Properties

Label 225.5.d.c.224.11
Level $225$
Weight $5$
Character 225.224
Analytic conductor $23.258$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,5,Mod(224,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.224"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 225.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2582416939\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 44 x^{10} - 24 x^{9} + 968 x^{8} - 132 x^{7} - 10486 x^{6} + 2904 x^{5} + 56980 x^{4} + \cdots + 162 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{10}\cdot 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 224.11
Root \(2.27380 - 0.941838i\) of defining polynomial
Character \(\chi\) \(=\) 225.224
Dual form 225.5.d.c.224.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.84548 q^{2} +45.5516 q^{4} -71.8372i q^{7} +231.847 q^{8} -66.0480i q^{11} +143.700i q^{13} -563.598i q^{14} +1090.12 q^{16} +88.1175 q^{17} -397.835 q^{19} -518.178i q^{22} +189.182 q^{23} +1127.39i q^{26} -3272.30i q^{28} +649.431i q^{29} +508.987 q^{31} +4843.01 q^{32} +691.325 q^{34} +1273.43i q^{37} -3121.21 q^{38} +1532.30i q^{41} +1275.35i q^{43} -3008.59i q^{44} +1484.23 q^{46} -3096.33 q^{47} -2759.58 q^{49} +6545.75i q^{52} +940.508 q^{53} -16655.2i q^{56} +5095.10i q^{58} -5071.76i q^{59} -625.387 q^{61} +3993.25 q^{62} +20553.7 q^{64} -2767.03i q^{67} +4013.90 q^{68} -2565.51i q^{71} +7892.47i q^{73} +9990.67i q^{74} -18122.0 q^{76} -4744.70 q^{77} -7074.77 q^{79} +12021.6i q^{82} -10466.7 q^{83} +10005.7i q^{86} -15313.0i q^{88} -14076.6i q^{89} +10323.0 q^{91} +8617.55 q^{92} -24292.2 q^{94} +15128.5i q^{97} -21650.3 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 184 q^{4} + 3632 q^{16} + 500 q^{19} + 3692 q^{31} + 7384 q^{34} + 19512 q^{46} + 6464 q^{49} + 21676 q^{61} + 72288 q^{64} - 49560 q^{76} - 7808 q^{79} + 34612 q^{91} - 132728 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 7.84548 1.96137 0.980686 0.195591i \(-0.0626625\pi\)
0.980686 + 0.195591i \(0.0626625\pi\)
\(3\) 0 0
\(4\) 45.5516 2.84698
\(5\) 0 0
\(6\) 0 0
\(7\) − 71.8372i − 1.46607i −0.680194 0.733033i \(-0.738104\pi\)
0.680194 0.733033i \(-0.261896\pi\)
\(8\) 231.847 3.62261
\(9\) 0 0
\(10\) 0 0
\(11\) − 66.0480i − 0.545851i −0.962035 0.272925i \(-0.912009\pi\)
0.962035 0.272925i \(-0.0879913\pi\)
\(12\) 0 0
\(13\) 143.700i 0.850293i 0.905124 + 0.425147i \(0.139777\pi\)
−0.905124 + 0.425147i \(0.860223\pi\)
\(14\) − 563.598i − 2.87550i
\(15\) 0 0
\(16\) 1090.12 4.25830
\(17\) 88.1175 0.304905 0.152452 0.988311i \(-0.451283\pi\)
0.152452 + 0.988311i \(0.451283\pi\)
\(18\) 0 0
\(19\) −397.835 −1.10204 −0.551018 0.834493i \(-0.685761\pi\)
−0.551018 + 0.834493i \(0.685761\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 518.178i − 1.07062i
\(23\) 189.182 0.357622 0.178811 0.983883i \(-0.442775\pi\)
0.178811 + 0.983883i \(0.442775\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1127.39i 1.66774i
\(27\) 0 0
\(28\) − 3272.30i − 4.17385i
\(29\) 649.431i 0.772213i 0.922454 + 0.386106i \(0.126180\pi\)
−0.922454 + 0.386106i \(0.873820\pi\)
\(30\) 0 0
\(31\) 508.987 0.529643 0.264821 0.964297i \(-0.414687\pi\)
0.264821 + 0.964297i \(0.414687\pi\)
\(32\) 4843.01 4.72950
\(33\) 0 0
\(34\) 691.325 0.598032
\(35\) 0 0
\(36\) 0 0
\(37\) 1273.43i 0.930189i 0.885261 + 0.465095i \(0.153980\pi\)
−0.885261 + 0.465095i \(0.846020\pi\)
\(38\) −3121.21 −2.16150
\(39\) 0 0
\(40\) 0 0
\(41\) 1532.30i 0.911541i 0.890097 + 0.455770i \(0.150636\pi\)
−0.890097 + 0.455770i \(0.849364\pi\)
\(42\) 0 0
\(43\) 1275.35i 0.689750i 0.938649 + 0.344875i \(0.112079\pi\)
−0.938649 + 0.344875i \(0.887921\pi\)
\(44\) − 3008.59i − 1.55402i
\(45\) 0 0
\(46\) 1484.23 0.701430
\(47\) −3096.33 −1.40169 −0.700845 0.713314i \(-0.747193\pi\)
−0.700845 + 0.713314i \(0.747193\pi\)
\(48\) 0 0
\(49\) −2759.58 −1.14935
\(50\) 0 0
\(51\) 0 0
\(52\) 6545.75i 2.42076i
\(53\) 940.508 0.334820 0.167410 0.985887i \(-0.446460\pi\)
0.167410 + 0.985887i \(0.446460\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 16655.2i − 5.31098i
\(57\) 0 0
\(58\) 5095.10i 1.51460i
\(59\) − 5071.76i − 1.45698i −0.685055 0.728491i \(-0.740222\pi\)
0.685055 0.728491i \(-0.259778\pi\)
\(60\) 0 0
\(61\) −625.387 −0.168070 −0.0840349 0.996463i \(-0.526781\pi\)
−0.0840349 + 0.996463i \(0.526781\pi\)
\(62\) 3993.25 1.03883
\(63\) 0 0
\(64\) 20553.7 5.01800
\(65\) 0 0
\(66\) 0 0
\(67\) − 2767.03i − 0.616402i −0.951321 0.308201i \(-0.900273\pi\)
