Properties

Label 224.4.a.c.1.2
Level $224$
Weight $4$
Character 224.1
Self dual yes
Analytic conductor $13.216$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [224,4,Mod(1,224)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("224.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(224, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 224 = 2^{5} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 224.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,-6,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.2164278413\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.54138\) of defining polynomial
Character \(\chi\) \(=\) 224.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.08276 q^{3} -9.08276 q^{5} +7.00000 q^{7} -17.4966 q^{9} -34.1655 q^{11} +13.0828 q^{13} -28.0000 q^{15} -12.8276 q^{17} -139.745 q^{19} +21.5793 q^{21} +21.3242 q^{23} -42.5034 q^{25} -137.172 q^{27} +142.814 q^{29} -192.152 q^{31} -105.324 q^{33} -63.5793 q^{35} -115.834 q^{37} +40.3311 q^{39} +396.800 q^{41} -252.510 q^{43} +158.917 q^{45} -11.8208 q^{47} +49.0000 q^{49} -39.5445 q^{51} -295.297 q^{53} +310.317 q^{55} -430.800 q^{57} -269.731 q^{59} -233.745 q^{61} -122.476 q^{63} -118.828 q^{65} -975.918 q^{67} +65.7374 q^{69} +870.317 q^{71} +391.600 q^{73} -131.028 q^{75} -239.159 q^{77} +897.573 q^{79} +49.5377 q^{81} +658.159 q^{83} +116.510 q^{85} +440.261 q^{87} +32.6210 q^{89} +91.5793 q^{91} -592.358 q^{93} +1269.27 q^{95} +991.145 q^{97} +597.780 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 6 q^{5} + 14 q^{7} + 38 q^{9} - 44 q^{11} + 14 q^{13} - 56 q^{15} + 96 q^{17} - 170 q^{19} - 42 q^{21} - 152 q^{23} - 158 q^{25} - 396 q^{27} - 128 q^{29} - 68 q^{31} - 16 q^{33} - 42 q^{35}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.08276 0.593278 0.296639 0.954990i \(-0.404134\pi\)
0.296639 + 0.954990i \(0.404134\pi\)
\(4\) 0 0
\(5\) −9.08276 −0.812387 −0.406193 0.913787i \(-0.633144\pi\)
−0.406193 + 0.913787i \(0.633144\pi\)
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) −17.4966 −0.648021
\(10\) 0 0
\(11\) −34.1655 −0.936481 −0.468241 0.883601i \(-0.655112\pi\)
−0.468241 + 0.883601i \(0.655112\pi\)
\(12\) 0 0
\(13\) 13.0828 0.279116 0.139558 0.990214i \(-0.455432\pi\)
0.139558 + 0.990214i \(0.455432\pi\)
\(14\) 0 0
\(15\) −28.0000 −0.481971
\(16\) 0 0
\(17\) −12.8276 −0.183009 −0.0915046 0.995805i \(-0.529168\pi\)
−0.0915046 + 0.995805i \(0.529168\pi\)
\(18\) 0 0
\(19\) −139.745 −1.68735 −0.843676 0.536853i \(-0.819613\pi\)
−0.843676 + 0.536853i \(0.819613\pi\)
\(20\) 0 0
\(21\) 21.5793 0.224238
\(22\) 0 0
\(23\) 21.3242 0.193322 0.0966609 0.995317i \(-0.469184\pi\)
0.0966609 + 0.995317i \(0.469184\pi\)
\(24\) 0 0
\(25\) −42.5034 −0.340027
\(26\) 0 0
\(27\) −137.172 −0.977735
\(28\) 0 0
\(29\) 142.814 0.914479 0.457239 0.889344i \(-0.348838\pi\)
0.457239 + 0.889344i \(0.348838\pi\)
\(30\) 0 0
\(31\) −192.152 −1.11327 −0.556637 0.830756i \(-0.687909\pi\)
−0.556637 + 0.830756i \(0.687909\pi\)
\(32\) 0 0
\(33\) −105.324 −0.555594
\(34\) 0 0
\(35\) −63.5793 −0.307053
\(36\) 0 0
\(37\) −115.834 −0.514678 −0.257339 0.966321i \(-0.582846\pi\)
−0.257339 + 0.966321i \(0.582846\pi\)
\(38\) 0 0
\(39\) 40.3311 0.165593
\(40\) 0 0
\(41\) 396.800 1.51146 0.755729 0.654884i \(-0.227283\pi\)
0.755729 + 0.654884i \(0.227283\pi\)
\(42\) 0 0
\(43\) −252.510 −0.895522 −0.447761 0.894153i \(-0.647778\pi\)
−0.447761 + 0.894153i \(0.647778\pi\)
\(44\) 0 0
\(45\) 158.917 0.526444
\(46\) 0 0
\(47\) −11.8208 −0.0366859 −0.0183430 0.999832i \(-0.505839\pi\)
−0.0183430 + 0.999832i \(0.505839\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −39.5445 −0.108575
\(52\) 0 0
\(53\) −295.297 −0.765323 −0.382662 0.923889i \(-0.624992\pi\)
−0.382662 + 0.923889i \(0.624992\pi\)
\(54\) 0 0
\(55\) 310.317 0.760785
\(56\) 0 0
\(57\) −430.800 −1.00107
\(58\) 0 0
\(59\) −269.731 −0.595187 −0.297593 0.954693i \(-0.596184\pi\)
−0.297593 + 0.954693i \(0.596184\pi\)
\(60\) 0 0
\(61\) −233.745 −0.490622 −0.245311 0.969444i \(-0.578890\pi\)
−0.245311 + 0.969444i \(0.578890\pi\)
\(62\) 0 0
\(63\) −122.476 −0.244929
\(64\) 0 0
\(65\) −118.828 −0.226750
\(66\) 0 0
\(67\) −975.918 −1.77951 −0.889756 0.456436i \(-0.849126\pi\)
