) 0 0
\(577\) 31681.0i 0.0951585i 0.998867 + 0.0475793i \(0.0151507\pi\)
−0.998867 + 0.0475793i \(0.984849\pi\)
\(578\) 106063. 0.317475
\(579\) 0 0
\(580\) 0 0
\(581\) − 62500.4i − 0.185153i
\(582\) 0 0
\(583\) 195170.i 0.574218i
\(584\) 192227.i 0.563622i
\(585\) 0 0
\(586\) 165225. 0.481149
\(587\) 347152. 1.00750 0.503748 0.863850i \(-0.331954\pi\)
0.503748 + 0.863850i \(0.331954\pi\)
\(588\) 0 0
\(589\) 72463.7 0.208877
\(590\) 0 0
\(591\) 0 0
\(592\) − 146771.i − 0.418791i
\(593\) −27468.2 −0.0781125 −0.0390563 0.999237i \(-0.512435\pi\)
−0.0390563 + 0.999237i \(0.512435\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 163302.i 0.459725i
\(597\) 0 0
\(598\) 417.409i 0.00116724i
\(599\) 600764.i 1.67436i 0.546924 + 0.837182i \(0.315799\pi\)
−0.546924 + 0.837182i \(0.684201\pi\)
\(600\) 0 0
\(601\) −494521. −1.36910 −0.684551 0.728965i \(-0.740002\pi\)
−0.684551 + 0.728965i \(0.740002\pi\)
\(602\) 10226.9 0.0282196
\(603\) 0 0
\(604\) 188528. 0.516775
\(605\) 0 0
\(606\) 0 0
\(607\) − 578761.i − 1.57080i −0.618987 0.785401i \(-0.712457\pi\)
0.618987 0.785401i \(-0.287543\pi\)
\(608\) 46402.9 0.125527
\(609\) 0 0
\(610\) 0 0
\(611\) 660550.i 1.76939i
\(612\) 0 0
\(613\) − 538455.i − 1.43294i −0.697616 0.716471i \(-0.745756\pi\)
0.697616 0.716471i \(-0.254244\pi\)
\(614\) − 2425.90i − 0.00643483i
\(615\) 0 0
\(616\) 37924.0 0.0999430
\(617\) −486339. −1.27752 −0.638762 0.769404i \(-0.720553\pi\)
−0.638762 + 0.769404i \(0.720553\pi\)
\(618\) 0 0
\(619\) 163391. 0.426430 0.213215 0.977005i \(-0.431606\pi\)
0.213215 + 0.977005i \(0.431606\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 87654.7i 0.226566i
\(623\) 71107.8 0.183207
\(624\) 0 0
\(625\) 0 0
\(626\) 191627.i 0.488999i
\(627\) 0 0
\(628\) − 123996.i − 0.314405i
\(629\) − 499903.i − 1.26353i
\(630\) 0 0
\(631\) −132675. −0.333220 −0.166610 0.986023i \(-0.553282\pi\)
−0.166610 + 0.986023i \(0.553282\pi\)
\(632\) 4154.60 0.0104015
\(633\) 0 0
\(634\) −166148. −0.413348
\(635\) 0 0
\(636\) 0 0
\(637\) 380736.i 0.938308i
\(638\) 152556. 0.374789
\(639\) 0 0
\(640\) 0 0
\(641\) − 648011.i − 1.57713i −0.614954 0.788563i \(-0.710826\pi\)
0.614954 0.788563i \(-0.289174\pi\)
\(642\) 0 0
\(643\) − 62712.3i − 0.151681i −0.997120 0.0758405i \(-0.975836\pi\)
0.997120 0.0758405i \(-0.0241640\pi\)
\(644\) 212.006i 0 0.000511184i
\(645\) 0 0
\(646\) 30673.3 0.0735013
\(647\) 472097. 1.12778 0.563888 0.825852i \(-0.309305\pi\)
0.563888 + 0.825852i \(0.309305\pi\)
\(648\) 0 0
\(649\) 153717. 0.364949
\(650\) 0 0
\(651\) 0 0
\(652\) 439253.i 1.03328i
\(653\) 233253. 0.547017 0.273509 0.961870i \(-0.411816\pi\)
0.273509 + 0.961870i \(0.411816\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 260818.i 0.606079i
\(657\) 0 0
\(658\) − 85335.1i − 0.197095i
\(659\) − 399872.i − 0.920768i −0.887720 0.460384i \(-0.847712\pi\)
0.887720 0.460384i \(-0.152288\pi\)