0.951321 0.308201i \(-0.0997269\pi\)
\(68\) 4013.90 0.868057
\(69\) 0 0
\(70\) 0 0
\(71\) − 2565.51i − 0.508928i −0.967082 0.254464i \(-0.918101\pi\)
0.967082 0.254464i \(-0.0818991\pi\)
\(72\) 0 0
\(73\) 7892.47i 1.48104i 0.672034 + 0.740521i \(0.265421\pi\)
−0.672034 + 0.740521i \(0.734579\pi\)
\(74\) 9990.67i 1.82445i
\(75\) 0 0
\(76\) −18122.0 −3.13747
\(77\) −4744.70 −0.800253
\(78\) 0 0
\(79\) −7074.77 −1.13359 −0.566797 0.823857i \(-0.691818\pi\)
−0.566797 + 0.823857i \(0.691818\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 12021.6i 1.78787i
\(83\) −10466.7 −1.51934 −0.759670 0.650308i \(-0.774640\pi\)
−0.759670 + 0.650308i \(0.774640\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 10005.7i 1.35286i
\(87\) 0 0
\(88\) − 15313.0i − 1.97740i
\(89\) − 14076.6i − 1.77712i −0.458757 0.888562i \(-0.651705\pi\)
0.458757 0.888562i \(-0.348295\pi\)
\(90\) 0 0
\(91\) 10323.0 1.24659
\(92\) 8617.55 1.01814
\(93\) 0 0
\(94\) −24292.2 −2.74923
\(95\) 0 0
\(96\) 0 0
\(97\) 15128.5i 1.60787i 0.594715 + 0.803936i \(0.297265\pi\)
−0.594715 + 0.803936i \(0.702735\pi\)
\(98\) −21650.3 −2.25430
\(99\) 0 0
\(100\) 0 0
\(101\) 12428.3i 1.21834i 0.793039 + 0.609171i \(0.208498\pi\)
−0.793039 + 0.609171i \(0.791502\pi\)
\(102\) 0 0
\(103\) 4846.79i 0.456856i 0.973561 + 0.228428i \(0.0733586\pi\)
−0.973561 + 0.228428i \(0.926641\pi\)
\(104\) 33316.3i 3.08028i
\(105\) 0 0
\(106\) 7378.74 0.656706
\(107\) −11599.8 −1.01317 −0.506586 0.862190i \(-0.669093\pi\)
−0.506586 + 0.862190i \(0.669093\pi\)
\(108\) 0 0
\(109\) −3965.61 −0.333778 −0.166889 0.985976i \(-0.553372\pi\)
−0.166889 + 0.985976i \(0.553372\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 78311.5i − 6.24294i
\(113\) 16208.3 1.26935 0.634675 0.772779i \(-0.281134\pi\)
0.634675 + 0.772779i \(0.281134\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 29582.6i 2.19847i
\(117\) 0 0
\(118\) − 39790.4i − 2.85768i
\(119\) − 6330.12i − 0.447010i
\(120\) 0 0
\(121\) 10278.7 0.702047
\(122\) −4906.47 −0.329647
\(123\) 0 0
\(124\) 23185.2 1.50788
\(125\) 0 0
\(126\) 0 0
\(127\) 13904.3i 0.862065i 0.902336 + 0.431033i \(0.141851\pi\)
−0.902336 + 0.431033i \(0.858149\pi\)
\(128\) 83765.9 5.11266
\(129\) 0 0
\(130\) 0 0
\(131\) − 28801.6i − 1.67831i −0.543889 0.839157i \(-0.683049\pi\)
0.543889 0.839157i \(-0.316951\pi\)
\(132\) 0 0
\(133\) 28579.4i 1.61566i
\(134\) − 21708.7i − 1.20899i
\(135\) 0 0
\(136\) 20429.8 1.10455
\(137\) 13666.9 0.728166 0.364083 0.931367i \(-0.381382\pi\)
0.364083 + 0.931367i \(0.381382\pi\)
\(138\) 0 0
\(139\) −20672.4 −1.06994 −0.534971 0.844870i \(-0.679677\pi\)
−0.534971 + 0.844870i \(0.679677\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 20127.7i − 0.998198i
\(143\) 9491.06 0.464133
\(144\) 0 0
\(145\) 0 0
\(146\) 61920.2i 2.90487i
\(147\) 0 0
\(148\) 58006.8i 2.64823i
\(149\) − 28936.3i − 1.30338i −0.758486 0.651689i \(-0.774061\pi\)
0.758486 0.651689i \(-0.225939\pi\)
\(150\) 0 0
\(151\) 23469.8 1.02933 0.514666 0.857391i \(-0.327916\pi\)
0.514666 + 0.857391i \(0.327916\pi\)
\(152\) −92236.8 −3.99224
\(153\) 0 0
\(154\) −37224.5 −1.56959
\(155\) 0 0
\(156\) 0 0
\(157\) − 16398.7i − 0.665288i −0.943053 0.332644i \(-0.892059\pi\)
0.943053 0.332644i \(-0.107941\pi\)
\(158\) −55505.0 −2.22340
\(159\) 0 0
\(160\) 0 0
\(161\) − 13590.3i − 0.524297i
\(162\) 0 0
\(163\) 13316.8i 0.501217i 0.968089 + 0.250608i \(0.0806306\pi\)
−0.968089 + 0.250608i \(0.919369\pi\)
\(164\) 69798.8i 2.59514i
\(165\) 0 0
\(166\) −82116.6 −2.97999
\(167\) 4438.33 0.159143 0.0795713 0.996829i \(-0.474645\pi\)
0.0795713 + 0.996829i \(0.474645\pi\)
\(168\) 0 0
\(169\) 7911.44 0.277001
\(170\) 0 0
\(171\) 0 0
\(172\) 58094.1i 1.96370i
\(173\) 4543.18 0.151799 0.0758993 0.997115i \(-0.475817\pi\)
0.0758993 + 0.997115i \(0.475817\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 72000.5i − 2.32440i
\(177\) 0 0
\(178\) − 110438.i − 3.48560i
\(179\) − 2146.50i − 0.0669922i −0.999439 0.0334961i \(-0.989336\pi\)
0.999439 0.0334961i \(-0.0106641\pi\)
\(180\) 0 0
\(181\) −25652.0 −0.783003 −0.391502 0.920177i \(-0.628044\pi\)
−0.391502 + 0.920177i \(0.628044\pi\)
\(182\) 80988.7 2.44502
\(183\) 0 0
\(184\) 43861.3 1.29552
\(185\) 0 0
\(186\) 0 0
\(187\) − 5819.98i − 0.166433i
\(188\) −141043. −3.99058
\(189\) 0 0
\(190\) 0 0
\(191\) − 9988.75i − 0.273807i −0.990584 0.136904i \(-0.956285\pi\)
0.990584 0.136904i \(-0.0437150\pi\)
\(192\) 0 0
\(193\) − 16130.0i − 0.433032i −0.976279 0.216516i \(-0.930531\pi\)