−0.889756 + 0.456436i \(0.849126\pi\)
\(68\) 0 0
\(69\) 65.7374 0.114694
\(70\) 0 0
\(71\) 870.317 1.45476 0.727378 0.686237i \(-0.240739\pi\)
0.727378 + 0.686237i \(0.240739\pi\)
\(72\) 0 0
\(73\) 391.600 0.627854 0.313927 0.949447i \(-0.398355\pi\)
0.313927 + 0.949447i \(0.398355\pi\)
\(74\) 0 0
\(75\) −131.028 −0.201731
\(76\) 0 0
\(77\) −239.159 −0.353957
\(78\) 0 0
\(79\) 897.573 1.27829 0.639145 0.769087i \(-0.279289\pi\)
0.639145 + 0.769087i \(0.279289\pi\)
\(80\) 0 0
\(81\) 49.5377 0.0679529
\(82\) 0 0
\(83\) 658.159 0.870390 0.435195 0.900336i \(-0.356679\pi\)
0.435195 + 0.900336i \(0.356679\pi\)
\(84\) 0 0
\(85\) 116.510 0.148674
\(86\) 0 0
\(87\) 440.261 0.542540
\(88\) 0 0
\(89\) 32.6210 0.0388519 0.0194260 0.999811i \(-0.493816\pi\)
0.0194260 + 0.999811i \(0.493816\pi\)
\(90\) 0 0
\(91\) 91.5793 0.105496
\(92\) 0 0
\(93\) −592.358 −0.660481
\(94\) 0 0
\(95\) 1269.27 1.37078
\(96\) 0 0
\(97\) 991.145 1.03748 0.518740 0.854932i \(-0.326401\pi\)
0.518740 + 0.854932i \(0.326401\pi\)
\(98\) 0 0
\(99\) 597.780 0.606860
\(100\) 0 0
\(101\) 501.180 0.493755 0.246877 0.969047i \(-0.420595\pi\)
0.246877 + 0.969047i \(0.420595\pi\)
\(102\) 0 0
\(103\) 709.503 0.678733 0.339366 0.940654i \(-0.389787\pi\)
0.339366 + 0.940654i \(0.389787\pi\)
\(104\) 0 0
\(105\) −196.000 −0.182168
\(106\) 0 0
\(107\) 860.304 0.777278 0.388639 0.921390i \(-0.372945\pi\)
0.388639 + 0.921390i \(0.372945\pi\)
\(108\) 0 0
\(109\) 1415.72 1.24405 0.622027 0.782996i \(-0.286309\pi\)
0.622027 + 0.782996i \(0.286309\pi\)
\(110\) 0 0
\(111\) −357.090 −0.305347
\(112\) 0 0
\(113\) −1621.82 −1.35016 −0.675080 0.737745i \(-0.735891\pi\)
−0.675080 + 0.737745i \(0.735891\pi\)
\(114\) 0 0
\(115\) −193.683 −0.157052
\(116\) 0 0
\(117\) −228.904 −0.180873
\(118\) 0 0
\(119\) −89.7934 −0.0691710
\(120\) 0 0
\(121\) −163.717 −0.123003
\(122\) 0 0
\(123\) 1223.24 0.896715
\(124\) 0 0
\(125\) 1521.39 1.08862
\(126\) 0 0
\(127\) −1964.91 −1.37289 −0.686447 0.727179i \(-0.740831\pi\)
−0.686447 + 0.727179i \(0.740831\pi\)
\(128\) 0 0
\(129\) −778.429 −0.531294
\(130\) 0 0
\(131\) −1023.97 −0.682934 −0.341467 0.939894i \(-0.610924\pi\)
−0.341467 + 0.939894i \(0.610924\pi\)
\(132\) 0 0
\(133\) −978.214 −0.637759
\(134\) 0 0
\(135\) 1245.90 0.794299
\(136\) 0 0
\(137\) 2534.94 1.58084 0.790418 0.612568i \(-0.209864\pi\)
0.790418 + 0.612568i \(0.209864\pi\)
\(138\) 0 0
\(139\) 509.676 0.311009 0.155504 0.987835i \(-0.450300\pi\)
0.155504 + 0.987835i \(0.450300\pi\)
\(140\) 0 0
\(141\) −36.4406 −0.0217649
\(142\) 0 0
\(143\) −446.979 −0.261387
\(144\) 0 0
\(145\) −1297.14 −0.742911
\(146\) 0 0
\(147\) 151.055 0.0847540
\(148\) 0 0
\(149\) −2263.55 −1.24454 −0.622271 0.782802i \(-0.713790\pi\)
−0.622271 + 0.782802i \(0.713790\pi\)
\(150\) 0 0
\(151\) −1184.44 −0.638334 −0.319167 0.947699i \(-0.603403\pi\)
−0.319167 + 0.947699i \(0.603403\pi\)
\(152\) 0 0
\(153\) 224.440 0.118594
\(154\) 0 0
\(155\) 1745.27 0.904409
\(156\) 0 0
\(157\) −1426.70 −0.725241 −0.362621 0.931937i \(-0.618118\pi\)
−0.362621 + 0.931937i \(0.618118\pi\)
\(158\) 0 0
\(159\) −910.330 −0.454049
\(160\) 0 0
\(161\) 149.269 0.0730688
\(162\) 0 0
\(163\) −2473.04 −1.18836 −0.594181 0.804331i \(-0.702524\pi\)
−0.594181 + 0.804331i \(0.702524\pi\)
\(164\) 0 0
\(165\) 956.635 0.451357
\(166\) 0 0
\(167\) −338.083 −0.156657 −0.0783284 0.996928i \(-0.524958\pi\)
−0.0783284 + 0.996928i \(0.524958\pi\)
\(168\) 0 0
\(169\) −2025.84 −0.922094
\(170\) 0 0
\(171\) 2445.06 1.09344
\(172\) 0 0
\(173\) 967.482 0.425181 0.212591 0.977141i \(-0.431810\pi\)
0.212591 + 0.977141i \(0.431810\pi\)
\(174\) 0 0
\(175\) −297.524 −0.128518
\(176\) 0 0
\(177\) −831.517 −0.353111
\(178\) 0 0
\(179\) −2438.13 −1.01807 −0.509034 0.860747i \(-0.669997\pi\)
−0.509034 + 0.860747i \(0.669997\pi\)
\(180\) 0 0
\(181\) 4711.93 1.93500 0.967499 0.252875i \(-0.0813761\pi\)
0.967499 + 0.252875i \(0.0813761\pi\)
\(182\) 0 0
\(183\) −720.580 −0.291075
\(184\) 0 0
\(185\) 1052.10 0.418117
\(186\) 0 0
\(187\) 438.263 0.171385
\(188\) 0 0
\(189\) −960.207 −0.369549
\(190\) 0 0
\(191\) −5172.66 −1.95959 −0.979793 0.200015i \(-0.935901\pi\)
−0.979793 + 0.200015i \(0.935901\pi\)
\(192\) 0 0
\(193\) 2199.06 0.820166 0.410083 0.912048i \(-0.365500\pi\)