\(660\) 0 0
\(661\) 112993. 0.258613 0.129306 0.991605i \(-0.458725\pi\)
0.129306 + 0.991605i \(0.458725\pi\)
\(662\) −288834. −0.659071
\(663\) 0 0
\(664\) −267238. −0.606125
\(665\) 0 0
\(666\) 0 0
\(667\) 1922.58i 0.00432149i
\(668\) 215842. 0.483708
\(669\) 0 0
\(670\) 0 0
\(671\) 15356.9i 0.0341081i
\(672\) 0 0
\(673\) 544760.i 1.20275i 0.798967 + 0.601374i \(0.205380\pi\)
−0.798967 + 0.601374i \(0.794620\pi\)
\(674\) 384901.i 0.847285i
\(675\) 0 0
\(676\) −446.485 −0.000977042 0
\(677\) −475103. −1.03660 −0.518299 0.855199i \(-0.673435\pi\)
−0.518299 + 0.855199i \(0.673435\pi\)
\(678\) 0 0
\(679\) 108066. 0.234396
\(680\) 0 0
\(681\) 0 0
\(682\) − 174827.i − 0.375871i
\(683\) −53819.1 −0.115371 −0.0576853 0.998335i \(-0.518372\pi\)
−0.0576853 + 0.998335i \(0.518372\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 101575.i − 0.215843i
\(687\) 0 0
\(688\) 51930.1i 0.109709i
\(689\) − 545363.i − 1.14881i
\(690\) 0 0
\(691\) −400653. −0.839097 −0.419548 0.907733i \(-0.637812\pi\)
−0.419548 + 0.907733i \(0.637812\pi\)
\(692\) −499673. −1.04346
\(693\) 0 0
\(694\) −110600. −0.229633
\(695\) 0 0
\(696\) 0 0
\(697\) 888345.i 1.82859i
\(698\) −388579. −0.797569
\(699\) 0 0
\(700\) 0 0
\(701\) − 860604.i − 1.75133i −0.482921 0.875664i \(-0.660424\pi\)
0.482921 0.875664i \(-0.339576\pi\)
\(702\) 0 0
\(703\) − 59779.5i − 0.120960i
\(704\) − 4803.63i − 0.00969223i
\(705\) 0 0
\(706\) −24575.6 −0.0493054
\(707\) −31720.4 −0.0634599
\(708\) 0 0
\(709\) −489913. −0.974601 −0.487300 0.873234i \(-0.662018\pi\)
−0.487300 + 0.873234i \(0.662018\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 304042.i − 0.599754i
\(713\) 2203.25 0.00433397
\(714\) 0 0
\(715\) 0 0
\(716\) − 659242.i − 1.28593i
\(717\) 0 0
\(718\) − 235138.i − 0.456114i
\(719\) − 288471.i − 0.558014i −0.960289 0.279007i \(-0.909995\pi\)
0.960289 0.279007i \(-0.0900053\pi\)
\(720\) 0 0
\(721\) −109279. −0.210215
\(722\) −231070. −0.443270
\(723\) 0 0
\(724\) −8448.67 −0.0161180
\(725\) 0 0
\(726\) 0 0
\(727\) − 75173.7i − 0.142232i −0.997468 0.0711160i \(-0.977344\pi\)
0.997468 0.0711160i \(-0.0226561\pi\)
\(728\) −105971. −0.199950
\(729\) 0 0
\(730\) 0 0
\(731\) 176874.i 0.331001i
\(732\) 0 0
\(733\) − 108535.i − 0.202005i −0.994886 0.101003i \(-0.967795\pi\)
0.994886 0.101003i \(-0.0322051\pi\)
\(734\) − 302627.i − 0.561714i
\(735\) 0 0
\(736\) 1410.88 0.00260456
\(737\) −452923. −0.833853
\(738\) 0 0
\(739\) −654768. −1.19894 −0.599472 0.800396i \(-0.704623\pi\)
−0.599472 + 0.800396i \(0.704623\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 70454.3i 0.127967i
\(743\) 423118. 0.766450 0.383225 0.923655i \(-0.374813\pi\)
0.383225 + 0.923655i \(0.374813\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 285061.i − 0.512224i
\(747\) 0 0
\(748\) 290946.i 0.520006i
\(749\) 206847.i 0.368710i
\(750\) 0 0