0.976279 0.216516i \(-0.0694693\pi\)
\(194\) 118690.i 3.15364i
\(195\) 0 0
\(196\) −125703. −3.27216
\(197\) −51708.2 −1.33238 −0.666188 0.745784i \(-0.732075\pi\)
−0.666188 + 0.745784i \(0.732075\pi\)
\(198\) 0 0
\(199\) 70238.8 1.77366 0.886831 0.462094i \(-0.152902\pi\)
0.886831 + 0.462094i \(0.152902\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 97506.1i 2.38962i
\(203\) 46653.3 1.13211
\(204\) 0 0
\(205\) 0 0
\(206\) 38025.4i 0.896065i
\(207\) 0 0
\(208\) 156650.i 3.62080i
\(209\) 26276.2i 0.601548i
\(210\) 0 0
\(211\) 26207.3 0.588651 0.294325 0.955705i \(-0.404905\pi\)
0.294325 + 0.955705i \(0.404905\pi\)
\(212\) 42841.7 0.953224
\(213\) 0 0
\(214\) −91006.0 −1.98720
\(215\) 0 0
\(216\) 0 0
\(217\) − 36564.2i − 0.776491i
\(218\) −31112.1 −0.654662
\(219\) 0 0
\(220\) 0 0
\(221\) 12662.4i 0.259259i
\(222\) 0 0
\(223\) 17542.0i 0.352752i 0.984323 + 0.176376i \(0.0564375\pi\)
−0.984323 + 0.176376i \(0.943562\pi\)
\(224\) − 347908.i − 6.93375i
\(225\) 0 0
\(226\) 127162. 2.48967
\(227\) −13248.7 −0.257111 −0.128555 0.991702i \(-0.541034\pi\)
−0.128555 + 0.991702i \(0.541034\pi\)
\(228\) 0 0
\(229\) 66842.0 1.27461 0.637307 0.770610i \(-0.280048\pi\)
0.637307 + 0.770610i \(0.280048\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 150568.i 2.79742i
\(233\) 56549.7 1.04164 0.520821 0.853666i \(-0.325626\pi\)
0.520821 + 0.853666i \(0.325626\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 231027.i − 4.14800i
\(237\) 0 0
\(238\) − 49662.8i − 0.876753i
\(239\) − 28451.5i − 0.498092i −0.968492 0.249046i \(-0.919883\pi\)
0.968492 0.249046i \(-0.0801170\pi\)
\(240\) 0 0
\(241\) −10232.9 −0.176183 −0.0880915 0.996112i \(-0.528077\pi\)
−0.0880915 + 0.996112i \(0.528077\pi\)
\(242\) 80641.1 1.37697
\(243\) 0 0
\(244\) −28487.4 −0.478491
\(245\) 0 0
\(246\) 0 0
\(247\) − 57168.7i − 0.937054i
\(248\) 118007. 1.91869
\(249\) 0 0
\(250\) 0 0
\(251\) − 20591.9i − 0.326850i −0.986556 0.163425i \(-0.947746\pi\)
0.986556 0.163425i \(-0.0522542\pi\)
\(252\) 0 0
\(253\) − 12495.1i − 0.195208i
\(254\) 109086.i 1.69083i
\(255\) 0 0
\(256\) 328324. 5.00983
\(257\) 17042.7 0.258031 0.129015 0.991643i \(-0.458818\pi\)
0.129015 + 0.991643i \(0.458818\pi\)
\(258\) 0 0
\(259\) 91479.6 1.36372
\(260\) 0 0
\(261\) 0 0
\(262\) − 225962.i − 3.29180i
\(263\) 91976.6 1.32974 0.664869 0.746960i \(-0.268487\pi\)
0.664869 + 0.746960i \(0.268487\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 224219.i 3.16890i
\(267\) 0 0
\(268\) − 126043.i − 1.75488i
\(269\) 56341.4i 0.778616i 0.921108 + 0.389308i \(0.127286\pi\)
−0.921108 + 0.389308i \(0.872714\pi\)
\(270\) 0 0
\(271\) −113809. −1.54966 −0.774830 0.632169i \(-0.782165\pi\)
−0.774830 + 0.632169i \(0.782165\pi\)
\(272\) 96059.1 1.29838
\(273\) 0 0
\(274\) 107224. 1.42820
\(275\) 0 0
\(276\) 0 0
\(277\) − 143482.i − 1.86998i −0.354677 0.934989i \(-0.615409\pi\)
0.354677 0.934989i \(-0.384591\pi\)
\(278\) −162185. −2.09855
\(279\) 0 0
\(280\) 0 0
\(281\) − 147781.i − 1.87157i −0.352566 0.935787i \(-0.614691\pi\)
0.352566 0.935787i \(-0.385309\pi\)
\(282\) 0 0
\(283\) − 73418.5i − 0.916712i −0.888769 0.458356i \(-0.848439\pi\)
0.888769 0.458356i \(-0.151561\pi\)
\(284\) − 116863.i − 1.44891i
\(285\) 0 0
\(286\) 74462.0 0.910338
\(287\) 110076. 1.33638
\(288\) 0 0
\(289\) −75756.3 −0.907033
\(290\) 0 0
\(291\) 0 0
\(292\) 359515.i 4.21649i
\(293\) 22481.5 0.261872 0.130936 0.991391i \(-0.458202\pi\)
0.130936 + 0.991391i \(0.458202\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 295240.i 3.36971i
\(297\) 0 0
\(298\) − 227019.i − 2.55641i
\(299\) 27185.4i 0.304084i
\(300\) 0 0
\(301\) 91617.4 1.01122
\(302\) 184132. 2.01890
\(303\) 0 0
\(304\) −433690. −4.69280
\(305\) 0 0
\(306\) 0 0
\(307\) 38654.6i 0.410133i 0.978748 + 0.205067i \(0.0657411\pi\)
−0.978748 + 0.205067i \(0.934259\pi\)
\(308\) −216129. −2.27830
\(309\) 0 0
\(310\) 0 0
\(311\) 91964.6i 0.950823i 0.879763 + 0.475412i \(0.157701\pi\)
−0.879763 + 0.475412i \(0.842299\pi\)
\(312\) 0 0
\(313\) 39467.6i 0.402858i 0.979503 + 0.201429i \(0.0645586\pi\)
−0.979503 + 0.201429i \(0.935441\pi\)
\(314\) − 128656.i − 1.30488i
\(315\) 0 0
\(316\) −322267. −3.22732
\(317\) −101949. −1.01453 −0.507263 0.861791i \(-0.669343\pi\)
−0.507263 + 0.861791i \(0.669343\pi\)
\(318\) 0 0
\(319\) 42893.6 0.421513
\(320\) 0 0
\(321\) 0 0
\(322\) − 106623.i − 1.02834i
\(323\) −35056.2 −0.336016
\(324\) 0 0
\(325\) 0 0
\(326\) 104477.i 0.983072i
\(327\) 0 0
\(328\) 355259.i 3.30215i