0.410083 + 0.912048i \(0.365500\pi\)
\(194\) 0 0
\(195\) −366.317 −0.134526
\(196\) 0 0
\(197\) −3572.73 −1.29212 −0.646058 0.763289i \(-0.723583\pi\)
−0.646058 + 0.763289i \(0.723583\pi\)
\(198\) 0 0
\(199\) −3198.17 −1.13926 −0.569628 0.821903i \(-0.692913\pi\)
−0.569628 + 0.821903i \(0.692913\pi\)
\(200\) 0 0
\(201\) −3008.52 −1.05575
\(202\) 0 0
\(203\) 999.697 0.345640
\(204\) 0 0
\(205\) −3604.04 −1.22789
\(206\) 0 0
\(207\) −373.100 −0.125277
\(208\) 0 0
\(209\) 4774.46 1.58017
\(210\) 0 0
\(211\) −2686.70 −0.876589 −0.438294 0.898831i \(-0.644417\pi\)
−0.438294 + 0.898831i \(0.644417\pi\)
\(212\) 0 0
\(213\) 2682.98 0.863075
\(214\) 0 0
\(215\) 2293.49 0.727511
\(216\) 0 0
\(217\) −1345.06 −0.420778
\(218\) 0 0
\(219\) 1207.21 0.372492
\(220\) 0 0
\(221\) −167.821 −0.0510808
\(222\) 0 0
\(223\) −6352.75 −1.90767 −0.953837 0.300324i \(-0.902905\pi\)
−0.953837 + 0.300324i \(0.902905\pi\)
\(224\) 0 0
\(225\) 743.664 0.220345
\(226\) 0 0
\(227\) −1205.23 −0.352397 −0.176199 0.984355i \(-0.556380\pi\)
−0.176199 + 0.984355i \(0.556380\pi\)
\(228\) 0 0
\(229\) 867.345 0.250287 0.125144 0.992139i \(-0.460061\pi\)
0.125144 + 0.992139i \(0.460061\pi\)
\(230\) 0 0
\(231\) −737.269 −0.209995
\(232\) 0 0
\(233\) −232.151 −0.0652734 −0.0326367 0.999467i \(-0.510390\pi\)
−0.0326367 + 0.999467i \(0.510390\pi\)
\(234\) 0 0
\(235\) 107.365 0.0298031
\(236\) 0 0
\(237\) 2767.00 0.758381
\(238\) 0 0
\(239\) −131.283 −0.0355314 −0.0177657 0.999842i \(-0.505655\pi\)
−0.0177657 + 0.999842i \(0.505655\pi\)
\(240\) 0 0
\(241\) 5858.79 1.56597 0.782983 0.622043i \(-0.213697\pi\)
0.782983 + 0.622043i \(0.213697\pi\)
\(242\) 0 0
\(243\) 3856.37 1.01805
\(244\) 0 0
\(245\) −445.055 −0.116055
\(246\) 0 0
\(247\) −1828.25 −0.470966
\(248\) 0 0
\(249\) 2028.95 0.516383
\(250\) 0 0
\(251\) 1795.55 0.451531 0.225765 0.974182i \(-0.427512\pi\)
0.225765 + 0.974182i \(0.427512\pi\)
\(252\) 0 0
\(253\) −728.553 −0.181042
\(254\) 0 0
\(255\) 359.174 0.0882052
\(256\) 0 0
\(257\) −7753.70 −1.88195 −0.940977 0.338469i \(-0.890091\pi\)
−0.940977 + 0.338469i \(0.890091\pi\)
\(258\) 0 0
\(259\) −810.841 −0.194530
\(260\) 0 0
\(261\) −2498.75 −0.592602
\(262\) 0 0
\(263\) 5937.02 1.39199 0.695993 0.718048i \(-0.254964\pi\)
0.695993 + 0.718048i \(0.254964\pi\)
\(264\) 0 0
\(265\) 2682.11 0.621739
\(266\) 0 0
\(267\) 100.563 0.0230500
\(268\) 0 0
\(269\) −2313.02 −0.524264 −0.262132 0.965032i \(-0.584426\pi\)
−0.262132 + 0.965032i \(0.584426\pi\)
\(270\) 0 0
\(271\) −5212.08 −1.16831 −0.584154 0.811643i \(-0.698574\pi\)
−0.584154 + 0.811643i \(0.698574\pi\)
\(272\) 0 0
\(273\) 282.317 0.0625884
\(274\) 0 0
\(275\) 1452.15 0.318429
\(276\) 0 0
\(277\) −6984.74 −1.51506 −0.757531 0.652799i \(-0.773594\pi\)
−0.757531 + 0.652799i \(0.773594\pi\)
\(278\) 0 0
\(279\) 3362.00 0.721425
\(280\) 0 0
\(281\) −6845.51 −1.45327 −0.726635 0.687024i \(-0.758917\pi\)
−0.726635 + 0.687024i \(0.758917\pi\)
\(282\) 0 0
\(283\) 7726.11 1.62286 0.811430 0.584450i \(-0.198690\pi\)
0.811430 + 0.584450i \(0.198690\pi\)
\(284\) 0 0
\(285\) 3912.86 0.813255
\(286\) 0 0
\(287\) 2777.60 0.571277
\(288\) 0 0
\(289\) −4748.45 −0.966508
\(290\) 0 0
\(291\) 3055.46 0.615514
\(292\) 0 0
\(293\) 9674.17 1.92891 0.964456 0.264243i \(-0.0851223\pi\)
0.964456 + 0.264243i \(0.0851223\pi\)
\(294\) 0 0
\(295\) 2449.90 0.483522
\(296\) 0 0
\(297\) 4686.57 0.915630
\(298\) 0 0
\(299\) 278.979 0.0539592
\(300\) 0 0
\(301\) −1767.57 −0.338476
\(302\) 0 0
\(303\) 1545.02 0.292934
\(304\) 0 0
\(305\) 2123.05 0.398575
\(306\) 0 0
\(307\) −2131.55 −0.396267 −0.198134 0.980175i \(-0.563488\pi\)
−0.198134 + 0.980175i \(0.563488\pi\)
\(308\) 0 0
\(309\) 2187.23 0.402677
\(310\) 0 0
\(311\) 6502.68 1.18564 0.592818 0.805336i \(-0.298015\pi\)
0.592818 + 0.805336i \(0.298015\pi\)
\(312\) 0 0
\(313\) −8879.89 −1.60358 −0.801791 0.597604i \(-0.796119\pi\)
−0.801791 + 0.597604i \(0.796119\pi\)
\(314\) 0 0
\(315\) 1112.42 0.198977
\(316\) 0 0
\(317\) −2818.86 −0.499441 −0.249720 0.968318i \(-0.580339\pi\)
−0.249720 + 0.968318i \(0.580339\pi\)
\(318\) 0 0
\(319\) −4879.31 −0.856392
\(320\) 0 0
\(321\) 2652.11 0.461142
\(322\) 0 0
\(323\) 1792.59 0.308801
\(324\) 0 0
\(325\) −556.062 −0.0949070
