Properties

Label 222.3.l.d.97.1
Level $222$
Weight $3$
Character 222.97
Analytic conductor $6.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [222,3,Mod(97,222)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("222.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(222, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 222 = 2 \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 222.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.04906186880\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 318 x^{13} + 8876 x^{12} - 14732 x^{11} + 38482 x^{10} + 1520688 x^{9} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 97.1
Root \(-5.45996 + 5.45996i\) of defining polynomial
Character \(\chi\) \(=\) 222.97
Dual form 222.3.l.d.103.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-2.36451 + 8.82447i) q^{5} +(-1.73205 - 1.73205i) q^{6} +(-4.27169 - 7.39879i) q^{7} +(2.00000 + 2.00000i) q^{8} +(1.50000 - 2.59808i) q^{9} +12.9199 q^{10} +8.88099i q^{11} +(-1.73205 + 3.00000i) q^{12} +(-4.38313 + 16.3581i) q^{13} +(-8.54338 + 8.54338i) q^{14} +(4.09545 + 15.2844i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-10.2285 + 2.74071i) q^{17} +(-4.09808 - 1.09808i) q^{18} +(-7.84483 + 29.2773i) q^{19} +(-4.72902 - 17.6489i) q^{20} +(-12.8151 - 7.39879i) q^{21} +(12.1317 - 3.25067i) q^{22} +(26.9493 + 26.9493i) q^{23} +(4.73205 + 1.26795i) q^{24} +(-50.6298 - 29.2311i) q^{25} +23.9499 q^{26} -5.19615i q^{27} +(14.7976 + 8.54338i) q^{28} +(35.0886 - 35.0886i) q^{29} +(19.3799 - 11.1890i) q^{30} +(8.07977 - 8.07977i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(7.69117 + 13.3215i) q^{33} +(7.48776 + 12.9692i) q^{34} +(75.3908 - 20.2009i) q^{35} +6.00000i q^{36} +(-36.9831 - 1.11766i) q^{37} +42.8650 q^{38} +(7.59180 + 28.3330i) q^{39} +(-22.3780 + 12.9199i) q^{40} +(-33.8332 + 19.5336i) q^{41} +(-5.41629 + 20.2139i) q^{42} +(-6.81615 - 6.81615i) q^{43} +(-8.88099 - 15.3823i) q^{44} +(19.3799 + 19.3799i) q^{45} +(26.9493 - 46.6775i) q^{46} -46.2282 q^{47} -6.92820i q^{48} +(-11.9947 + 20.7754i) q^{49} +(-21.3987 + 79.8609i) q^{50} +(-12.9692 + 12.9692i) q^{51} +(-8.76626 - 32.7161i) q^{52} +(24.3949 - 42.2532i) q^{53} +(-7.09808 + 1.90192i) q^{54} +(-78.3701 - 20.9992i) q^{55} +(6.25419 - 23.3410i) q^{56} +(13.5877 + 50.7098i) q^{57} +(-60.7752 - 35.0886i) q^{58} +(29.2966 - 7.85000i) q^{59} +(-22.3780 - 22.3780i) q^{60} +(32.7891 + 8.78582i) q^{61} +(-13.9946 - 8.07977i) q^{62} -25.6301 q^{63} +8.00000i q^{64} +(-133.987 - 77.3576i) q^{65} +(15.3823 - 15.3823i) q^{66} +(30.6840 - 17.7154i) q^{67} +(14.9755 - 14.9755i) q^{68} +(63.7626 + 17.0851i) q^{69} +(-55.1899 - 95.5918i) q^{70} +(41.7426 + 72.3003i) q^{71} +(8.19615 - 2.19615i) q^{72} +55.4373i q^{73} +(12.0100 + 50.9290i) q^{74} -101.260 q^{75} +(-15.6897 - 58.5546i) q^{76} +(65.7086 - 37.9369i) q^{77} +(35.9248 - 20.7412i) q^{78} +(24.2914 - 90.6567i) q^{79} +(25.8399 + 25.8399i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(39.0672 + 39.0672i) q^{82} +(-32.5526 + 56.3828i) q^{83} +29.5951 q^{84} -96.7412i q^{85} +(-6.81615 + 11.8059i) q^{86} +(22.2453 - 83.0205i) q^{87} +(-17.7620 + 17.7620i) q^{88} +(18.4963 + 69.0290i) q^{89} +(19.3799 - 33.5670i) q^{90} +(139.753 - 37.4467i) q^{91} +(-73.6267 - 19.7282i) q^{92} +(5.12237 - 19.1169i) q^{93} +(16.9207 + 63.1489i) q^{94} +(-239.808 - 138.453i) q^{95} +(-9.46410 + 2.53590i) q^{96} +(-104.978 - 104.978i) q^{97} +(32.7701 + 8.78072i) q^{98} +(23.0735 + 13.3215i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 24 q^{3} + 6 q^{5} - 14 q^{7} + 32 q^{8} + 24 q^{9} + 24 q^{10} - 16 q^{13} - 28 q^{14} + 18 q^{15} + 32 q^{16} - 16 q^{17} - 24 q^{18} + 42 q^{19} + 12 q^{20} - 42 q^{21} + 46 q^{22} - 34 q^{23}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/222\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(187\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −2.36451 + 8.82447i −0.472902 + 1.76489i 0.156359 + 0.987700i \(0.450024\pi\)
−0.629261 + 0.777194i \(0.716642\pi\)
\(6\) −1.73205 1.73205i −0.288675 0.288675i
\(7\) −4.27169 7.39879i −0.610242 1.05697i −0.991199 0.132377i \(-0.957739\pi\)
0.380958 0.924592i \(-0.375594\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 12.9199 1.29199
\(11\) 8.88099i 0.807363i 0.914900 + 0.403682i \(0.132270\pi\)
−0.914900 + 0.403682i \(0.867730\pi\)
\(12\) −1.73205 + 3.00000i −0.144338 + 0.250000i
\(13\) −4.38313 + 16.3581i −0.337164 + 1.25831i 0.564340 + 0.825542i \(0.309131\pi\)
−0.901504 + 0.432770i \(0.857536\pi\)
\(14\) −8.54338 + 8.54338i −0.610242 + 0.610242i
\(15\) 4.09545 + 15.2844i 0.273030 + 1.01896i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −10.2285 + 2.74071i −0.601674 + 0.161218i −0.546783 0.837274i \(-0.684148\pi\)