\(329\) 222432.i 2.05497i
\(330\) 0 0
\(331\) 2686.55 0.0245210 0.0122605 0.999925i \(-0.496097\pi\)
0.0122605 + 0.999925i \(0.496097\pi\)
\(332\) −476777. −4.32553
\(333\) 0 0
\(334\) 34820.8 0.312138
\(335\) 0 0
\(336\) 0 0
\(337\) 76923.6i 0.677330i 0.940907 + 0.338665i \(0.109975\pi\)
−0.940907 + 0.338665i \(0.890025\pi\)
\(338\) 62069.0 0.543302
\(339\) 0 0
\(340\) 0 0
\(341\) − 33617.5i − 0.289106i
\(342\) 0 0
\(343\) 25759.6i 0.218953i
\(344\) 295685.i 2.49869i
\(345\) 0 0
\(346\) 35643.4 0.297733
\(347\) 166236. 1.38060 0.690298 0.723526i \(-0.257480\pi\)
0.690298 + 0.723526i \(0.257480\pi\)
\(348\) 0 0
\(349\) 172458. 1.41590 0.707948 0.706264i \(-0.249621\pi\)
0.707948 + 0.706264i \(0.249621\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 319871.i − 2.58160i
\(353\) 127971. 1.02698 0.513489 0.858096i \(-0.328353\pi\)
0.513489 + 0.858096i \(0.328353\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 641212.i − 5.05943i
\(357\) 0 0
\(358\) − 16840.3i − 0.131397i
\(359\) − 103906.i − 0.806220i −0.915152 0.403110i \(-0.867929\pi\)
0.915152 0.403110i \(-0.132071\pi\)
\(360\) 0 0
\(361\) 27951.8 0.214484
\(362\) −201252. −1.53576
\(363\) 0 0
\(364\) 470228. 3.54900
\(365\) 0 0
\(366\) 0 0
\(367\) 146305.i 1.08624i 0.839654 + 0.543121i \(0.182758\pi\)
−0.839654 + 0.543121i \(0.817242\pi\)
\(368\) 206232. 1.52286
\(369\) 0 0
\(370\) 0 0
\(371\) − 67563.5i − 0.490867i
\(372\) 0 0
\(373\) − 114715.i − 0.824520i −0.911066 0.412260i \(-0.864740\pi\)
0.911066 0.412260i \(-0.135260\pi\)
\(374\) − 45660.6i − 0.326436i
\(375\) 0 0
\(376\) −717875. −5.07777
\(377\) −93322.9 −0.656607
\(378\) 0 0
\(379\) 24642.5 0.171556 0.0857781 0.996314i \(-0.472662\pi\)
0.0857781 + 0.996314i \(0.472662\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 78366.6i − 0.537037i
\(383\) −78503.5 −0.535170 −0.267585 0.963534i \(-0.586226\pi\)
−0.267585 + 0.963534i \(0.586226\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 126548.i − 0.849336i
\(387\) 0 0
\(388\) 689127.i 4.57758i
\(389\) − 234356.i − 1.54873i −0.632737 0.774367i \(-0.718068\pi\)
0.632737 0.774367i \(-0.281932\pi\)
\(390\) 0 0
\(391\) 16670.3 0.109041
\(392\) −639800. −4.16363
\(393\) 0 0
\(394\) −405676. −2.61328
\(395\) 0 0
\(396\) 0 0
\(397\) − 86679.9i − 0.549968i −0.961449 0.274984i \(-0.911327\pi\)
0.961449 0.274984i \(-0.0886725\pi\)
\(398\) 551057. 3.47881
\(399\) 0 0
\(400\) 0 0
\(401\) 215728.i 1.34158i 0.741646 + 0.670791i \(0.234045\pi\)
−0.741646 + 0.670791i \(0.765955\pi\)
\(402\) 0 0
\(403\) 73141.1i 0.450352i
\(404\) 566130.i 3.46859i
\(405\) 0 0
\(406\) 366018. 2.22050
\(407\) 84107.4 0.507745
\(408\) 0 0
\(409\) −319618. −1.91066 −0.955332 0.295535i \(-0.904502\pi\)
−0.955332 + 0.295535i \(0.904502\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 220779.i 1.30066i
\(413\) −364341. −2.13603
\(414\) 0 0
\(415\) 0 0
\(416\) 695938.i 4.02146i
\(417\) 0 0
\(418\) 206150.i 1.17986i
\(419\) − 215386.i − 1.22684i −0.789756 0.613421i \(-0.789793\pi\)
0.789756 0.613421i \(-0.210207\pi\)
\(420\) 0 0
\(421\) −146608. −0.827169 −0.413584 0.910466i \(-0.635723\pi\)
−0.413584 + 0.910466i \(0.635723\pi\)
\(422\) 205609. 1.15456
\(423\) 0 0
\(424\) 218054. 1.21292
\(425\) 0 0
\(426\) 0 0
\(427\) 44926.1i 0.246401i
\(428\) −528390. −2.88447
\(429\) 0 0
\(430\) 0 0
\(431\) − 187858.i − 1.01129i −0.862742 0.505644i \(-0.831255\pi\)
0.862742 0.505644i \(-0.168745\pi\)
\(432\) 0 0
\(433\) 47754.6i 0.254706i 0.991857 + 0.127353i \(0.0406481\pi\)
−0.991857 + 0.127353i \(0.959352\pi\)
\(434\) − 286864.i − 1.52299i
\(435\) 0 0
\(436\) −180640. −0.950257
\(437\) −75263.3 −0.394113
\(438\) 0 0
\(439\) −171451. −0.889632 −0.444816 0.895622i \(-0.646731\pi\)
−0.444816 + 0.895622i \(0.646731\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 99343.0i 0.508502i
\(443\) −281341. −1.43359 −0.716797 0.697282i \(-0.754393\pi\)
−0.716797 + 0.697282i \(0.754393\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 137626.i 0.691878i
\(447\) 0 0
\(448\) − 1.47652e6i − 7.35672i
\(449\) 177112.i 0.878526i 0.898358 + 0.439263i \(0.144760\pi\)
−0.898358 + 0.439263i \(0.855240\pi\)
\(450\) 0 0
\(451\) 101205. 0.497565
\(452\) 738316. 3.61381
\(453\) 0 0
\(454\) −103942. −0.504289
\(455\) 0 0
\(456\) 0 0
\(457\) 29607.9i 0.141767i 0.997485 + 0.0708836i \(0.0225819\pi\)
−0.997485 + 0.0708836i \(0.977418\pi\)
\(458\) 524408. 2.49999
\(459\) 0 0
\(460\) 0 0
\(461\) 334343.i 1.57322i 0.617448 + 0.786611i \(0.288166\pi\)