\(326\) 0 0
\(327\) 4364.34 0.738070
\(328\) 0 0
\(329\) −82.7454 −0.0138660
\(330\) 0 0
\(331\) −5572.13 −0.925292 −0.462646 0.886543i \(-0.653100\pi\)
−0.462646 + 0.886543i \(0.653100\pi\)
\(332\) 0 0
\(333\) 2026.71 0.333522
\(334\) 0 0
\(335\) 8864.03 1.44565
\(336\) 0 0
\(337\) 1014.24 0.163944 0.0819718 0.996635i \(-0.473878\pi\)
0.0819718 + 0.996635i \(0.473878\pi\)
\(338\) 0 0
\(339\) −4999.69 −0.801020
\(340\) 0 0
\(341\) 6564.97 1.04256
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) −597.078 −0.0931756
\(346\) 0 0
\(347\) 863.408 0.133574 0.0667870 0.997767i \(-0.478725\pi\)
0.0667870 + 0.997767i \(0.478725\pi\)
\(348\) 0 0
\(349\) 2772.92 0.425303 0.212652 0.977128i \(-0.431790\pi\)
0.212652 + 0.977128i \(0.431790\pi\)
\(350\) 0 0
\(351\) −1794.59 −0.272901
\(352\) 0 0
\(353\) −350.333 −0.0528226 −0.0264113 0.999651i \(-0.508408\pi\)
−0.0264113 + 0.999651i \(0.508408\pi\)
\(354\) 0 0
\(355\) −7904.89 −1.18182
\(356\) 0 0
\(357\) −276.812 −0.0410376
\(358\) 0 0
\(359\) 12932.4 1.90124 0.950618 0.310362i \(-0.100450\pi\)
0.950618 + 0.310362i \(0.100450\pi\)
\(360\) 0 0
\(361\) 12669.6 1.84715
\(362\) 0 0
\(363\) −504.700 −0.0729749
\(364\) 0 0
\(365\) −3556.81 −0.510061
\(366\) 0 0
\(367\) −969.349 −0.137874 −0.0689368 0.997621i \(-0.521961\pi\)
−0.0689368 + 0.997621i \(0.521961\pi\)
\(368\) 0 0
\(369\) −6942.64 −0.979457
\(370\) 0 0
\(371\) −2067.08 −0.289265
\(372\) 0 0
\(373\) −5399.55 −0.749539 −0.374769 0.927118i \(-0.622278\pi\)
−0.374769 + 0.927118i \(0.622278\pi\)
\(374\) 0 0
\(375\) 4690.10 0.645855
\(376\) 0 0
\(377\) 1868.40 0.255245
\(378\) 0 0
\(379\) 2296.87 0.311299 0.155650 0.987812i \(-0.450253\pi\)
0.155650 + 0.987812i \(0.450253\pi\)
\(380\) 0 0
\(381\) −6057.35 −0.814508
\(382\) 0 0
\(383\) 9908.90 1.32199 0.660993 0.750392i \(-0.270135\pi\)
0.660993 + 0.750392i \(0.270135\pi\)
\(384\) 0 0
\(385\) 2172.22 0.287550
\(386\) 0 0
\(387\) 4418.07 0.580317
\(388\) 0 0
\(389\) −3858.40 −0.502901 −0.251451 0.967870i \(-0.580908\pi\)
−0.251451 + 0.967870i \(0.580908\pi\)
\(390\) 0 0
\(391\) −273.539 −0.0353797
\(392\) 0 0
\(393\) −3156.64 −0.405170
\(394\) 0 0
\(395\) −8152.44 −1.03847
\(396\) 0 0
\(397\) 8571.26 1.08357 0.541787 0.840516i \(-0.317748\pi\)
0.541787 + 0.840516i \(0.317748\pi\)
\(398\) 0 0
\(399\) −3015.60 −0.378368
\(400\) 0 0
\(401\) 8756.14 1.09043 0.545213 0.838298i \(-0.316449\pi\)
0.545213 + 0.838298i \(0.316449\pi\)
\(402\) 0 0
\(403\) −2513.88 −0.310732
\(404\) 0 0
\(405\) −449.939 −0.0552041
\(406\) 0 0
\(407\) 3957.55 0.481986
\(408\) 0 0
\(409\) −1739.67 −0.210321 −0.105160 0.994455i \(-0.533536\pi\)
−0.105160 + 0.994455i \(0.533536\pi\)
\(410\) 0 0
\(411\) 7814.61 0.937875
\(412\) 0 0
\(413\) −1888.12 −0.224959
\(414\) 0 0
\(415\) −5977.90 −0.707093
\(416\) 0 0
\(417\) 1571.21 0.184514
\(418\) 0 0
\(419\) −7998.16 −0.932543 −0.466272 0.884642i \(-0.654403\pi\)
−0.466272 + 0.884642i \(0.654403\pi\)
\(420\) 0 0
\(421\) 8002.03 0.926354 0.463177 0.886266i \(-0.346709\pi\)
0.463177 + 0.886266i \(0.346709\pi\)
\(422\) 0 0
\(423\) 206.823 0.0237732
\(424\) 0 0
\(425\) 545.218 0.0622281
\(426\) 0 0
\(427\) −1636.21 −0.185438
\(428\) 0 0
\(429\) −1377.93 −0.155075
\(430\) 0 0
\(431\) −8374.93 −0.935977 −0.467989 0.883734i \(-0.655021\pi\)
−0.467989 + 0.883734i \(0.655021\pi\)
\(432\) 0 0
\(433\) −10136.5 −1.12501 −0.562505 0.826794i \(-0.690162\pi\)
−0.562505 + 0.826794i \(0.690162\pi\)
\(434\) 0 0
\(435\) −3998.79 −0.440752
\(436\) 0 0
\(437\) −2979.95 −0.326202
\(438\) 0 0
\(439\) −11505.6 −1.25087 −0.625433 0.780278i \(-0.715078\pi\)
−0.625433 + 0.780278i \(0.715078\pi\)
\(440\) 0 0
\(441\) −857.332 −0.0925745
\(442\) 0 0
\(443\) −3045.88 −0.326668 −0.163334 0.986571i \(-0.552225\pi\)
−0.163334 + 0.986571i \(0.552225\pi\)
\(444\) 0 0
\(445\) −296.289 −0.0315628
\(446\) 0 0
\(447\) −6977.97 −0.738360
\(448\) 0 0
\(449\) −8831.38 −0.928238 −0.464119 0.885773i \(-0.653629\pi\)
−0.464119 + 0.885773i \(0.653629\pi\)
\(450\) 0 0
\(451\) −13556.9 −1.41545
\(452\) 0 0
\(453\) −3651.35 −0.378709
\(454\) 0 0
\(455\) −831.793 −0.0857035
\(456\) 0 0
\(457\) 4058.54 0.415428 0.207714 0.978190i \(-0.433398\pi\)
0.207714 + 0.978190i \(0.433398\pi\)
\(458\) 0 0