−0.0548911 + 0.998492i \(0.517481\pi\)
\(18\) −4.09808 1.09808i −0.227671 0.0610042i
\(19\) −7.84483 + 29.2773i −0.412886 + 1.54091i 0.376147 + 0.926560i \(0.377249\pi\)
−0.789033 + 0.614351i \(0.789418\pi\)
\(20\) −4.72902 17.6489i −0.236451 0.882447i
\(21\) −12.8151 7.39879i −0.610242 0.352323i
\(22\) 12.1317 3.25067i 0.551439 0.147758i
\(23\) 26.9493 + 26.9493i 1.17171 + 1.17171i 0.981803 + 0.189904i \(0.0608178\pi\)
0.189904 + 0.981803i \(0.439182\pi\)
\(24\) 4.73205 + 1.26795i 0.197169 + 0.0528312i
\(25\) −50.6298 29.2311i −2.02519 1.16924i
\(26\) 23.9499 0.921149
\(27\) 5.19615i 0.192450i
\(28\) 14.7976 + 8.54338i 0.528485 + 0.305121i
\(29\) 35.0886 35.0886i 1.20995 1.20995i 0.238910 0.971042i \(-0.423210\pi\)
0.971042 0.238910i \(-0.0767901\pi\)
\(30\) 19.3799 11.1890i 0.645996 0.372966i
\(31\) 8.07977 8.07977i 0.260638 0.260638i −0.564675 0.825313i \(-0.690999\pi\)
0.825313 + 0.564675i \(0.190999\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) 7.69117 + 13.3215i 0.233066 + 0.403682i
\(34\) 7.48776 + 12.9692i 0.220228 + 0.381446i
\(35\) 75.3908 20.2009i 2.15402 0.577169i
\(36\) 6.00000i 0.166667i
\(37\) −36.9831 1.11766i −0.999544 0.0302071i
\(38\) 42.8650 1.12803
\(39\) 7.59180 + 28.3330i 0.194662 + 0.726487i
\(40\) −22.3780 + 12.9199i −0.559449 + 0.322998i
\(41\) −33.8332 + 19.5336i −0.825200 + 0.476429i −0.852206 0.523206i \(-0.824736\pi\)
0.0270063 + 0.999635i \(0.491403\pi\)
\(42\) −5.41629 + 20.2139i −0.128959 + 0.481282i
\(43\) −6.81615 6.81615i −0.158515 0.158515i 0.623393 0.781908i \(-0.285754\pi\)
−0.781908 + 0.623393i \(0.785754\pi\)
\(44\) −8.88099 15.3823i −0.201841 0.349598i
\(45\) 19.3799 + 19.3799i 0.430664 + 0.430664i
\(46\) 26.9493 46.6775i 0.585853 1.01473i
\(47\) −46.2282 −0.983579 −0.491790 0.870714i \(-0.663657\pi\)
−0.491790 + 0.870714i \(0.663657\pi\)
\(48\) 6.92820i 0.144338i
\(49\) −11.9947 + 20.7754i −0.244789 + 0.423988i
\(50\) −21.3987 + 79.8609i −0.427973 + 1.59722i
\(51\) −12.9692 + 12.9692i −0.254298 + 0.254298i
\(52\) −8.76626 32.7161i −0.168582 0.629156i
\(53\) 24.3949 42.2532i 0.460281 0.797231i −0.538693 0.842502i \(-0.681082\pi\)
0.998975 + 0.0452712i \(0.0144152\pi\)
\(54\) −7.09808 + 1.90192i −0.131446 + 0.0352208i
\(55\) −78.3701 20.9992i −1.42491 0.381804i
\(56\) 6.25419 23.3410i 0.111682 0.416803i
\(57\) 13.5877 + 50.7098i 0.238380 + 0.889646i
\(58\) −60.7752 35.0886i −1.04785 0.604976i
\(59\) 29.2966 7.85000i 0.496553 0.133051i −0.00184699 0.999998i \(-0.500588\pi\)
0.498400 + 0.866947i \(0.333921\pi\)
\(60\) −22.3780 22.3780i −0.372966 0.372966i
\(61\) 32.7891 + 8.78582i 0.537527 + 0.144030i 0.517362 0.855767i \(-0.326914\pi\)
0.0201650 + 0.999797i \(0.493581\pi\)
\(62\) −13.9946 8.07977i −0.225719 0.130319i
\(63\) −25.6301 −0.406828
\(64\) 8.00000i 0.125000i
\(65\) −133.987 77.3576i −2.06134 1.19012i
\(66\) 15.3823 15.3823i 0.233066 0.233066i
\(67\) 30.6840 17.7154i 0.457969 0.264409i −0.253221 0.967409i \(-0.581490\pi\)
0.711190 + 0.703000i \(0.248157\pi\)
\(68\) 14.9755 14.9755i 0.220228 0.220228i
\(69\) 63.7626 + 17.0851i 0.924096 + 0.247611i
\(70\) −55.1899 95.5918i −0.788428 1.36560i
\(71\) 41.7426 + 72.3003i 0.587924 + 1.01831i 0.994504 + 0.104699i \(0.0333878\pi\)
−0.406580 + 0.913615i \(0.633279\pi\)
\(72\) 8.19615 2.19615i 0.113835 0.0305021i
\(73\) 55.4373i 0.759415i 0.925107 + 0.379708i \(0.123975\pi\)
−0.925107 + 0.379708i \(0.876025\pi\)
\(74\) 12.0100 + 50.9290i 0.162297 + 0.688229i
\(75\) −101.260 −1.35013
\(76\) −15.6897 58.5546i −0.206443 0.770456i
\(77\) 65.7086 37.9369i 0.853358 0.492687i
\(78\) 35.9248 20.7412i 0.460574 0.265913i
\(79\) 24.2914 90.6567i 0.307486 1.14755i −0.623298 0.781984i \(-0.714208\pi\)
0.930784 0.365569i \(-0.119126\pi\)
\(80\) 25.8399 + 25.8399i 0.322998 + 0.322998i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 39.0672 + 39.0672i 0.476429 + 0.476429i
\(83\) −32.5526 + 56.3828i −0.392200 + 0.679311i −0.992739 0.120284i \(-0.961619\pi\)
0.600539 + 0.799595i \(0.294953\pi\)
\(84\) 29.5951 0.352323
\(85\) 96.7412i 1.13813i
\(86\) −6.81615 + 11.8059i −0.0792576 + 0.137278i
\(87\) 22.2453 83.0205i 0.255693 0.954259i
\(88\) −17.7620 + 17.7620i −0.201841 + 0.201841i
\(89\) 18.4963 + 69.0290i 0.207823 + 0.775607i 0.988570 + 0.150760i \(0.0481721\pi\)
−0.780747 + 0.624847i \(0.785161\pi\)
\(90\) 19.3799 33.5670i 0.215332 0.372966i
\(91\) 139.753 37.4467i 1.53575 0.411503i
\(92\) −73.6267 19.7282i −0.800291 0.214437i
\(93\) 5.12237 19.1169i 0.0550792 0.205558i
\(94\) 16.9207 + 63.1489i 0.180008 + 0.671797i
\(95\) −239.808 138.453i −2.52429 1.45740i