\(751\) 93003.6 0.164900 0.0824498 0.996595i \(-0.473726\pi\)
0.0824498 + 0.996595i \(0.473726\pi\)
\(752\) 433314. 0.766244
\(753\) 0 0
\(754\) −426285. −0.749820
\(755\) 0 0
\(756\) 0 0
\(757\) 849613.i 1.48262i 0.671164 + 0.741309i \(0.265795\pi\)
−0.671164 + 0.741309i \(0.734205\pi\)
\(758\) 32533.4 0.0566228
\(759\) 0 0
\(760\) 0 0
\(761\) − 407917.i − 0.704373i −0.935930 0.352186i \(-0.885438\pi\)
0.935930 0.352186i \(-0.114562\pi\)
\(762\) 0 0
\(763\) 135142.i 0.232136i
\(764\) − 807082.i − 1.38271i
\(765\) 0 0
\(766\) −198198. −0.337787
\(767\) −429530. −0.730134
\(768\) 0 0
\(769\) −569500. −0.963033 −0.481517 0.876437i \(-0.659914\pi\)
−0.481517 + 0.876437i \(0.659914\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 657772.i 1.10367i
\(773\) 711311. 1.19042 0.595211 0.803570i \(-0.297069\pi\)
0.595211 + 0.803570i \(0.297069\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 462067.i − 0.767329i
\(777\) 0 0
\(778\) − 445834.i − 0.736571i
\(779\) 106230.i 0.175055i
\(780\) 0 0
\(781\) 250468. 0.410630
\(782\) 932.619 0.00152507
\(783\) 0 0
\(784\) 249759. 0.406340
\(785\) 0 0
\(786\) 0 0
\(787\) 215275.i 0.347572i 0.984783 + 0.173786i \(0.0556001\pi\)
−0.984783 + 0.173786i \(0.944400\pi\)
\(788\) 148473. 0.239108
\(789\) 0 0
\(790\) 0 0
\(791\) − 186592.i − 0.298223i
\(792\) 0 0
\(793\) − 42911.5i − 0.0682382i
\(794\) 307878.i 0.488357i
\(795\) 0 0
\(796\) −565585. −0.892630
\(797\) −623058. −0.980871 −0.490435 0.871478i \(-0.663162\pi\)
−0.490435 + 0.871478i \(0.663162\pi\)
\(798\) 0 0
\(799\) 1.47587e6 2.31182
\(800\) 0 0
\(801\) 0 0
\(802\) − 377200.i − 0.586440i
\(803\) −224322. −0.347890
\(804\) 0 0
\(805\) 0 0
\(806\) 488517.i 0.751985i
\(807\) 0 0
\(808\) 135630.i 0.207745i
\(809\) − 385095.i − 0.588398i −0.955744 0.294199i \(-0.904947\pi\)
0.955744 0.294199i \(-0.0950528\pi\)
\(810\) 0 0
\(811\) 586828. 0.892215 0.446107 0.894979i \(-0.352810\pi\)
0.446107 + 0.894979i \(0.352810\pi\)
\(812\) −216514. −0.328378
\(813\) 0 0
\(814\) −144225. −0.217666
\(815\) 0 0
\(816\) 0 0
\(817\) 21151.0i 0.0316875i
\(818\) −84738.6 −0.126641
\(819\) 0 0
\(820\) 0 0
\(821\) 879206.i 1.30438i 0.758055 + 0.652191i \(0.226150\pi\)
−0.758055 + 0.652191i \(0.773850\pi\)
\(822\) 0 0
\(823\) 56403.1i 0.0832728i 0.999133 + 0.0416364i \(0.0132571\pi\)
−0.999133 + 0.0416364i \(0.986743\pi\)
\(824\) 467252.i 0.688171i
\(825\) 0 0
\(826\) 55490.1 0.0813308
\(827\) 201627. 0.294807 0.147403 0.989076i \(-0.452908\pi\)
0.147403 + 0.989076i \(0.452908\pi\)
\(828\) 0 0
\(829\) 85071.2 0.123787 0.0618933 0.998083i \(-0.480286\pi\)
0.0618933 + 0.998083i \(0.480286\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 13422.7i 0.0193907i
\(833\) 850681. 1.22596
\(834\) 0 0
\(835\) 0 0
\(836\) 34792.0i 0.0497813i
\(837\) 0 0
\(838\) 159123.i 0.226592i
\(839\) 150877.i 0.214338i 0.994241 + 0.107169i \(0.0341785\pi\)