−0.617448 + 0.786611i \(0.711834\pi\)
\(462\) 0 0
\(463\) − 109119.i − 0.509022i −0.967070 0.254511i \(-0.918085\pi\)
0.967070 0.254511i \(-0.0819146\pi\)
\(464\) 707961.i 3.28831i
\(465\) 0 0
\(466\) 443660. 2.04305
\(467\) −53031.5 −0.243164 −0.121582 0.992581i \(-0.538797\pi\)
−0.121582 + 0.992581i \(0.538797\pi\)
\(468\) 0 0
\(469\) −198775. −0.903685
\(470\) 0 0
\(471\) 0 0
\(472\) − 1.17587e6i − 5.27807i
\(473\) 84234.1 0.376501
\(474\) 0 0
\(475\) 0 0
\(476\) − 288347.i − 1.27263i
\(477\) 0 0
\(478\) − 223216.i − 0.976943i
\(479\) 55142.8i 0.240335i 0.992754 + 0.120168i \(0.0383432\pi\)
−0.992754 + 0.120168i \(0.961657\pi\)
\(480\) 0 0
\(481\) −182991. −0.790934
\(482\) −80282.0 −0.345560
\(483\) 0 0
\(484\) 468210. 1.99871
\(485\) 0 0
\(486\) 0 0
\(487\) 285889.i 1.20543i 0.797958 + 0.602713i \(0.205913\pi\)
−0.797958 + 0.602713i \(0.794087\pi\)
\(488\) −144994. −0.608850
\(489\) 0 0
\(490\) 0 0
\(491\) 185921.i 0.771199i 0.922666 + 0.385599i \(0.126005\pi\)
−0.922666 + 0.385599i \(0.873995\pi\)
\(492\) 0 0
\(493\) 57226.2i 0.235451i
\(494\) − 448516.i − 1.83791i
\(495\) 0 0
\(496\) 554859. 2.25538
\(497\) −184299. −0.746122
\(498\) 0 0
\(499\) −204968. −0.823162 −0.411581 0.911373i \(-0.635023\pi\)
−0.411581 + 0.911373i \(0.635023\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 161553.i − 0.641074i
\(503\) −144534. −0.571262 −0.285631 0.958340i \(-0.592203\pi\)
−0.285631 + 0.958340i \(0.592203\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 98030.1i − 0.382876i
\(507\) 0 0
\(508\) 633361.i 2.45428i
\(509\) − 253446.i − 0.978251i −0.872214 0.489125i \(-0.837316\pi\)
0.872214 0.489125i \(-0.162684\pi\)
\(510\) 0 0
\(511\) 566973. 2.17130
\(512\) 1.23561e6 4.71347
\(513\) 0 0
\(514\) 133708. 0.506094
\(515\) 0 0
\(516\) 0 0
\(517\) 204506.i 0.765114i
\(518\) 717701. 2.67476
\(519\) 0 0
\(520\) 0 0
\(521\) 195283.i 0.719431i 0.933062 + 0.359716i \(0.117126\pi\)
−0.933062 + 0.359716i \(0.882874\pi\)
\(522\) 0 0
\(523\) − 134628.i − 0.492191i −0.969246 0.246095i \(-0.920852\pi\)
0.969246 0.246095i \(-0.0791476\pi\)
\(524\) − 1.31196e6i − 4.77812i
\(525\) 0 0
\(526\) 721601. 2.60811
\(527\) 44850.6 0.161491
\(528\) 0 0
\(529\) −244051. −0.872106
\(530\) 0 0
\(531\) 0 0
\(532\) 1.30184e6i 4.59974i
\(533\) −220191. −0.775077
\(534\) 0 0
\(535\) 0 0
\(536\) − 641526.i − 2.23298i
\(537\) 0 0
\(538\) 442026.i 1.52715i
\(539\) 182265.i 0.627372i
\(540\) 0 0
\(541\) −206257. −0.704715 −0.352358 0.935865i \(-0.614620\pi\)
−0.352358 + 0.935865i \(0.614620\pi\)
\(542\) −892884. −3.03946
\(543\) 0 0
\(544\) 426754. 1.44205
\(545\) 0 0
\(546\) 0 0
\(547\) 306617.i 1.02476i 0.858759 + 0.512380i \(0.171236\pi\)
−0.858759 + 0.512380i \(0.828764\pi\)
\(548\) 622552. 2.07307
\(549\) 0 0
\(550\) 0 0
\(551\) − 258366.i − 0.851007i
\(552\) 0 0
\(553\) 508231.i 1.66192i
\(554\) − 1.12568e6i − 3.66772i
\(555\) 0 0
\(556\) −941659. −3.04610
\(557\) −268937. −0.866842 −0.433421 0.901191i \(-0.642694\pi\)
−0.433421 + 0.901191i \(0.642694\pi\)
\(558\) 0 0
\(559\) −183267. −0.586490
\(560\) 0 0
\(561\) 0 0
\(562\) − 1.15942e6i − 3.67085i
\(563\) −3899.25 −0.0123017 −0.00615084 0.999981i \(-0.501958\pi\)
−0.00615084 + 0.999981i \(0.501958\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 576004.i − 1.79801i
\(567\) 0 0
\(568\) − 594805.i − 1.84365i
\(569\) 565640.i 1.74709i 0.486742 + 0.873546i \(0.338185\pi\)
−0.486742 + 0.873546i \(0.661815\pi\)
\(570\) 0 0
\(571\) −241622. −0.741078 −0.370539 0.928817i \(-0.620827\pi\)
−0.370539 + 0.928817i \(0.620827\pi\)
\(572\) 432333. 1.32138
\(573\) 0 0
\(574\) 863601. 2.62113
\(575\) 0 0
\(576\) 0 0
\(577\) − 316427.i − 0.950434i −0.879869 0.475217i \(-0.842370\pi\)
0.879869 0.475217i \(-0.157630\pi\)
\(578\) −594345. −1.77903
\(579\) 0 0
\(580\) 0 0
\(581\) 751901.i 2.22745i
\(582\) 0 0
\(583\) − 62118.7i − 0.182762i
\(584\) 1.82984e6i 5.36523i
\(585\) 0 0
\(586\) 176378. 0.513629
\(587\) 410192. 1.19045 0.595225 0.803559i \(-0.297063\pi\)
0.595225 + 0.803559i \(0.297063\pi\)
\(588\) 0 0
\(589\) −202493. −0.583686
\(590\) 0 0
\(591\) 0 0
\(592\) 1.38820e6i 3.96102i
\(593\) 234803. 0.667719 0.333860 0.942623i \(-0.391649\pi\)
0.333860 + 0.942623i \(0.391649\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 1.31810e6i − 3.71069i
\(597\) 0 0
\(598\) 213283.i 0.596421i
\(599\) − 168621.i − 0.469957i −0.972001 0.234979i \(-0.924498\pi\)
0.972001 0.234979i \(-0.0755020\pi\)
\(600\) 0 0