\(96\) −9.46410 + 2.53590i −0.0985844 + 0.0264156i
\(97\) −104.978 104.978i −1.08225 1.08225i −0.996300 0.0859490i \(-0.972608\pi\)
−0.0859490 0.996300i \(-0.527392\pi\)
\(98\) 32.7701 + 8.78072i 0.334389 + 0.0895992i
\(99\) 23.0735 + 13.3215i 0.233066 + 0.134561i
\(100\) 116.924 1.16924
\(101\) 123.465i 1.22243i −0.791466 0.611214i \(-0.790682\pi\)
0.791466 0.611214i \(-0.209318\pi\)
\(102\) 22.4633 + 12.9692i 0.220228 + 0.127149i
\(103\) −25.7922 + 25.7922i −0.250410 + 0.250410i −0.821139 0.570729i \(-0.806661\pi\)
0.570729 + 0.821139i \(0.306661\pi\)
\(104\) −41.4824 + 23.9499i −0.398869 + 0.230287i
\(105\) 95.5918 95.5918i 0.910398 0.910398i
\(106\) −66.6481 17.8583i −0.628756 0.168475i
\(107\) 37.0450 + 64.1639i 0.346215 + 0.599663i 0.985574 0.169246i \(-0.0541333\pi\)
−0.639358 + 0.768909i \(0.720800\pi\)
\(108\) 5.19615 + 9.00000i 0.0481125 + 0.0833333i
\(109\) −66.1580 + 17.7270i −0.606954 + 0.162633i −0.549190 0.835697i \(-0.685064\pi\)
−0.0577641 + 0.998330i \(0.518397\pi\)
\(110\) 114.742i 1.04311i
\(111\) −56.4426 + 30.3518i −0.508492 + 0.273440i
\(112\) −34.1735 −0.305121
\(113\) 53.7327 + 200.533i 0.475511 + 1.77463i 0.619442 + 0.785043i \(0.287359\pi\)
−0.143931 + 0.989588i \(0.545974\pi\)
\(114\) 64.2975 37.1222i 0.564013 0.325633i
\(115\) −301.535 + 174.091i −2.62204 + 1.51384i
\(116\) −25.6866 + 95.8638i −0.221437 + 0.826412i
\(117\) 35.9248 + 35.9248i 0.307050 + 0.307050i
\(118\) −21.4466 37.1466i −0.181751 0.314802i
\(119\) 63.9708 + 63.9708i 0.537569 + 0.537569i
\(120\) −22.3780 + 38.7598i −0.186483 + 0.322998i
\(121\) 42.1279 0.348165
\(122\) 48.0066i 0.393497i
\(123\) −33.8332 + 58.6008i −0.275067 + 0.476429i
\(124\) −5.91480 + 22.0743i −0.0477000 + 0.178019i
\(125\) 216.165 216.165i 1.72932 1.72932i
\(126\) 9.38128 + 35.0114i 0.0744546 + 0.277868i
\(127\) 42.0200 72.7807i 0.330866 0.573077i −0.651816 0.758377i \(-0.725993\pi\)
0.982682 + 0.185301i \(0.0593259\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) −16.1272 4.32127i −0.125017 0.0334982i
\(130\) −56.6297 + 211.345i −0.435613 + 1.62573i
\(131\) 6.40060 + 23.8874i 0.0488595 + 0.182346i 0.986043 0.166490i \(-0.0532435\pi\)
−0.937184 + 0.348837i \(0.886577\pi\)
\(132\) −26.6430 15.3823i −0.201841 0.116533i
\(133\) 250.127 67.0214i 1.88066 0.503920i
\(134\) −35.4308 35.4308i −0.264409 0.264409i
\(135\) 45.8533 + 12.2864i 0.339654 + 0.0910101i
\(136\) −25.9383 14.9755i −0.190723 0.110114i
\(137\) −4.85457 −0.0354348 −0.0177174 0.999843i \(-0.505640\pi\)
−0.0177174 + 0.999843i \(0.505640\pi\)
\(138\) 93.3550i 0.676485i
\(139\) 170.807 + 98.6153i 1.22883 + 0.709463i 0.966784 0.255594i \(-0.0822710\pi\)
0.262041 + 0.965057i \(0.415604\pi\)
\(140\) −110.380 + 110.380i −0.788428 + 0.788428i
\(141\) −69.3424 + 40.0348i −0.491790 + 0.283935i
\(142\) 83.4852 83.4852i 0.587924 0.587924i
\(143\) −145.276 38.9265i −1.01592 0.272214i
\(144\) −6.00000 10.3923i −0.0416667 0.0721688i
\(145\) 226.671 + 392.606i 1.56325 + 2.70763i
\(146\) 75.7288 20.2915i 0.518690 0.138983i
\(147\) 41.5508i 0.282659i
\(148\) 65.1743 35.0473i 0.440367 0.236806i
\(149\) 218.459 1.46617 0.733084 0.680139i \(-0.238080\pi\)
0.733084 + 0.680139i \(0.238080\pi\)
\(150\) 37.0636 + 138.323i 0.247091 + 0.922154i
\(151\) 164.220 94.8127i 1.08755 0.627899i 0.154629 0.987973i \(-0.450582\pi\)
0.932924 + 0.360074i \(0.117249\pi\)
\(152\) −74.2443 + 42.8650i −0.488449 + 0.282006i
\(153\) −8.22213 + 30.6854i −0.0537394 + 0.200558i
\(154\) −75.8737 75.8737i −0.492687 0.492687i
\(155\) 52.1950 + 90.4044i 0.336742 + 0.583254i
\(156\) −41.4824 41.4824i −0.265913 0.265913i
\(157\) −54.4613 + 94.3298i −0.346887 + 0.600827i −0.985695 0.168540i \(-0.946095\pi\)
0.638807 + 0.769367i \(0.279428\pi\)
\(158\) −132.731 −0.840067
\(159\) 84.5064i 0.531487i
\(160\) 25.8399 44.7559i 0.161499 0.279725i
\(161\) 84.2729 314.511i 0.523434 1.95348i
\(162\) −9.00000 + 9.00000i −0.0555556 + 0.0555556i
\(163\) −7.12012 26.5727i −0.0436817 0.163022i 0.940640 0.339407i \(-0.110226\pi\)
−0.984321 + 0.176385i \(0.943560\pi\)
\(164\) 39.0672 67.6664i 0.238215 0.412600i
\(165\) −135.741 + 36.3717i −0.822673 + 0.220434i
\(166\) 88.9354 + 23.8302i 0.535756 + 0.143555i
\(167\) −19.5004 + 72.7764i −0.116769 + 0.435787i −0.999413 0.0342543i \(-0.989094\pi\)
0.882644 + 0.470041i \(0.155761\pi\)
\(168\) −10.8326 40.4277i −0.0644796 0.240641i
\(169\) −102.016 58.8990i −0.603645 0.348515i
\(170\) −132.151 + 35.4098i −0.777359 + 0.208293i
\(171\) 64.2975 + 64.2975i 0.376009 + 0.376009i
\(172\) 18.6221 + 4.98977i 0.108268 + 0.0290103i
\(173\) 121.970 + 70.4192i 0.705027 + 0.407047i 0.809217 0.587510i \(-0.199892\pi\)
−0.104190 + 0.994557i \(0.533225\pi\)
\(174\) −121.550 −0.698566