\(459\) 1759.60 0.178934
\(460\) 0 0
\(461\) −6858.56 −0.692917 −0.346459 0.938065i \(-0.612616\pi\)
−0.346459 + 0.938065i \(0.612616\pi\)
\(462\) 0 0
\(463\) 3587.32 0.360079 0.180040 0.983659i \(-0.442377\pi\)
0.180040 + 0.983659i \(0.442377\pi\)
\(464\) 0 0
\(465\) 5380.25 0.536566
\(466\) 0 0
\(467\) −12553.5 −1.24391 −0.621954 0.783054i \(-0.713661\pi\)
−0.621954 + 0.783054i \(0.713661\pi\)
\(468\) 0 0
\(469\) −6831.42 −0.672592
\(470\) 0 0
\(471\) −4398.17 −0.430270
\(472\) 0 0
\(473\) 8627.15 0.838640
\(474\) 0 0
\(475\) 5939.64 0.573746
\(476\) 0 0
\(477\) 5166.68 0.495946
\(478\) 0 0
\(479\) 7622.42 0.727092 0.363546 0.931576i \(-0.381566\pi\)
0.363546 + 0.931576i \(0.381566\pi\)
\(480\) 0 0
\(481\) −1515.43 −0.143655
\(482\) 0 0
\(483\) 460.162 0.0433501
\(484\) 0 0
\(485\) −9002.33 −0.842835
\(486\) 0 0
\(487\) −19040.9 −1.77171 −0.885856 0.463960i \(-0.846428\pi\)
−0.885856 + 0.463960i \(0.846428\pi\)
\(488\) 0 0
\(489\) −7623.78 −0.705029
\(490\) 0 0
\(491\) −14451.3 −1.32827 −0.664134 0.747613i \(-0.731200\pi\)
−0.664134 + 0.747613i \(0.731200\pi\)
\(492\) 0 0
\(493\) −1831.96 −0.167358
\(494\) 0 0
\(495\) −5429.49 −0.493005
\(496\) 0 0
\(497\) 6092.22 0.549846
\(498\) 0 0
\(499\) 8904.70 0.798856 0.399428 0.916765i \(-0.369209\pi\)
0.399428 + 0.916765i \(0.369209\pi\)
\(500\) 0 0
\(501\) −1042.23 −0.0929410
\(502\) 0 0
\(503\) 14787.6 1.31083 0.655413 0.755271i \(-0.272495\pi\)
0.655413 + 0.755271i \(0.272495\pi\)
\(504\) 0 0
\(505\) −4552.10 −0.401120
\(506\) 0 0
\(507\) −6245.19 −0.547058
\(508\) 0 0
\(509\) 20698.0 1.80240 0.901201 0.433401i \(-0.142687\pi\)
0.901201 + 0.433401i \(0.142687\pi\)
\(510\) 0 0
\(511\) 2741.20 0.237307
\(512\) 0 0
\(513\) 19169.1 1.64978
\(514\) 0 0
\(515\) −6444.25 −0.551393
\(516\) 0 0
\(517\) 403.863 0.0343557
\(518\) 0 0
\(519\) 2982.52 0.252251
\(520\) 0 0
\(521\) −5283.86 −0.444319 −0.222159 0.975010i \(-0.571311\pi\)
−0.222159 + 0.975010i \(0.571311\pi\)
\(522\) 0 0
\(523\) 1489.36 0.124522 0.0622611 0.998060i \(-0.480169\pi\)
0.0622611 + 0.998060i \(0.480169\pi\)
\(524\) 0 0
\(525\) −917.196 −0.0762471
\(526\) 0 0
\(527\) 2464.85 0.203739
\(528\) 0 0
\(529\) −11712.3 −0.962627
\(530\) 0 0
\(531\) 4719.37 0.385694
\(532\) 0 0
\(533\) 5191.24 0.421872
\(534\) 0 0
\(535\) −7813.93 −0.631450
\(536\) 0 0
\(537\) −7516.16 −0.603997
\(538\) 0 0
\(539\) −1674.11 −0.133783
\(540\) 0 0
\(541\) 5574.20 0.442982 0.221491 0.975162i \(-0.428908\pi\)
0.221491 + 0.975162i \(0.428908\pi\)
\(542\) 0 0
\(543\) 14525.7 1.14799
\(544\) 0 0
\(545\) −12858.7 −1.01065
\(546\) 0 0
\(547\) −809.449 −0.0632715 −0.0316358 0.999499i \(-0.510072\pi\)
−0.0316358 + 0.999499i \(0.510072\pi\)
\(548\) 0 0
\(549\) 4089.73 0.317934
\(550\) 0 0
\(551\) −19957.5 −1.54305
\(552\) 0 0
\(553\) 6283.01 0.483148
\(554\) 0 0
\(555\) 3243.37 0.248060
\(556\) 0 0
\(557\) −12199.2 −0.927998 −0.463999 0.885836i \(-0.653586\pi\)
−0.463999 + 0.885836i \(0.653586\pi\)
\(558\) 0 0
\(559\) −3303.53 −0.249954
\(560\) 0 0
\(561\) 1351.06 0.101679
\(562\) 0 0
\(563\) 22708.9 1.69994 0.849971 0.526829i \(-0.176619\pi\)
0.849971 + 0.526829i \(0.176619\pi\)
\(564\) 0 0
\(565\) 14730.6 1.09685
\(566\) 0 0
\(567\) 346.764 0.0256838
\(568\) 0 0
\(569\) 19186.3 1.41359 0.706793 0.707421i \(-0.250141\pi\)
0.706793 + 0.707421i \(0.250141\pi\)
\(570\) 0 0
\(571\) 15757.5 1.15487 0.577433 0.816438i \(-0.304054\pi\)
0.577433 + 0.816438i \(0.304054\pi\)
\(572\) 0 0
\(573\) −15946.1 −1.16258
\(574\) 0 0
\(575\) −906.352 −0.0657347
\(576\) 0 0
\(577\) 4445.32 0.320729 0.160365 0.987058i \(-0.448733\pi\)
0.160365 + 0.987058i \(0.448733\pi\)
\(578\) 0 0
\(579\) 6779.19 0.486586
\(580\) 0 0
\(581\) 4607.11 0.328976
\(582\) 0 0
\(583\) 10089.0 0.716711
\(584\) 0 0
\(585\) 2079.08 0.146939
\(586\) 0 0
\(587\) −23183.2 −1.63011 −0.815054 0.579385i \(-0.803293\pi\)
−0.815054 + 0.579385i \(0.803293\pi\)
\(588\) 0 0
\(589\) 26852.2 1.87848
\(590\) 0 0
\(591\) −11013.9 −0.766583
\(592\) 0 0
\(593\) −9639.30 −0.667519 −0.333759 0.942658i \(-0.608317\pi\)
−0.333759 + 0.942658i \(0.608317\pi\)
\(594\) 0 0
\(595\) 815.572 0.0561936
\(596\) 0 0
\(597\) −9859.18 −0.675895
\(598\) 0 0
\(599\) −1294.46 −0.0882976 −0.0441488 0.999025i \(-0.514058\pi\)