\(601\) −215119. −0.595567 −0.297783 0.954633i \(-0.596247\pi\)
−0.297783 + 0.954633i \(0.596247\pi\)
\(602\) 718783. 1.98337
\(603\) 0 0
\(604\) 1.06909e6 2.93048
\(605\) 0 0
\(606\) 0 0
\(607\) − 42983.3i − 0.116660i −0.998297 0.0583300i \(-0.981422\pi\)
0.998297 0.0583300i \(-0.0185776\pi\)
\(608\) −1.92672e6 −5.21208
\(609\) 0 0
\(610\) 0 0
\(611\) − 444942.i − 1.19185i
\(612\) 0 0
\(613\) − 112093.i − 0.298302i −0.988814 0.149151i \(-0.952346\pi\)
0.988814 0.149151i \(-0.0476540\pi\)
\(614\) 303264.i 0.804423i
\(615\) 0 0
\(616\) −1.10004e6 −2.89900
\(617\) 362760. 0.952904 0.476452 0.879201i \(-0.341923\pi\)
0.476452 + 0.879201i \(0.341923\pi\)
\(618\) 0 0
\(619\) −42918.9 −0.112013 −0.0560063 0.998430i \(-0.517837\pi\)
−0.0560063 + 0.998430i \(0.517837\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 721507.i 1.86492i
\(623\) −1.01122e6 −2.60538
\(624\) 0 0
\(625\) 0 0
\(626\) 309643.i 0.790154i
\(627\) 0 0
\(628\) − 746986.i − 1.89406i
\(629\) 112211.i 0.283619i
\(630\) 0 0
\(631\) −5836.63 −0.0146590 −0.00732948 0.999973i \(-0.502333\pi\)
−0.00732948 + 0.999973i \(0.502333\pi\)
\(632\) −1.64026e6 −4.10657
\(633\) 0 0
\(634\) −799837. −1.98986
\(635\) 0 0
\(636\) 0 0
\(637\) − 396551.i − 0.977282i
\(638\) 336521. 0.826744
\(639\) 0 0
\(640\) 0 0
\(641\) − 12124.4i − 0.0295082i −0.999891 0.0147541i \(-0.995303\pi\)
0.999891 0.0147541i \(-0.00469655\pi\)
\(642\) 0 0
\(643\) − 582868.i − 1.40977i −0.709321 0.704885i \(-0.750998\pi\)
0.709321 0.704885i \(-0.249002\pi\)
\(644\) − 619061.i − 1.49266i
\(645\) 0 0
\(646\) −275033. −0.659053
\(647\) −138936. −0.331899 −0.165950 0.986134i \(-0.553069\pi\)
−0.165950 + 0.986134i \(0.553069\pi\)
\(648\) 0 0
\(649\) −334979. −0.795295
\(650\) 0 0
\(651\) 0 0
\(652\) 606603.i 1.42695i
\(653\) 683920. 1.60391 0.801953 0.597388i \(-0.203795\pi\)
0.801953 + 0.597388i \(0.203795\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.67040e6i 3.88161i
\(657\) 0 0
\(658\) 1.74509e6i 4.03056i
\(659\) − 123857.i − 0.285201i −0.989780 0.142601i \(-0.954454\pi\)
0.989780 0.142601i \(-0.0455464\pi\)
\(660\) 0 0
\(661\) −580923. −1.32958 −0.664792 0.747029i \(-0.731480\pi\)
−0.664792 + 0.747029i \(0.731480\pi\)
\(662\) 21077.3 0.0480948
\(663\) 0 0
\(664\) −2.42668e6 −5.50397
\(665\) 0 0
\(666\) 0 0
\(667\) 122861.i 0.276160i
\(668\) 202173. 0.453075
\(669\) 0 0
\(670\) 0 0
\(671\) 41305.6i 0.0917410i
\(672\) 0 0
\(673\) − 269429.i − 0.594859i −0.954744 0.297429i \(-0.903871\pi\)
0.954744 0.297429i \(-0.0961293\pi\)
\(674\) 603503.i 1.32849i
\(675\) 0 0
\(676\) 360379. 0.788616
\(677\) −660828. −1.44182 −0.720910 0.693029i \(-0.756276\pi\)
−0.720910 + 0.693029i \(0.756276\pi\)
\(678\) 0 0
\(679\) 1.08679e6 2.35725
\(680\) 0 0
\(681\) 0 0
\(682\) − 263746.i − 0.567044i
\(683\) −476650. −1.02178 −0.510891 0.859645i \(-0.670684\pi\)
−0.510891 + 0.859645i \(0.670684\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 202096.i 0.429447i
\(687\) 0 0
\(688\) 1.39029e6i 2.93716i
\(689\) 135151.i 0.284695i
\(690\) 0 0
\(691\) 473634. 0.991942 0.495971 0.868339i \(-0.334812\pi\)
0.495971 + 0.868339i \(0.334812\pi\)
\(692\) 206949. 0.432167
\(693\) 0 0
\(694\) 1.30420e6 2.70786
\(695\) 0 0
\(696\) 0 0
\(697\) 135022.i 0.277933i
\(698\) 1.35301e6 2.77710
\(699\) 0 0
\(700\) 0 0
\(701\) − 403961.i − 0.822061i −0.911622 0.411030i \(-0.865169\pi\)
0.911622 0.411030i \(-0.134831\pi\)
\(702\) 0 0
\(703\) − 506615.i − 1.02510i
\(704\) − 1.35753e6i − 2.73908i
\(705\) 0 0
\(706\) 1.00399e6 2.01428
\(707\) 892815. 1.78617
\(708\) 0 0
\(709\) 908566. 1.80744 0.903720 0.428123i \(-0.140825\pi\)
0.903720 + 0.428123i \(0.140825\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 3.26361e6i − 6.43782i
\(713\) 96291.2 0.189412
\(714\) 0 0
\(715\) 0 0
\(716\) − 97776.4i − 0.190725i
\(717\) 0 0
\(718\) − 815196.i − 1.58130i
\(719\) − 177669.i − 0.343679i −0.985125 0.171840i \(-0.945029\pi\)
0.985125 0.171840i \(-0.0549711\pi\)
\(720\) 0 0
\(721\) 348180. 0.669781
\(722\) 219296. 0.420684
\(723\) 0 0
\(724\) −1.16849e6 −2.22919
\(725\) 0 0
\(726\) 0 0
\(727\) 120930.i 0.228805i 0.993434 + 0.114402i \(0.0364953\pi\)
−0.993434 + 0.114402i \(0.963505\pi\)
\(728\) 2.39335e6 4.51589
\(729\) 0 0
\(730\) 0 0
\(731\) 112380.i 0.210308i
\(732\) 0 0
\(733\) − 152351.i − 0.283555i −0.989899 0.141778i \(-0.954718\pi\)
0.989899 0.141778i \(-0.0452818\pi\)
\(734\) 1.14783e6i 2.13052i
\(735\) 0 0
\(736\) 916210. 1.69137
\(737\) −182757. −0.336463
\(738\) 0 0