\(175\) 499.465i 2.85409i
\(176\) 30.7647 + 17.7620i 0.174799 + 0.100920i
\(177\) 37.1466 37.1466i 0.209868 0.209868i
\(178\) 87.5253 50.5328i 0.491715 0.283892i
\(179\) −55.4856 + 55.4856i −0.309976 + 0.309976i −0.844900 0.534924i \(-0.820340\pi\)
0.534924 + 0.844900i \(0.320340\pi\)
\(180\) −52.9468 14.1871i −0.294149 0.0788170i
\(181\) −80.8368 140.013i −0.446612 0.773555i 0.551551 0.834141i \(-0.314036\pi\)
−0.998163 + 0.0605863i \(0.980703\pi\)
\(182\) −102.306 177.200i −0.562123 0.973626i
\(183\) 56.7924 15.2175i 0.310341 0.0831557i
\(184\) 107.797i 0.585853i
\(185\) 97.3097 323.714i 0.525999 1.74980i
\(186\) −27.9891 −0.150479
\(187\) −24.3402 90.8389i −0.130162 0.485770i
\(188\) 80.0696 46.2282i 0.425902 0.245895i
\(189\) −38.4452 + 22.1964i −0.203414 + 0.117441i
\(190\) −101.355 + 378.261i −0.533446 + 1.99085i
\(191\) 140.367 + 140.367i 0.734908 + 0.734908i 0.971588 0.236679i \(-0.0760591\pi\)
−0.236679 + 0.971588i \(0.576059\pi\)
\(192\) 6.92820 + 12.0000i 0.0360844 + 0.0625000i
\(193\) −102.777 102.777i −0.532523 0.532523i 0.388800 0.921322i \(-0.372890\pi\)
−0.921322 + 0.388800i \(0.872890\pi\)
\(194\) −104.978 + 181.827i −0.541124 + 0.937255i
\(195\) −267.975 −1.37423
\(196\) 47.9787i 0.244789i
\(197\) −24.0872 + 41.7203i −0.122270 + 0.211778i −0.920663 0.390359i \(-0.872351\pi\)
0.798392 + 0.602137i \(0.205684\pi\)
\(198\) 9.75201 36.3950i 0.0492526 0.183813i
\(199\) −179.315 + 179.315i −0.901079 + 0.901079i −0.995530 0.0944509i \(-0.969890\pi\)
0.0944509 + 0.995530i \(0.469890\pi\)
\(200\) −42.7973 159.722i −0.213987 0.798609i
\(201\) 30.6840 53.1462i 0.152656 0.264409i
\(202\) −168.657 + 45.1914i −0.834933 + 0.223720i
\(203\) −409.501 109.725i −2.01724 0.540519i
\(204\) 9.49409 35.4324i 0.0465397 0.173688i
\(205\) −92.3749 344.748i −0.450609 1.68170i
\(206\) 44.6735 + 25.7922i 0.216862 + 0.125205i
\(207\) 110.440 29.5923i 0.533527 0.142958i
\(208\) 47.8997 + 47.8997i 0.230287 + 0.230287i
\(209\) −260.012 69.6699i −1.24408 0.333349i
\(210\) −165.570 95.5918i −0.788428 0.455199i
\(211\) 364.495 1.72746 0.863732 0.503952i \(-0.168121\pi\)
0.863732 + 0.503952i \(0.168121\pi\)
\(212\) 97.5796i 0.460281i
\(213\) 125.228 + 72.3003i 0.587924 + 0.339438i
\(214\) 74.0901 74.0901i 0.346215 0.346215i
\(215\) 76.2658 44.0321i 0.354725 0.204800i
\(216\) 10.3923 10.3923i 0.0481125 0.0481125i
\(217\) −94.2947 25.2662i −0.434538 0.116434i
\(218\) 48.4310 + 83.8850i 0.222161 + 0.384794i
\(219\) 48.0101 + 83.1560i 0.219224 + 0.379708i
\(220\) 156.740 41.9984i 0.712455 0.190902i
\(221\) 179.331i 0.811451i
\(222\) 62.1208 + 65.9925i 0.279823 + 0.297263i
\(223\) 44.3869 0.199044 0.0995222 0.995035i \(-0.468269\pi\)
0.0995222 + 0.995035i \(0.468269\pi\)
\(224\) 12.5084 + 46.6819i 0.0558410 + 0.208401i
\(225\) −151.889 + 87.6934i −0.675064 + 0.389748i
\(226\) 254.266 146.801i 1.12507 0.649560i
\(227\) −80.7851 + 301.494i −0.355881 + 1.32817i 0.523491 + 0.852032i \(0.324630\pi\)
−0.879372 + 0.476136i \(0.842037\pi\)
\(228\) −74.2443 74.2443i −0.325633 0.325633i
\(229\) 20.2733 + 35.1144i 0.0885297 + 0.153338i 0.906890 0.421368i \(-0.138450\pi\)
−0.818360 + 0.574706i \(0.805117\pi\)
\(230\) 348.182 + 348.182i 1.51384 + 1.51384i
\(231\) 65.7086 113.811i 0.284453 0.492687i
\(232\) 140.354 0.604976
\(233\) 76.0503i 0.326396i −0.986593 0.163198i \(-0.947819\pi\)
0.986593 0.163198i \(-0.0521810\pi\)
\(234\) 35.9248 62.2236i 0.153525 0.265913i
\(235\) 109.307 407.940i 0.465137 1.73591i
\(236\) −42.8932 + 42.8932i −0.181751 + 0.181751i
\(237\) −42.0739 157.022i −0.177527 0.662540i
\(238\) 63.9708 110.801i 0.268785 0.465549i
\(239\) 370.520 99.2807i 1.55029 0.415400i 0.620720 0.784033i \(-0.286841\pi\)
0.929575 + 0.368632i \(0.120174\pi\)
\(240\) 61.1377 + 16.3818i 0.254741 + 0.0682575i
\(241\) −50.4560 + 188.304i −0.209361 + 0.781346i 0.778715 + 0.627378i \(0.215872\pi\)
−0.988076 + 0.153968i \(0.950795\pi\)
\(242\) −15.4199 57.5478i −0.0637186 0.237801i
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) −65.5783 + 17.5716i −0.268763 + 0.0720149i
\(245\) −154.970 154.970i −0.632532 0.632532i
\(246\) 92.4340 + 24.7676i 0.375748 + 0.100681i
\(247\) −444.535 256.653i −1.79974 1.03908i
\(248\) 32.3191 0.130319
\(249\) 112.766i 0.452874i
\(250\) −374.409 216.165i −1.49763 0.864659i
\(251\) −95.5131 + 95.5131i −0.380530 + 0.380530i −0.871293 0.490763i \(-0.836718\pi\)
0.490763 + 0.871293i \(0.336718\pi\)
\(252\) 44.3927 25.6301i 0.176162 0.101707i
\(253\) −239.336 + 239.336i −0.945993 + 0.945993i
\(254\) −114.801 30.7608i −0.451971 0.121105i
\(255\) −83.7804 145.112i −0.328550 0.569066i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −167.277 + 44.8217i −0.650882 + 0.174403i −0.569128 0.822249i \(-0.692719\pi\)