−0.0441488 + 0.999025i \(0.514058\pi\)
\(600\) 0 0
\(601\) −3912.65 −0.265558 −0.132779 0.991146i \(-0.542390\pi\)
−0.132779 + 0.991146i \(0.542390\pi\)
\(602\) 0 0
\(603\) 17075.2 1.15316
\(604\) 0 0
\(605\) 1487.00 0.0999260
\(606\) 0 0
\(607\) 20986.8 1.40334 0.701670 0.712503i \(-0.252438\pi\)
0.701670 + 0.712503i \(0.252438\pi\)
\(608\) 0 0
\(609\) 3081.83 0.205061
\(610\) 0 0
\(611\) −154.648 −0.0102396
\(612\) 0 0
\(613\) −14701.1 −0.968633 −0.484316 0.874893i \(-0.660932\pi\)
−0.484316 + 0.874893i \(0.660932\pi\)
\(614\) 0 0
\(615\) −11110.4 −0.728479
\(616\) 0 0
\(617\) −3795.09 −0.247625 −0.123812 0.992306i \(-0.539512\pi\)
−0.123812 + 0.992306i \(0.539512\pi\)
\(618\) 0 0
\(619\) 11335.1 0.736020 0.368010 0.929822i \(-0.380039\pi\)
0.368010 + 0.929822i \(0.380039\pi\)
\(620\) 0 0
\(621\) −2925.09 −0.189017
\(622\) 0 0
\(623\) 228.347 0.0146846
\(624\) 0 0
\(625\) −8505.53 −0.544354
\(626\) 0 0
\(627\) 14718.5 0.937482
\(628\) 0 0
\(629\) 1485.88 0.0941907
\(630\) 0 0
\(631\) −17565.2 −1.10817 −0.554087 0.832459i \(-0.686933\pi\)
−0.554087 + 0.832459i \(0.686933\pi\)
\(632\) 0 0
\(633\) −8282.47 −0.520061
\(634\) 0 0
\(635\) 17846.8 1.11532
\(636\) 0 0
\(637\) 641.055 0.0398737
\(638\) 0 0
\(639\) −15227.6 −0.942713
\(640\) 0 0
\(641\) −10053.0 −0.619451 −0.309726 0.950826i \(-0.600237\pi\)
−0.309726 + 0.950826i \(0.600237\pi\)
\(642\) 0 0
\(643\) 26476.7 1.62386 0.811928 0.583757i \(-0.198418\pi\)
0.811928 + 0.583757i \(0.198418\pi\)
\(644\) 0 0
\(645\) 7070.29 0.431616
\(646\) 0 0
\(647\) −4372.68 −0.265700 −0.132850 0.991136i \(-0.542413\pi\)
−0.132850 + 0.991136i \(0.542413\pi\)
\(648\) 0 0
\(649\) 9215.51 0.557381
\(650\) 0 0
\(651\) −4146.51 −0.249638
\(652\) 0 0
\(653\) 18328.4 1.09839 0.549193 0.835696i \(-0.314935\pi\)
0.549193 + 0.835696i \(0.314935\pi\)
\(654\) 0 0
\(655\) 9300.44 0.554807
\(656\) 0 0
\(657\) −6851.67 −0.406863
\(658\) 0 0
\(659\) 19536.1 1.15481 0.577404 0.816458i \(-0.304066\pi\)
0.577404 + 0.816458i \(0.304066\pi\)
\(660\) 0 0
\(661\) −23169.3 −1.36336 −0.681679 0.731651i \(-0.738750\pi\)
−0.681679 + 0.731651i \(0.738750\pi\)
\(662\) 0 0
\(663\) −517.352 −0.0303051
\(664\) 0 0
\(665\) 8884.89 0.518107
\(666\) 0 0
\(667\) 3045.39 0.176789
\(668\) 0 0
\(669\) −19584.0 −1.13178
\(670\) 0 0
\(671\) 7986.02 0.459459
\(672\) 0 0
\(673\) 11370.9 0.651287 0.325644 0.945493i \(-0.394419\pi\)
0.325644 + 0.945493i \(0.394419\pi\)
\(674\) 0 0
\(675\) 5830.30 0.332457
\(676\) 0 0
\(677\) −3556.00 −0.201873 −0.100937 0.994893i \(-0.532184\pi\)
−0.100937 + 0.994893i \(0.532184\pi\)
\(678\) 0 0
\(679\) 6938.01 0.392130
\(680\) 0 0
\(681\) −3715.45 −0.209069
\(682\) 0 0
\(683\) −16124.8 −0.903367 −0.451683 0.892178i \(-0.649176\pi\)
−0.451683 + 0.892178i \(0.649176\pi\)
\(684\) 0 0
\(685\) −23024.2 −1.28425
\(686\) 0 0
\(687\) 2673.82 0.148490
\(688\) 0 0
\(689\) −3863.30 −0.213614
\(690\) 0 0
\(691\) 14358.8 0.790499 0.395250 0.918574i \(-0.370658\pi\)
0.395250 + 0.918574i \(0.370658\pi\)
\(692\) 0 0
\(693\) 4184.46 0.229371
\(694\) 0 0
\(695\) −4629.27 −0.252659
\(696\) 0 0
\(697\) −5090.00 −0.276611
\(698\) 0 0
\(699\) −715.665 −0.0387253
\(700\) 0 0
\(701\) 16098.4 0.867374 0.433687 0.901064i \(-0.357212\pi\)
0.433687 + 0.901064i \(0.357212\pi\)
\(702\) 0 0
\(703\) 16187.3 0.868442
\(704\) 0 0
\(705\) 330.982 0.0176815
\(706\) 0 0
\(707\) 3508.26 0.186622
\(708\) 0 0
\(709\) 6849.63 0.362826 0.181413 0.983407i \(-0.441933\pi\)
0.181413 + 0.983407i \(0.441933\pi\)
\(710\) 0 0
\(711\) −15704.5 −0.828359
\(712\) 0 0
\(713\) −4097.48 −0.215220
\(714\) 0 0
\(715\) 4059.81 0.212347
\(716\) 0 0
\(717\) −404.715 −0.0210800
\(718\) 0 0
\(719\) 9257.56 0.480179 0.240090 0.970751i \(-0.422823\pi\)
0.240090 + 0.970751i \(0.422823\pi\)
\(720\) 0 0
\(721\) 4966.52 0.256537
\(722\) 0 0
\(723\) 18061.3 0.929053
\(724\) 0 0
\(725\) −6070.08 −0.310948
\(726\) 0 0
\(727\) 7188.96 0.366745 0.183373 0.983043i \(-0.441299\pi\)
0.183373 + 0.983043i \(0.441299\pi\)
\(728\) 0 0
\(729\) 10550.7 0.536033
\(730\) 0 0
\(731\) 3239.11 0.163889
\(732\) 0 0
\(733\) 19359.3 0.975515 0.487757 0.872979i \(-0.337815\pi\)
0.487757 + 0.872979i \(0.337815\pi\)
\(734\) 0 0
\(735\) −1372.00 −0.0688530
\(736\) 0 0