−0.994241 + 0.107169i \(0.965821\pi\)
\(840\) 0 0
\(841\) −1.25618e6 −1.77607
\(842\) −262986. −0.370944
\(843\) 0 0
\(844\) −439121. −0.616452
\(845\) 0 0
\(846\) 0 0
\(847\) − 133100.i − 0.185528i
\(848\) −357752. −0.497497
\(849\) 0 0
\(850\) 0 0
\(851\) − 1817.59i − 0.00250979i
\(852\) 0 0
\(853\) − 1.17719e6i − 1.61788i −0.587890 0.808941i \(-0.700041\pi\)
0.587890 0.808941i \(-0.299959\pi\)
\(854\) 5543.65i 0.00760117i
\(855\) 0 0
\(856\) 884433. 1.20703
\(857\) −341140. −0.464485 −0.232242 0.972658i \(-0.574606\pi\)
−0.232242 + 0.972658i \(0.574606\pi\)
\(858\) 0 0
\(859\) −44556.7 −0.0603846 −0.0301923 0.999544i \(-0.509612\pi\)
−0.0301923 + 0.999544i \(0.509612\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 69051.4i − 0.0929304i
\(863\) −5280.21 −0.00708973 −0.00354486 0.999994i \(-0.501128\pi\)
−0.00354486 + 0.999994i \(0.501128\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 425331.i − 0.567141i
\(867\) 0 0
\(868\) 248122.i 0.329326i
\(869\) 4848.27i 0.00642019i
\(870\) 0 0
\(871\) 1.26560e6 1.66825
\(872\) 577840. 0.759932
\(873\) 0 0
\(874\) 111.525 0.000145999 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1228.71i − 0.00159754i −1.00000 0.000798768i \(-0.999746\pi\)
1.00000 0.000798768i \(-0.000254256\pi\)
\(878\) −433975. −0.562958
\(879\) 0 0
\(880\) 0 0
\(881\) 513912.i 0.662120i 0.943610 + 0.331060i \(0.107406\pi\)
−0.943610 + 0.331060i \(0.892594\pi\)
\(882\) 0 0
\(883\) 116500.i 0.149419i 0.997205 + 0.0747093i \(0.0238029\pi\)
−0.997205 + 0.0747093i \(0.976197\pi\)
\(884\) − 812987.i − 1.04035i
\(885\) 0 0
\(886\) −126557. −0.161220
\(887\) 1.23199e6 1.56588 0.782941 0.622096i \(-0.213719\pi\)
0.782941 + 0.622096i \(0.213719\pi\)
\(888\) 0 0
\(889\) 302556. 0.382827
\(890\) 0 0
\(891\) 0 0
\(892\) − 1.02951e6i − 1.29390i
\(893\) 176488. 0.221316
\(894\) 0 0
\(895\) 0 0
\(896\) 197567.i 0.246093i
\(897\) 0 0
\(898\) − 167788.i − 0.208070i
\(899\) 2.25010e6i 2.78409i
\(900\) 0 0
\(901\) −1.21851e6 −1.50099
\(902\) 256293. 0.315009
\(903\) 0 0
\(904\) −797828. −0.976276
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.02123e6i − 1.24139i −0.784053 0.620694i \(-0.786851\pi\)
0.784053 0.620694i \(-0.213149\pi\)
\(908\) −1.23509e6 −1.49805
\(909\) 0 0
\(910\) 0 0
\(911\) 1.49023e6i 1.79562i 0.440378 + 0.897812i \(0.354844\pi\)
−0.440378 + 0.897812i \(0.645156\pi\)
\(912\) 0 0
\(913\) − 311858.i − 0.374124i
\(914\) − 262353.i − 0.314046i
\(915\) 0 0
\(916\) −812942. −0.968877
\(917\) −213530. −0.253934
\(918\) 0 0
\(919\) 1.16759e6 1.38248 0.691240 0.722625i \(-0.257065\pi\)
0.691240 + 0.722625i \(0.257065\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 230557.i − 0.271217i
\(923\) −699881. −0.821525
\(924\) 0 0
\(925\) 0 0
\(926\) − 203333.i − 0.237130i
\(927\) 0 0
\(928\) 1.44088e6i 1.67314i
\(929\) − 709717.i − 0.822345i −0.911558 0.411172i \(-0.865119\pi\)