−0.0817545 + 0.996653i \(0.526052\pi\)
\(258\) 23.6118i 0.0915188i
\(259\) 149.711 + 278.404i 0.578035 + 1.07492i
\(260\) 309.430 1.19012
\(261\) −38.5300 143.796i −0.147624 0.550942i
\(262\) 30.2880 17.4868i 0.115603 0.0667434i
\(263\) −25.9264 + 14.9686i −0.0985795 + 0.0569149i −0.548479 0.836164i \(-0.684793\pi\)
0.449900 + 0.893079i \(0.351460\pi\)
\(264\) −11.2606 + 42.0253i −0.0426540 + 0.159187i
\(265\) 315.180 + 315.180i 1.18936 + 1.18936i
\(266\) −183.106 317.149i −0.688368 1.19229i
\(267\) 87.5253 + 87.5253i 0.327810 + 0.327810i
\(268\) −35.4308 + 61.3679i −0.132204 + 0.228985i
\(269\) −108.575 −0.403626 −0.201813 0.979424i \(-0.564683\pi\)
−0.201813 + 0.979424i \(0.564683\pi\)
\(270\) 67.1339i 0.248644i
\(271\) −26.1772 + 45.3402i −0.0965947 + 0.167307i −0.910273 0.414008i \(-0.864128\pi\)
0.813678 + 0.581315i \(0.197462\pi\)
\(272\) −10.9628 + 40.9139i −0.0403045 + 0.150419i
\(273\) 177.200 177.200i 0.649084 0.649084i
\(274\) 1.77690 + 6.63147i 0.00648502 + 0.0242024i
\(275\) 259.601 449.643i 0.944005 1.63506i
\(276\) −127.525 + 34.1703i −0.462048 + 0.123805i
\(277\) 334.172 + 89.5411i 1.20640 + 0.323253i 0.805347 0.592803i \(-0.201979\pi\)
0.401050 + 0.916056i \(0.368645\pi\)
\(278\) 72.1914 269.422i 0.259681 0.969144i
\(279\) −8.87220 33.1115i −0.0318000 0.118679i
\(280\) 191.184 + 110.380i 0.682798 + 0.394214i
\(281\) −76.3197 + 20.4498i −0.271600 + 0.0727751i −0.392049 0.919945i \(-0.628233\pi\)
0.120448 + 0.992720i \(0.461567\pi\)
\(282\) 80.0696 + 80.0696i 0.283935 + 0.283935i
\(283\) −58.0432 15.5526i −0.205100 0.0549563i 0.154806 0.987945i \(-0.450525\pi\)
−0.359906 + 0.932989i \(0.617191\pi\)
\(284\) −144.601 83.4852i −0.509157 0.293962i
\(285\) −479.615 −1.68286
\(286\) 212.699i 0.743701i
\(287\) 289.050 + 166.883i 1.00714 + 0.581474i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −153.171 + 88.4335i −0.530005 + 0.305998i
\(290\) 453.342 453.342i 1.56325 1.56325i
\(291\) −248.381 66.5535i −0.853543 0.228706i
\(292\) −55.4373 96.0202i −0.189854 0.328836i
\(293\) −117.327 203.216i −0.400433 0.693570i 0.593345 0.804948i \(-0.297807\pi\)
−0.993778 + 0.111378i \(0.964474\pi\)
\(294\) 56.7595 15.2086i 0.193059 0.0517301i
\(295\) 277.089i 0.939283i
\(296\) −71.7309 76.2016i −0.242334 0.257438i
\(297\) 46.1470 0.155377
\(298\) −79.9615 298.420i −0.268327 1.00141i
\(299\) −558.960 + 322.716i −1.86943 + 1.07932i
\(300\) 175.387 101.260i 0.584622 0.337532i
\(301\) −21.3147 + 79.5477i −0.0708131 + 0.264278i
\(302\) −189.625 189.625i −0.627899 0.627899i
\(303\) −106.924 185.198i −0.352884 0.611214i
\(304\) 85.7299 + 85.7299i 0.282006 + 0.282006i
\(305\) −155.061 + 268.573i −0.508395 + 0.880566i
\(306\) 44.9265 0.146819
\(307\) 278.858i 0.908333i −0.890917 0.454166i \(-0.849937\pi\)
0.890917 0.454166i \(-0.150063\pi\)
\(308\) −75.8737 + 131.417i −0.246343 + 0.426679i
\(309\) −16.3516 + 61.0251i −0.0529179 + 0.197492i
\(310\) 104.390 104.390i 0.336742 0.336742i
\(311\) 6.28916 + 23.4715i 0.0202224 + 0.0754710i 0.975300 0.220886i \(-0.0708949\pi\)
−0.955077 + 0.296357i \(0.904228\pi\)
\(312\) −41.4824 + 71.8496i −0.132956 + 0.230287i
\(313\) 429.076 114.970i 1.37085 0.367318i 0.503060 0.864252i \(-0.332208\pi\)
0.867788 + 0.496934i \(0.165541\pi\)
\(314\) 148.791 + 39.8685i 0.473857 + 0.126970i
\(315\) 60.6027 226.173i 0.192390 0.718008i
\(316\) 48.5828 + 181.313i 0.153743 + 0.573776i
\(317\) −73.4076 42.3819i −0.231570 0.133697i 0.379726 0.925099i \(-0.376018\pi\)
−0.611296 + 0.791402i \(0.709351\pi\)
\(318\) −115.438 + 30.9315i −0.363012 + 0.0972689i
\(319\) 311.622 + 311.622i 0.976870 + 0.976870i
\(320\) −70.5958 18.9161i −0.220612 0.0591128i
\(321\) 111.135 + 64.1639i 0.346215 + 0.199888i
\(322\) −460.476 −1.43005
\(323\) 320.962i 0.993692i
\(324\) 15.5885 + 9.00000i 0.0481125 + 0.0277778i
\(325\) 700.081 700.081i 2.15410 2.15410i
\(326\) −33.6928 + 19.4525i −0.103352 + 0.0596704i
\(327\) −83.8850 + 83.8850i −0.256529 + 0.256529i
\(328\) −106.734 28.5992i −0.325407 0.0871926i
\(329\) 197.473 + 342.033i 0.600221 + 1.03961i
\(330\) 99.3693 + 172.113i 0.301119 + 0.521554i
\(331\) −411.046 + 110.139i −1.24183 + 0.332748i −0.819176 0.573543i \(-0.805569\pi\)
−0.422656 + 0.906290i \(0.638902\pi\)
\(332\) 130.211i 0.392200i
\(333\) −58.3784 + 94.4085i −0.175311 + 0.283509i
\(334\) 106.552 0.319018
\(335\) 83.7764 + 312.658i 0.250079 + 0.933307i
\(336\) −51.2603 + 29.5951i −0.152560 + 0.0880808i
\(337\) 344.088 198.659i 1.02103 0.589494i 0.106630 0.994299i \(-0.465994\pi\)
0.914403 + 0.404805i \(0.132661\pi\)
\(338\) −43.1171 + 160.915i −0.127565 + 0.476080i