\(737\) 33342.7 1.66648
\(738\) 0 0
\(739\) 1159.95 0.0577395 0.0288697 0.999583i \(-0.490809\pi\)
0.0288697 + 0.999583i \(0.490809\pi\)
\(740\) 0 0
\(741\) −5636.06 −0.279414
\(742\) 0 0
\(743\) 12095.9 0.597248 0.298624 0.954371i \(-0.403472\pi\)
0.298624 + 0.954371i \(0.403472\pi\)
\(744\) 0 0
\(745\) 20559.2 1.01105
\(746\) 0 0
\(747\) −11515.5 −0.564031
\(748\) 0 0
\(749\) 6022.13 0.293783
\(750\) 0 0
\(751\) −22296.3 −1.08336 −0.541679 0.840585i \(-0.682211\pi\)
−0.541679 + 0.840585i \(0.682211\pi\)
\(752\) 0 0
\(753\) 5535.26 0.267883
\(754\) 0 0
\(755\) 10758.0 0.518574
\(756\) 0 0
\(757\) 17611.2 0.845563 0.422782 0.906232i \(-0.361054\pi\)
0.422782 + 0.906232i \(0.361054\pi\)
\(758\) 0 0
\(759\) −2245.95 −0.107408
\(760\) 0 0
\(761\) −28792.7 −1.37153 −0.685765 0.727823i \(-0.740532\pi\)
−0.685765 + 0.727823i \(0.740532\pi\)
\(762\) 0 0
\(763\) 9910.07 0.470208
\(764\) 0 0
\(765\) −2038.53 −0.0963441
\(766\) 0 0
\(767\) −3528.83 −0.166126
\(768\) 0 0
\(769\) −34104.7 −1.59928 −0.799640 0.600480i \(-0.794976\pi\)
−0.799640 + 0.600480i \(0.794976\pi\)
\(770\) 0 0
\(771\) −23902.8 −1.11652
\(772\) 0 0
\(773\) 3821.35 0.177807 0.0889033 0.996040i \(-0.471664\pi\)
0.0889033 + 0.996040i \(0.471664\pi\)
\(774\) 0 0
\(775\) 8167.11 0.378544
\(776\) 0 0
\(777\) −2499.63 −0.115410
\(778\) 0 0
\(779\) −55450.8 −2.55036
\(780\) 0 0
\(781\) −29734.8 −1.36235
\(782\) 0 0
\(783\) −19590.1 −0.894117
\(784\) 0 0
\(785\) 12958.4 0.589177
\(786\) 0 0
\(787\) −3580.88 −0.162191 −0.0810956 0.996706i \(-0.525842\pi\)
−0.0810956 + 0.996706i \(0.525842\pi\)
\(788\) 0 0
\(789\) 18302.4 0.825835
\(790\) 0 0
\(791\) −11352.7 −0.510312
\(792\) 0 0
\(793\) −3058.03 −0.136940
\(794\) 0 0
\(795\) 8268.31 0.368864
\(796\) 0 0
\(797\) −31970.7 −1.42091 −0.710453 0.703745i \(-0.751510\pi\)
−0.710453 + 0.703745i \(0.751510\pi\)
\(798\) 0 0
\(799\) 151.632 0.00671386
\(800\) 0 0
\(801\) −570.756 −0.0251769
\(802\) 0 0
\(803\) −13379.2 −0.587974
\(804\) 0 0
\(805\) −1355.78 −0.0593601
\(806\) 0 0
\(807\) −7130.48 −0.311034
\(808\) 0 0
\(809\) 5730.20 0.249027 0.124514 0.992218i \(-0.460263\pi\)
0.124514 + 0.992218i \(0.460263\pi\)
\(810\) 0 0
\(811\) −16525.5 −0.715523 −0.357761 0.933813i \(-0.616460\pi\)
−0.357761 + 0.933813i \(0.616460\pi\)
\(812\) 0 0
\(813\) −16067.6 −0.693131
\(814\) 0 0
\(815\) 22462.0 0.965410
\(816\) 0 0
\(817\) 35287.0 1.51106
\(818\) 0 0
\(819\) −1602.32 −0.0683636
\(820\) 0 0
\(821\) 9304.93 0.395547 0.197774 0.980248i \(-0.436629\pi\)
0.197774 + 0.980248i \(0.436629\pi\)
\(822\) 0 0
\(823\) 20220.8 0.856443 0.428222 0.903674i \(-0.359140\pi\)
0.428222 + 0.903674i \(0.359140\pi\)
\(824\) 0 0
\(825\) 4476.64 0.188917
\(826\) 0 0
\(827\) −37983.5 −1.59712 −0.798558 0.601919i \(-0.794403\pi\)
−0.798558 + 0.601919i \(0.794403\pi\)
\(828\) 0 0
\(829\) −24674.8 −1.03376 −0.516882 0.856056i \(-0.672908\pi\)
−0.516882 + 0.856056i \(0.672908\pi\)
\(830\) 0 0
\(831\) −21532.3 −0.898853
\(832\) 0 0
\(833\) −628.554 −0.0261442
\(834\) 0 0
\(835\) 3070.73 0.127266
\(836\) 0 0
\(837\) 26357.9 1.08849
\(838\) 0 0
\(839\) −41574.9 −1.71076 −0.855378 0.518005i \(-0.826675\pi\)
−0.855378 + 0.518005i \(0.826675\pi\)
\(840\) 0 0
\(841\) −3993.18 −0.163729
\(842\) 0 0
\(843\) −21103.1 −0.862193
\(844\) 0 0
\(845\) 18400.2 0.749097
\(846\) 0 0
\(847\) −1146.02 −0.0464907
\(848\) 0 0
\(849\) 23817.8 0.962807
\(850\) 0 0
\(851\) −2470.08 −0.0994984
\(852\) 0 0
\(853\) 13103.0 0.525953 0.262976 0.964802i \(-0.415296\pi\)
0.262976 + 0.964802i \(0.415296\pi\)
\(854\) 0 0
\(855\) −22207.9 −0.888296
\(856\) 0 0
\(857\) −4100.11 −0.163427 −0.0817135 0.996656i \(-0.526039\pi\)
−0.0817135 + 0.996656i \(0.526039\pi\)
\(858\) 0 0
\(859\) −17741.5 −0.704695 −0.352347 0.935869i \(-0.614616\pi\)
−0.352347 + 0.935869i \(0.614616\pi\)
\(860\) 0 0
\(861\) 8562.69 0.338926
\(862\) 0 0
\(863\) 41942.8 1.65440 0.827201 0.561907i \(-0.189932\pi\)
0.827201 + 0.561907i \(0.189932\pi\)
\(864\) 0 0
\(865\) −8787.41 −0.345412
\(866\) 0 0
\(867\) −14638.3 −0.573408
\(868\) 0 0
\(869\) −30666.1 −1.19709
\(870\) 0 0
\(871\) −12767.7 −0.496690
\(872\) 0 0
\(873\) −17341.6 −0.672309
\(874\) 0 0
\(875\) 10649.8 0.411460
\(876\) 0 0
\(877\) 27562.4 1.06125 0.530625 0.847607i \(-0.321957\pi\)