\(739\) 836734. 1.53214 0.766070 0.642757i \(-0.222210\pi\)
0.766070 + 0.642757i \(0.222210\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 530068.i − 0.962773i
\(743\) 1.07071e6 1.93952 0.969761 0.244056i \(-0.0784780\pi\)
0.969761 + 0.244056i \(0.0784780\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 899992.i − 1.61719i
\(747\) 0 0
\(748\) − 265110.i − 0.473830i
\(749\) 833297.i 1.48537i
\(750\) 0 0
\(751\) −161149. −0.285724 −0.142862 0.989743i \(-0.545630\pi\)
−0.142862 + 0.989743i \(0.545630\pi\)
\(752\) −3.37539e6 −5.96881
\(753\) 0 0
\(754\) −732164. −1.28785
\(755\) 0 0
\(756\) 0 0
\(757\) − 931899.i − 1.62621i −0.582116 0.813106i \(-0.697775\pi\)
0.582116 0.813106i \(-0.302225\pi\)
\(758\) 193332. 0.336486
\(759\) 0 0
\(760\) 0 0
\(761\) 626672.i 1.08211i 0.840987 + 0.541055i \(0.181975\pi\)
−0.840987 + 0.541055i \(0.818025\pi\)
\(762\) 0 0
\(763\) 284878.i 0.489340i
\(764\) − 455004.i − 0.779522i
\(765\) 0 0
\(766\) −615898. −1.04967
\(767\) 728809. 1.23886
\(768\) 0 0
\(769\) 274367. 0.463958 0.231979 0.972721i \(-0.425480\pi\)
0.231979 + 0.972721i \(0.425480\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 734748.i − 1.23283i
\(773\) −208073. −0.348222 −0.174111 0.984726i \(-0.555705\pi\)
−0.174111 + 0.984726i \(0.555705\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.50749e6i 5.82469i
\(777\) 0 0
\(778\) − 1.83864e6i − 3.03764i
\(779\) − 609603.i − 1.00455i
\(780\) 0 0
\(781\) −169447. −0.277799
\(782\) 130786. 0.213869
\(783\) 0 0
\(784\) −3.00829e6 −4.89426
\(785\) 0 0
\(786\) 0 0
\(787\) 352005.i 0.568329i 0.958776 + 0.284164i \(0.0917161\pi\)
−0.958776 + 0.284164i \(0.908284\pi\)
\(788\) −2.35539e6 −3.79324
\(789\) 0 0
\(790\) 0 0
\(791\) − 1.16436e6i − 1.86095i
\(792\) 0 0
\(793\) − 89867.9i − 0.142909i
\(794\) − 680046.i − 1.07869i
\(795\) 0 0
\(796\) 3.19949e6 5.04957
\(797\) −32487.5 −0.0511445 −0.0255723 0.999673i \(-0.508141\pi\)
−0.0255723 + 0.999673i \(0.508141\pi\)
\(798\) 0 0
\(799\) −272841. −0.427382
\(800\) 0 0
\(801\) 0 0
\(802\) 1.69249e6i 2.63134i
\(803\) 521282. 0.808428
\(804\) 0 0
\(805\) 0 0
\(806\) 573828.i 0.883307i
\(807\) 0 0
\(808\) 2.88146e6i 4.41357i
\(809\) 816191.i 1.24708i 0.781791 + 0.623540i \(0.214306\pi\)
−0.781791 + 0.623540i \(0.785694\pi\)
\(810\) 0 0
\(811\) −827994. −1.25888 −0.629442 0.777048i \(-0.716716\pi\)
−0.629442 + 0.777048i \(0.716716\pi\)
\(812\) 2.12513e6 3.22310
\(813\) 0 0
\(814\) 659863. 0.995876
\(815\) 0 0
\(816\) 0 0
\(817\) − 507378.i − 0.760129i
\(818\) −2.50756e6 −3.74752
\(819\) 0 0
\(820\) 0 0
\(821\) − 547104.i − 0.811678i −0.913945 0.405839i \(-0.866979\pi\)
0.913945 0.405839i \(-0.133021\pi\)
\(822\) 0 0
\(823\) 270702.i 0.399662i 0.979830 + 0.199831i \(0.0640393\pi\)
−0.979830 + 0.199831i \(0.935961\pi\)
\(824\) 1.12371e6i 1.65501i
\(825\) 0 0
\(826\) −2.85843e6 −4.18955
\(827\) 883999. 1.29253 0.646266 0.763113i \(-0.276330\pi\)
0.646266 + 0.763113i \(0.276330\pi\)
\(828\) 0 0
\(829\) −1.01480e6 −1.47663 −0.738314 0.674457i \(-0.764378\pi\)
−0.738314 + 0.674457i \(0.764378\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.95356e6i 4.26677i
\(833\) −243168. −0.350442
\(834\) 0 0
\(835\) 0 0
\(836\) 1.19692e6i 1.71259i
\(837\) 0 0
\(838\) − 1.68980e6i − 2.40629i
\(839\) − 252676.i − 0.358956i −0.983762 0.179478i \(-0.942559\pi\)
0.983762 0.179478i \(-0.0574408\pi\)
\(840\) 0 0
\(841\) 285520. 0.403687
\(842\) −1.15021e6 −1.62239
\(843\) 0 0
\(844\) 1.19379e6 1.67588
\(845\) 0 0
\(846\) 0 0
\(847\) − 738391.i − 1.02925i
\(848\) 1.02527e6 1.42576
\(849\) 0 0
\(850\) 0 0
\(851\) 240910.i 0.332656i
\(852\) 0 0
\(853\) − 454214.i − 0.624256i −0.950040 0.312128i \(-0.898958\pi\)
0.950040 0.312128i \(-0.101042\pi\)
\(854\) 352467.i 0.483284i
\(855\) 0 0
\(856\) −2.68938e6 −3.67032
\(857\) −858025. −1.16826 −0.584128 0.811661i \(-0.698564\pi\)
−0.584128 + 0.811661i \(0.698564\pi\)
\(858\) 0 0
\(859\) 848325. 1.14968 0.574839 0.818267i \(-0.305065\pi\)
0.574839 + 0.818267i \(0.305065\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 1.47384e6i − 1.98351i
\(863\) 358961. 0.481977 0.240988 0.970528i \(-0.422528\pi\)
0.240988 + 0.970528i \(0.422528\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 374658.i 0.499573i
\(867\) 0 0
\(868\) − 1.66556e6i − 2.21065i
\(869\) 467274.i 0.618774i
\(870\) 0 0
\(871\) 397621. 0.524122
\(872\) −919414. −1.20914
\(873\) 0 0
\(874\) −590477. −0.773001
\(875\) 0 0
\(876\) 0 0
\(877\) − 382506.i − 0.497324i −0.968590 0.248662i \(-0.920009\pi\)