\(339\) 254.266 + 254.266i 0.750047 + 0.750047i
\(340\) 96.7412 + 167.561i 0.284533 + 0.492826i
\(341\) 71.7564 + 71.7564i 0.210429 + 0.210429i
\(342\) 64.2975 111.366i 0.188004 0.325633i
\(343\) −213.675 −0.622960
\(344\) 27.2646i 0.0792576i
\(345\) −301.535 + 522.274i −0.874014 + 1.51384i
\(346\) 51.5504 192.389i 0.148990 0.556037i
\(347\) −40.1976 + 40.1976i −0.115843 + 0.115843i −0.762652 0.646809i \(-0.776103\pi\)
0.646809 + 0.762652i \(0.276103\pi\)
\(348\) 44.4906 + 166.041i 0.127846 + 0.477129i
\(349\) 29.2656 50.6896i 0.0838557 0.145242i −0.821047 0.570860i \(-0.806610\pi\)
0.904903 + 0.425618i \(0.139943\pi\)
\(350\) 682.282 182.817i 1.94938 0.522334i
\(351\) 84.9990 + 22.7754i 0.242162 + 0.0648872i
\(352\) 13.0027 48.5267i 0.0369394 0.137860i
\(353\) −123.026 459.138i −0.348514 1.30067i −0.888452 0.458969i \(-0.848219\pi\)
0.539938 0.841705i \(-0.318448\pi\)
\(354\) −64.3398 37.1466i −0.181751 0.104934i
\(355\) −736.713 + 197.402i −2.07525 + 0.556061i
\(356\) −101.066 101.066i −0.283892 0.283892i
\(357\) 151.356 + 40.5558i 0.423968 + 0.113602i
\(358\) 96.1039 + 55.4856i 0.268447 + 0.154988i
\(359\) 127.254 0.354469 0.177234 0.984169i \(-0.443285\pi\)
0.177234 + 0.984169i \(0.443285\pi\)
\(360\) 77.5196i 0.215332i
\(361\) −482.985 278.851i −1.33791 0.772442i
\(362\) −161.674 + 161.674i −0.446612 + 0.446612i
\(363\) 63.1919 36.4839i 0.174082 0.100507i
\(364\) −204.613 + 204.613i −0.562123 + 0.562123i
\(365\) −489.205 131.082i −1.34029 0.359129i
\(366\) −41.5750 72.0099i −0.113593 0.196748i
\(367\) −62.2315 107.788i −0.169568 0.293701i 0.768700 0.639610i \(-0.220904\pi\)
−0.938268 + 0.345909i \(0.887571\pi\)
\(368\) 147.253 39.4565i 0.400145 0.107219i
\(369\) 117.202i 0.317620i
\(370\) −477.819 14.4401i −1.29140 0.0390273i
\(371\) −416.830 −1.12353
\(372\) 10.2447 + 38.2339i 0.0275396 + 0.102779i
\(373\) 154.529 89.2171i 0.414286 0.239188i −0.278344 0.960482i \(-0.589785\pi\)
0.692630 + 0.721294i \(0.256452\pi\)
\(374\) −115.179 + 66.4987i −0.307966 + 0.177804i
\(375\) 137.043 511.452i 0.365448 1.36387i
\(376\) −92.4565 92.4565i −0.245895 0.245895i
\(377\) 420.184 + 727.779i 1.11455 + 1.93045i
\(378\) 44.3927 + 44.3927i 0.117441 + 0.117441i
\(379\) 163.974 284.011i 0.432648 0.749368i −0.564452 0.825466i \(-0.690913\pi\)
0.997100 + 0.0760974i \(0.0242460\pi\)
\(380\) 553.812 1.45740
\(381\) 145.561i 0.382051i
\(382\) 140.367 243.124i 0.367454 0.636449i
\(383\) 101.757 379.763i 0.265684 0.991548i −0.696146 0.717901i \(-0.745103\pi\)
0.961830 0.273647i \(-0.0882301\pi\)
\(384\) 13.8564 13.8564i 0.0360844 0.0360844i
\(385\) 179.404 + 669.546i 0.465985 + 1.73908i
\(386\) −102.777 + 178.015i −0.266261 + 0.461178i
\(387\) −27.9331 + 7.48465i −0.0721786 + 0.0193402i
\(388\) 286.806 + 76.8493i 0.739190 + 0.198065i
\(389\) −139.165 + 519.371i −0.357751 + 1.33514i 0.519237 + 0.854631i \(0.326216\pi\)
−0.876987 + 0.480513i \(0.840450\pi\)
\(390\) 98.0855 + 366.060i 0.251501 + 0.938616i
\(391\) −349.510 201.789i −0.893886 0.516086i
\(392\) −65.5402 + 17.5614i −0.167194 + 0.0447996i
\(393\) 30.2880 + 30.2880i 0.0770686 + 0.0770686i
\(394\) 65.8075 + 17.6331i 0.167024 + 0.0447540i
\(395\) 742.560 + 428.717i 1.87990 + 1.08536i
\(396\) −53.2860 −0.134561
\(397\) 638.499i 1.60831i 0.594420 + 0.804154i \(0.297382\pi\)
−0.594420 + 0.804154i \(0.702618\pi\)
\(398\) 310.582 + 179.315i 0.780357 + 0.450539i
\(399\) 317.149 317.149i 0.794859 0.794859i
\(400\) −202.519 + 116.924i −0.506298 + 0.292311i
\(401\) −408.409 + 408.409i −1.01848 + 1.01848i −0.0186490 + 0.999826i \(0.505937\pi\)
−0.999826 + 0.0186490i \(0.994063\pi\)
\(402\) −83.8301 22.4622i −0.208533 0.0558761i
\(403\) 96.7547 + 167.584i 0.240086 + 0.415841i
\(404\) 123.465 + 213.848i 0.305607 + 0.529327i
\(405\) 79.4203 21.2806i 0.196099 0.0525447i
\(406\) 599.551i 1.47673i
\(407\) 9.92595 328.447i 0.0243881 0.806995i
\(408\) −51.8767 −0.127149
\(409\) −29.5448 110.263i −0.0722368 0.269591i 0.920356 0.391082i \(-0.127899\pi\)
−0.992593 + 0.121491i \(0.961233\pi\)
\(410\) −437.122 + 252.373i −1.06615 + 0.615543i
\(411\) −7.28185 + 4.20418i −0.0177174 + 0.0102292i
\(412\) 18.8812 70.4657i 0.0458282 0.171033i
\(413\) −183.227 183.227i −0.443648 0.443648i
\(414\) −80.8478 140.032i −0.195284 0.338243i
\(415\) −420.578 420.578i −1.01344 1.01344i
\(416\) 47.8997 82.9648i 0.115144 0.199435i
\(417\) 341.614 0.819217
\(418\) 380.684i 0.910726i
\(419\) −395.505 + 685.034i −0.943925 + 1.63493i −0.186037 + 0.982543i \(0.559564\pi\)
−0.757889 + 0.652384i \(0.773769\pi\)
\(420\) −69.9780 + 261.162i −0.166614 + 0.621813i
\(421\) 52.6344 52.6344i 0.125022 0.125022i −0.641827 0.766849i \(-0.721823\pi\)
0.766849 + 0.641827i \(0.221823\pi\)