0.530625 + 0.847607i \(0.321957\pi\)
\(878\) 0 0
\(879\) 29823.2 1.14438
\(880\) 0 0
\(881\) −39863.8 −1.52446 −0.762228 0.647308i \(-0.775895\pi\)
−0.762228 + 0.647308i \(0.775895\pi\)
\(882\) 0 0
\(883\) 38030.3 1.44940 0.724701 0.689064i \(-0.241978\pi\)
0.724701 + 0.689064i \(0.241978\pi\)
\(884\) 0 0
\(885\) 7552.47 0.286863
\(886\) 0 0
\(887\) 12130.5 0.459190 0.229595 0.973286i \(-0.426260\pi\)
0.229595 + 0.973286i \(0.426260\pi\)
\(888\) 0 0
\(889\) −13754.4 −0.518905
\(890\) 0 0
\(891\) −1692.48 −0.0636366
\(892\) 0 0
\(893\) 1651.89 0.0619020
\(894\) 0 0
\(895\) 22144.9 0.827065
\(896\) 0 0
\(897\) 860.027 0.0320128
\(898\) 0 0
\(899\) −27442.0 −1.01807
\(900\) 0 0
\(901\) 3787.96 0.140061
\(902\) 0 0
\(903\) −5449.00 −0.200810
\(904\) 0 0
\(905\) −42797.3 −1.57197
\(906\) 0 0
\(907\) −42557.0 −1.55797 −0.778987 0.627039i \(-0.784266\pi\)
−0.778987 + 0.627039i \(0.784266\pi\)
\(908\) 0 0
\(909\) −8768.93 −0.319964
\(910\) 0 0
\(911\) −9996.30 −0.363548 −0.181774 0.983340i \(-0.558184\pi\)
−0.181774 + 0.983340i \(0.558184\pi\)
\(912\) 0 0
\(913\) −22486.4 −0.815104
\(914\) 0 0
\(915\) 6544.86 0.236466
\(916\) 0 0
\(917\) −7167.76 −0.258125
\(918\) 0 0
\(919\) 8273.88 0.296986 0.148493 0.988913i \(-0.452558\pi\)
0.148493 + 0.988913i \(0.452558\pi\)
\(920\) 0 0
\(921\) −6571.06 −0.235097
\(922\) 0 0
\(923\) 11386.2 0.406045
\(924\) 0 0
\(925\) 4923.36 0.175004
\(926\) 0 0
\(927\) −12413.9 −0.439833
\(928\) 0 0
\(929\) 8388.40 0.296248 0.148124 0.988969i \(-0.452677\pi\)
0.148124 + 0.988969i \(0.452677\pi\)
\(930\) 0 0
\(931\) −6847.50 −0.241050
\(932\) 0 0
\(933\) 20046.2 0.703412
\(934\) 0 0
\(935\) −3980.63 −0.139231
\(936\) 0 0
\(937\) −3757.33 −0.130999 −0.0654997 0.997853i \(-0.520864\pi\)
−0.0654997 + 0.997853i \(0.520864\pi\)
\(938\) 0 0
\(939\) −27374.6 −0.951370
\(940\) 0 0
\(941\) 10842.3 0.375610 0.187805 0.982206i \(-0.439863\pi\)
0.187805 + 0.982206i \(0.439863\pi\)
\(942\) 0 0
\(943\) 8461.45 0.292198
\(944\) 0 0
\(945\) 8721.33 0.300217
\(946\) 0 0
\(947\) −9717.58 −0.333452 −0.166726 0.986003i \(-0.553319\pi\)
−0.166726 + 0.986003i \(0.553319\pi\)
\(948\) 0 0
\(949\) 5123.22 0.175244
\(950\) 0 0
\(951\) −8689.86 −0.296307
\(952\) 0 0
\(953\) 30184.9 1.02601 0.513003 0.858387i \(-0.328533\pi\)
0.513003 + 0.858387i \(0.328533\pi\)
\(954\) 0 0
\(955\) 46982.1 1.59194
\(956\) 0 0
\(957\) −15041.8 −0.508079
\(958\) 0 0
\(959\) 17744.6 0.597499
\(960\) 0 0
\(961\) 7131.32 0.239378
\(962\) 0 0
\(963\) −15052.4 −0.503692
\(964\) 0 0
\(965\) −19973.6 −0.666292
\(966\) 0 0
\(967\) 9170.72 0.304975 0.152487 0.988305i \(-0.451272\pi\)
0.152487 + 0.988305i \(0.451272\pi\)
\(968\) 0 0
\(969\) 5526.14 0.183205
\(970\) 0 0
\(971\) −52443.9 −1.73327 −0.866634 0.498944i \(-0.833721\pi\)
−0.866634 + 0.498944i \(0.833721\pi\)
\(972\) 0 0
\(973\) 3567.73 0.117550
\(974\) 0 0
\(975\) −1714.21 −0.0563062
\(976\) 0 0
\(977\) 9348.90 0.306139 0.153070 0.988215i \(-0.451084\pi\)
0.153070 + 0.988215i \(0.451084\pi\)
\(978\) 0 0
\(979\) −1114.51 −0.0363841
\(980\) 0 0
\(981\) −24770.3 −0.806173
\(982\) 0 0
\(983\) −23736.4 −0.770167 −0.385084 0.922882i \(-0.625827\pi\)
−0.385084 + 0.922882i \(0.625827\pi\)
\(984\) 0 0
\(985\) 32450.3 1.04970
\(986\) 0 0
\(987\) −255.085 −0.00822637
\(988\) 0 0
\(989\) −5384.58 −0.173124
\(990\) 0 0
\(991\) −15639.9 −0.501330 −0.250665 0.968074i \(-0.580649\pi\)
−0.250665 + 0.968074i \(0.580649\pi\)
\(992\) 0 0
\(993\) −17177.5 −0.548956
\(994\) 0 0
\(995\) 29048.2 0.925517
\(996\) 0 0
\(997\) −17347.8 −0.551064 −0.275532 0.961292i \(-0.588854\pi\)
−0.275532 + 0.961292i \(0.588854\pi\)
\(998\) 0 0
\(999\) 15889.3 0.503218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 224.4.a.c.1.2 2
3.2 odd 2 2016.4.a.p.1.2 2
4.3 odd 2 224.4.a.d.1.1 yes 2
7.6 odd 2 1568.4.a.u.1.1 2
8.3 odd 2 448.4.a.q.1.2 2
8.5 even 2 448.4.a.t.1.1 2
12.11 even 2 2016.4.a.o.1.2 2
28.27 even 2 1568.4.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
224.4.a.c.1.2 2 1.1 even 1 trivial
224.4.a.d.1.1 yes 2 4.3 odd 2
448.4.a.q.1.2 2 8.3 odd 2
448.4.a.t.1.1 2 8.5 even 2
1568.4.a.p.1.2 2 28.27 even 2
1568.4.a.u.1.1 2 7.6 odd 2
2016.4.a.o.1.2 2 12.11 even 2
2016.4.a.p.1.2 2 3.2 odd 2