0.911558 0.411172i \(-0.134881\pi\)
\(930\) 0 0
\(931\) 101726. 0.117364
\(932\) 291933. 0.336087
\(933\) 0 0
\(934\) 571374. 0.654978
\(935\) 0 0
\(936\) 0 0
\(937\) − 294273.i − 0.335175i −0.985857 0.167587i \(-0.946402\pi\)
0.985857 0.167587i \(-0.0535977\pi\)
\(938\) −163500. −0.185829
\(939\) 0 0
\(940\) 0 0
\(941\) − 783701.i − 0.885057i −0.896755 0.442528i \(-0.854082\pi\)
0.896755 0.442528i \(-0.145918\pi\)
\(942\) 0 0
\(943\) 3229.93i 0.00363220i
\(944\) 281767.i 0.316189i
\(945\) 0 0
\(946\) 51029.2 0.0570212
\(947\) 1.35618e6 1.51222 0.756112 0.654442i \(-0.227096\pi\)
0.756112 + 0.654442i \(0.227096\pi\)
\(948\) 0 0
\(949\) 626822. 0.696004
\(950\) 0 0
\(951\) 0 0
\(952\) 236770.i 0.261248i
\(953\) −226626. −0.249531 −0.124766 0.992186i \(-0.539818\pi\)
−0.124766 + 0.992186i \(0.539818\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 333965.i − 0.365414i
\(957\) 0 0
\(958\) 675037.i 0.735524i
\(959\) 300228.i 0.326448i
\(960\) 0 0
\(961\) 1.65507e6 1.79212
\(962\) 403006. 0.435473
\(963\) 0 0
\(964\) −64799.6 −0.0697298
\(965\) 0 0
\(966\) 0 0
\(967\) − 688811.i − 0.736626i −0.929702 0.368313i \(-0.879935\pi\)
0.929702 0.368313i \(-0.120065\pi\)
\(968\) −569106. −0.607355
\(969\) 0 0
\(970\) 0 0
\(971\) 1.30899e6i 1.38835i 0.719807 + 0.694174i \(0.244230\pi\)
−0.719807 + 0.694174i \(0.755770\pi\)
\(972\) 0 0
\(973\) − 2927.75i − 0.00309249i
\(974\) 85883.2i 0.0905295i
\(975\) 0 0
\(976\) −28149.5 −0.0295509
\(977\) 29454.1 0.0308572 0.0154286 0.999881i \(-0.495089\pi\)
0.0154286 + 0.999881i \(0.495089\pi\)
\(978\) 0 0
\(979\) 354807. 0.370192
\(980\) 0 0
\(981\) 0 0
\(982\) − 276966.i − 0.287213i
\(983\) 369377. 0.382264 0.191132 0.981564i \(-0.438784\pi\)
0.191132 + 0.981564i \(0.438784\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 952450.i 0.979689i
\(987\) 0 0
\(988\) − 97218.9i − 0.0995948i
\(989\) 643.096i 0 0.000657481i
\(990\) 0 0
\(991\) 121176. 0.123387 0.0616933 0.998095i \(-0.480350\pi\)
0.0616933 + 0.998095i \(0.480350\pi\)
\(992\) 1.65123e6 1.67797
\(993\) 0 0
\(994\) 90416.2 0.0915110
\(995\) 0 0
\(996\) 0 0
\(997\) − 277965.i − 0.279640i −0.990177 0.139820i \(-0.955348\pi\)
0.990177 0.139820i \(-0.0446525\pi\)
\(998\) 628359. 0.630880
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.5.d.c.224.7 12
3.2 odd 2 inner 225.5.d.c.224.5 12
5.2 odd 4 225.5.c.c.26.4 yes 6
5.3 odd 4 225.5.c.d.26.3 yes 6
5.4 even 2 inner 225.5.d.c.224.6 12
15.2 even 4 225.5.c.c.26.3 6
15.8 even 4 225.5.c.d.26.4 yes 6
15.14 odd 2 inner 225.5.d.c.224.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.5.c.c.26.3 6 15.2 even 4
225.5.c.c.26.4 yes 6 5.2 odd 4
225.5.c.d.26.3 yes 6 5.3 odd 4
225.5.c.d.26.4 yes 6 15.8 even 4
225.5.d.c.224.5 12 3.2 odd 2 inner
225.5.d.c.224.6 12 5.4 even 2 inner
225.5.d.c.224.7 12 1.1 even 1 trivial
225.5.d.c.224.8 12 15.14 odd 2 inner