\(422\) −133.414 497.909i −0.316148 1.17988i
\(423\) −69.3424 + 120.104i −0.163930 + 0.283935i
\(424\) 133.296 35.7166i 0.314378 0.0842373i
\(425\) 597.979 + 160.228i 1.40701 + 0.377007i
\(426\) 52.9275 197.528i 0.124243 0.463681i
\(427\) −75.0606 280.130i −0.175786 0.656042i
\(428\) −128.328 74.0901i −0.299831 0.173108i
\(429\) −251.625 + 67.4228i −0.586539 + 0.157163i
\(430\) −88.0642 88.0642i −0.204800 0.204800i
\(431\) 274.083 + 73.4403i 0.635923 + 0.170395i 0.562356 0.826895i \(-0.309895\pi\)
0.0735669 + 0.997290i \(0.476562\pi\)
\(432\) −18.0000 10.3923i −0.0416667 0.0240563i
\(433\) −494.881 −1.14291 −0.571456 0.820632i \(-0.693621\pi\)
−0.571456 + 0.820632i \(0.693621\pi\)
\(434\) 138.057i 0.318104i
\(435\) 680.013 + 392.606i 1.56325 + 0.902542i
\(436\) 96.8621 96.8621i 0.222161 0.222161i
\(437\) −1000.41 + 577.590i −2.28928 + 1.32172i
\(438\) 96.0202 96.0202i 0.219224 0.219224i
\(439\) 210.586 + 56.4265i 0.479696 + 0.128534i 0.490561 0.871407i \(-0.336792\pi\)
−0.0108651 + 0.999941i \(0.503459\pi\)
\(440\) −114.742 198.739i −0.260777 0.451679i
\(441\) 35.9841 + 62.3262i 0.0815965 + 0.141329i
\(442\) −244.970 + 65.6396i −0.554232 + 0.148506i
\(443\) 427.408i 0.964804i 0.875950 + 0.482402i \(0.160236\pi\)
−0.875950 + 0.482402i \(0.839764\pi\)
\(444\) 67.4096 109.013i 0.151823 0.245526i
\(445\) −652.880 −1.46715
\(446\) −16.2467 60.6336i −0.0364276 0.135950i
\(447\) 327.688 189.191i 0.733084 0.423246i
\(448\) 59.1903 34.1735i 0.132121 0.0762802i
\(449\) 92.2152 344.152i 0.205379 0.766485i −0.783955 0.620818i \(-0.786801\pi\)
0.989334 0.145667i \(-0.0465328\pi\)
\(450\) 175.387 + 175.387i 0.389748 + 0.389748i
\(451\) −173.478 300.472i −0.384652 0.666236i
\(452\) −293.601 293.601i −0.649560 0.649560i
\(453\) 164.220 284.438i 0.362517 0.627899i
\(454\) 441.418 0.972286
\(455\) 1321.79i 2.90504i
\(456\) −74.2443 + 128.595i −0.162816 + 0.282006i
\(457\) 24.6718 92.0764i 0.0539864 0.201480i −0.933665 0.358148i \(-0.883408\pi\)
0.987651 + 0.156668i \(0.0500751\pi\)
\(458\) 40.5466 40.5466i 0.0885297 0.0885297i
\(459\) 14.2411 + 53.1487i 0.0310264 + 0.115792i
\(460\) 348.182 603.070i 0.756918 1.31102i
\(461\) 762.975 204.438i 1.65504 0.443467i 0.694024 0.719952i \(-0.255836\pi\)
0.961018 + 0.276484i \(0.0891694\pi\)
\(462\) −179.519 48.1020i −0.388570 0.104117i
\(463\) −62.7375 + 234.140i −0.135502 + 0.505701i 0.864493 + 0.502645i \(0.167640\pi\)
−0.999995 + 0.00305638i \(0.999027\pi\)
\(464\) −51.3733 191.728i −0.110718 0.413206i
\(465\) 156.585 + 90.4044i 0.336742 + 0.194418i
\(466\) −103.887 + 27.8363i −0.222933 + 0.0597346i
\(467\) −73.8392 73.8392i −0.158114 0.158114i 0.623616 0.781730i \(-0.285663\pi\)
−0.781730 + 0.623616i \(0.785663\pi\)
\(468\) −98.1484 26.2988i −0.209719 0.0561940i
\(469\) −262.145 151.349i −0.558944 0.322706i
\(470\) −597.265 −1.27078
\(471\) 188.660i 0.400551i
\(472\) 74.2932 + 42.8932i 0.157401 + 0.0908754i
\(473\) 60.5342 60.5342i 0.127979 0.127979i
\(474\) −199.096 + 114.948i −0.420033 + 0.242506i
\(475\) 1252.99 1252.99i 2.63788 2.63788i
\(476\) −174.771 46.8298i −0.367167 0.0983820i
\(477\) −73.1847 126.760i −0.153427 0.265744i
\(478\) −271.240 469.801i −0.567447 0.982848i
\(479\) −35.6019 + 9.53951i −0.0743255 + 0.0199155i −0.295790 0.955253i \(-0.595583\pi\)
0.221465 + 0.975168i \(0.428916\pi\)
\(480\) 89.5119i 0.186483i
\(481\) 180.385 600.073i 0.375020 1.24755i
\(482\) 275.697 0.571985
\(483\) −145.965 544.748i −0.302205 1.12784i
\(484\) −72.9677 + 42.1279i −0.150760 + 0.0870412i
\(485\) 1174.60 678.155i 2.42185 1.39826i
\(486\) −5.70577 + 21.2942i −0.0117403 + 0.0438153i
\(487\) −429.852 429.852i −0.882652 0.882652i 0.111151 0.993803i \(-0.464546\pi\)
−0.993803 + 0.111151i \(0.964546\pi\)
\(488\) 48.0066 + 83.1499i 0.0983742 + 0.170389i
\(489\) −33.6928 33.6928i −0.0689014 0.0689014i
\(490\) −154.970 + 268.417i −0.316266 + 0.547789i
\(491\) 52.0824 0.106074 0.0530371 0.998593i \(-0.483110\pi\)
0.0530371 + 0.998593i \(0.483110\pi\)
\(492\) 135.333i 0.275067i
\(493\) −262.735 + 455.070i −0.532931 + 0.923063i
\(494\) −187.883 + 701.188i −0.380329 + 1.41941i
\(495\) −172.113 + 172.113i −0.347702 + 0.347702i
\(496\) −11.8296 44.1487i −0.0238500 0.0890094i
\(497\) 356.623 617.689i 0.717551 1.24283i
\(498\) 154.041 41.2751i 0.309319 0.0828817i
\(499\) 325.923 + 87.3309i 0.653153 + 0.175012i 0.570154 0.821538i \(-0.306883\pi\)
0.0829991 + 0.996550i \(0.473550\pi\)
\(500\) −158.244 + 590.573i −0.316487 + 1.18115i
\(501\) 33.7757 + 126.053i 0.0674165 + 0.251602i
\(502\) 165.434 + 95.5131i 0.329549 + 0.190265i
\(503\) 389.979 104.495i 0.775306 0.207743i 0.150592 0.988596i \(-0.451882\pi\)
0.624714 + 0.780853i \(0.285215\pi\)