0.968590 0.248662i \(-0.0799908\pi\)
\(878\) −1.34511e6 −1.74490
\(879\) 0 0
\(880\) 0 0
\(881\) − 465371.i − 0.599580i −0.954005 0.299790i \(-0.903083\pi\)
0.954005 0.299790i \(-0.0969167\pi\)
\(882\) 0 0
\(883\) 320975.i 0.411671i 0.978587 + 0.205835i \(0.0659911\pi\)
−0.978587 + 0.205835i \(0.934009\pi\)
\(884\) 576795.i 0.738103i
\(885\) 0 0
\(886\) −2.20726e6 −2.81181
\(887\) 1.42234e6 1.80783 0.903913 0.427716i \(-0.140682\pi\)
0.903913 + 0.427716i \(0.140682\pi\)
\(888\) 0 0
\(889\) 998842. 1.26384
\(890\) 0 0
\(891\) 0 0
\(892\) 799067.i 1.00428i
\(893\) 1.23183e6 1.54471
\(894\) 0 0
\(895\) 0 0
\(896\) − 6.01751e6i − 7.49550i
\(897\) 0 0
\(898\) 1.38953e6i 1.72312i
\(899\) 330552.i 0.408997i
\(900\) 0 0
\(901\) 82875.3 0.102088
\(902\) 794005. 0.975911
\(903\) 0 0
\(904\) 3.75785e6 4.59836
\(905\) 0 0
\(906\) 0 0
\(907\) 1.25408e6i 1.52444i 0.647320 + 0.762218i \(0.275890\pi\)
−0.647320 + 0.762218i \(0.724110\pi\)
\(908\) −603498. −0.731988
\(909\) 0 0
\(910\) 0 0
\(911\) − 904900.i − 1.09035i −0.838324 0.545173i \(-0.816464\pi\)
0.838324 0.545173i \(-0.183536\pi\)
\(912\) 0 0
\(913\) 691307.i 0.829334i
\(914\) 232288.i 0.278058i
\(915\) 0 0
\(916\) 3.04476e6 3.62879
\(917\) −2.06902e6 −2.46052
\(918\) 0 0
\(919\) 442763. 0.524252 0.262126 0.965034i \(-0.415576\pi\)
0.262126 + 0.965034i \(0.415576\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.62308e6i 3.08567i
\(923\) 368662. 0.432738
\(924\) 0 0
\(925\) 0 0
\(926\) − 856089.i − 0.998382i
\(927\) 0 0
\(928\) 3.14520e6i 3.65218i
\(929\) − 818048.i − 0.947867i −0.880561 0.473934i \(-0.842834\pi\)
0.880561 0.473934i \(-0.157166\pi\)
\(930\) 0 0
\(931\) 1.09786e6 1.26662
\(932\) 2.57593e6 2.96553
\(933\) 0 0
\(934\) −416058. −0.476936
\(935\) 0 0
\(936\) 0 0
\(937\) − 605604.i − 0.689778i −0.938643 0.344889i \(-0.887917\pi\)
0.938643 0.344889i \(-0.112083\pi\)
\(938\) −1.55949e6 −1.77246
\(939\) 0 0
\(940\) 0 0
\(941\) 794699.i 0.897477i 0.893663 + 0.448739i \(0.148127\pi\)
−0.893663 + 0.448739i \(0.851873\pi\)
\(942\) 0 0
\(943\) 289884.i 0.325987i
\(944\) − 5.52885e6i − 6.20427i
\(945\) 0 0
\(946\) 660857. 0.738457
\(947\) −992010. −1.10616 −0.553078 0.833130i \(-0.686547\pi\)
−0.553078 + 0.833130i \(0.686547\pi\)
\(948\) 0 0
\(949\) −1.13414e6 −1.25932
\(950\) 0 0
\(951\) 0 0
\(952\) − 1.46762e6i − 1.61934i
\(953\) 94165.1 0.103682 0.0518411 0.998655i \(-0.483491\pi\)
0.0518411 + 0.998655i \(0.483491\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 1.29601e6i − 1.41806i
\(957\) 0 0
\(958\) 432622.i 0.471387i
\(959\) − 981795.i − 1.06754i
\(960\) 0 0
\(961\) −664454. −0.719479
\(962\) −1.43565e6 −1.55131
\(963\) 0 0
\(964\) −466125. −0.501589
\(965\) 0 0
\(966\) 0 0
\(967\) 1.46678e6i 1.56860i 0.620385 + 0.784298i \(0.286977\pi\)
−0.620385 + 0.784298i \(0.713023\pi\)
\(968\) 2.38308e6 2.54324
\(969\) 0 0
\(970\) 0 0
\(971\) 414030.i 0.439131i 0.975598 + 0.219565i \(0.0704639\pi\)
−0.975598 + 0.219565i \(0.929536\pi\)
\(972\) 0 0
\(973\) 1.48504e6i 1.56860i
\(974\) 2.24294e6i 2.36429i
\(975\) 0 0
\(976\) −681750. −0.715691
\(977\) −1.07961e6 −1.13104 −0.565520 0.824734i \(-0.691325\pi\)
−0.565520 + 0.824734i \(0.691325\pi\)
\(978\) 0 0
\(979\) −929731. −0.970045
\(980\) 0 0
\(981\) 0 0
\(982\) 1.45864e6i 1.51261i
\(983\) 529376. 0.547844 0.273922 0.961752i \(-0.411679\pi\)
0.273922 + 0.961752i \(0.411679\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 448968.i 0.461808i
\(987\) 0 0
\(988\) − 2.60413e6i − 2.66777i
\(989\) 241273.i 0.246670i
\(990\) 0 0
\(991\) 263507. 0.268315 0.134157 0.990960i \(-0.457167\pi\)
0.134157 + 0.990960i \(0.457167\pi\)
\(992\) 2.46502e6 2.50494
\(993\) 0 0
\(994\) −1.44591e6 −1.46342
\(995\) 0 0
\(996\) 0 0
\(997\) − 329724.i − 0.331711i −0.986150 0.165856i \(-0.946961\pi\)
0.986150 0.165856i \(-0.0530386\pi\)
\(998\) −1.60807e6 −1.61453
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.5.d.c.224.11 12
3.2 odd 2 inner 225.5.d.c.224.1 12
5.2 odd 4 225.5.c.d.26.6 yes 6
5.3 odd 4 225.5.c.c.26.1 6
5.4 even 2 inner 225.5.d.c.224.2 12
15.2 even 4 225.5.c.d.26.1 yes 6
15.8 even 4 225.5.c.c.26.6 yes 6
15.14 odd 2 inner 225.5.d.c.224.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.5.c.c.26.1 6 5.3 odd 4
225.5.c.c.26.6 yes 6 15.8 even 4
225.5.c.d.26.1 yes 6 15.2 even 4
225.5.c.d.26.6 yes 6 5.2 odd 4
225.5.d.c.224.1 12 3.2 odd 2 inner
225.5.d.c.224.2 12 5.4 even 2 inner
225.5.d.c.224.11 12 1.1 even 1 trivial
225.5.d.c.224.12 12 15.14 odd 2 inner