\(504\) −51.2603 51.2603i −0.101707 0.101707i
\(505\) 1089.52 + 291.935i 2.15746 + 0.578089i
\(506\) 414.542 + 239.336i 0.819254 + 0.472996i
\(507\) −204.032 −0.402430
\(508\) 168.080i 0.330866i
\(509\) −594.800 343.408i −1.16857 0.674671i −0.215223 0.976565i \(-0.569048\pi\)
−0.953342 + 0.301893i \(0.902381\pi\)
\(510\) −167.561 + 167.561i −0.328550 + 0.328550i
\(511\) 410.169 236.811i 0.802679 0.463427i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 152.129 + 40.7630i 0.296549 + 0.0794599i
\(514\) 122.455 + 212.098i 0.238239 + 0.412643i
\(515\) −166.617 288.589i −0.323528 0.560367i
\(516\) 32.2544 8.64253i 0.0625085 0.0167491i
\(517\) 410.553i 0.794106i
\(518\) 325.509 306.412i 0.628397 0.591529i
\(519\) 243.939 0.470018
\(520\) −113.259 422.690i −0.217807 0.812865i
\(521\) −562.332 + 324.663i −1.07933 + 0.623153i −0.930716 0.365742i \(-0.880815\pi\)
−0.148616 + 0.988895i \(0.547482\pi\)
\(522\) −182.326 + 105.266i −0.349283 + 0.201659i
\(523\) 261.533 976.053i 0.500063 1.86626i 0.000467747 1.00000i \(-0.499851\pi\)
0.499595 0.866259i \(-0.333482\pi\)
\(524\) −34.9735 34.9735i −0.0667434 0.0667434i
\(525\) 432.550 + 749.198i 0.823904 + 1.42704i
\(526\) 29.9372 + 29.9372i 0.0569149 + 0.0569149i
\(527\) −60.4993 + 104.788i −0.114799 + 0.198839i
\(528\) 61.5293 0.116533
\(529\) 923.525i 1.74579i
\(530\) 315.180 545.909i 0.594680 1.03002i
\(531\) 23.5500 87.8898i 0.0443503 0.165518i
\(532\) −366.212 + 366.212i −0.688368 + 0.688368i
\(533\) −171.237 639.064i −0.321270 1.19899i
\(534\) 87.5253 151.598i 0.163905 0.283892i
\(535\) −653.806 + 175.187i −1.22207 + 0.327452i
\(536\) 96.7987 + 25.9371i 0.180595 + 0.0483902i
\(537\) −35.1765 + 131.280i −0.0655055 + 0.244470i
\(538\) 39.7413 + 148.317i 0.0738686 + 0.275681i
\(539\) −184.506 106.525i −0.342312 0.197634i
\(540\) −91.7066 + 24.5727i −0.169827 + 0.0455050i
\(541\) 36.4564 + 36.4564i 0.0673871 + 0.0673871i 0.739997 0.672610i \(-0.234827\pi\)
−0.672610 + 0.739997i \(0.734827\pi\)
\(542\) 71.5174 + 19.1630i 0.131951 + 0.0353561i
\(543\) −242.510 140.013i −0.446612 0.257852i
\(544\) 59.9020 0.110114
\(545\) 625.726i 1.14812i
\(546\) −306.919 177.200i −0.562123 0.324542i
\(547\) 67.1790 67.1790i 0.122814 0.122814i −0.643029 0.765842i \(-0.722322\pi\)
0.765842 + 0.643029i \(0.222322\pi\)
\(548\) 8.40836 4.85457i 0.0153437 0.00885870i
\(549\) 72.0099 72.0099i 0.131166 0.131166i
\(550\) −709.244 190.041i −1.28954 0.345530i
\(551\) 752.036 + 1302.56i 1.36486 + 2.36400i
\(552\) 93.3550 + 161.696i 0.169121 + 0.292927i
\(553\) −774.515 + 207.531i −1.40057 + 0.375281i
\(554\) 489.262i 0.883144i
\(555\) −134.380 569.843i −0.242126 1.02674i
\(556\) −394.461 −0.709463
\(557\) −50.5633 188.705i −0.0907780 0.338788i 0.905568 0.424202i \(-0.139445\pi\)
−0.996346 + 0.0854140i \(0.972779\pi\)
\(558\) −41.9837 + 24.2393i −0.0752396 + 0.0434396i
\(559\) 141.375 81.6229i 0.252907 0.146016i
\(560\) 80.8037 301.563i 0.144292 0.538506i
\(561\) −115.179 115.179i −0.205310 0.205310i
\(562\) 55.8699 + 96.7695i 0.0994126 + 0.172188i
\(563\) 216.680 + 216.680i 0.384866 + 0.384866i 0.872852 0.487985i \(-0.162268\pi\)
−0.487985 + 0.872852i \(0.662268\pi\)
\(564\) 80.0696 138.685i 0.141967 0.245895i
\(565\) −1896.65 −3.35691
\(566\) 84.9811i 0.150143i
\(567\) −38.4452 + 66.5891i −0.0678046 + 0.117441i
\(568\) −61.1154 + 228.086i −0.107598 + 0.401559i
\(569\) −494.372 + 494.372i −0.868843 + 0.868843i −0.992344 0.123501i \(-0.960588\pi\)
0.123501 + 0.992344i \(0.460588\pi\)
\(570\) 175.551 + 655.167i 0.307985 + 1.14942i
\(571\) 98.4049 170.442i 0.172338 0.298498i −0.766899 0.641768i \(-0.778201\pi\)
0.939237 + 0.343270i \(0.111535\pi\)
\(572\) 290.552 77.8531i 0.507958 0.136107i
\(573\) 332.113 + 88.9894i 0.579604 + 0.155304i
\(574\) 122.167 455.933i 0.212834 0.794308i
\(575\) −576.678 2152.19i −1.00292 3.74294i
\(576\) 20.7846 + 12.0000i 0.0360844 + 0.0208333i
\(577\) 108.913 29.1832i 0.188758 0.0505775i −0.163202 0.986593i \(-0.552182\pi\)
0.351959 + 0.936015i \(0.385515\pi\)
\(578\) 176.867 + 176.867i 0.305998 + 0.305998i
\(579\) −243.173 65.1579i −0.419987 0.112535i
\(580\) −785.212 453.342i −1.35381 0.781624i
\(581\) 556.219 0.957348
\(582\) 363.655i 0.624836i
\(583\) 375.251 + 216.651i 0.643655 + 0.371614i
\(584\) −110.875 + 110.875i −0.189854 + 0.189854i
\(585\) −401.962 + 232.073i −0.687114 + 0.396706i
\(586\) −234.654 + 234.654i −0.400433 + 0.400433i
\(587\) 221.005 + 59.2180i 0.376499 + 0.100882i 0.442105 0.896963i \(-0.354232\pi\)
−0.0656069 + 0.997846i \(0.520898\pi\)
\(588\) −41.5508 71.9681i −0.0706646 0.122395i
\(589\) 173.170 + 299.938i 0.294006 + 0.509233i
\(590\) 378.510 101.421i 0.641542 0.171901i
\(591\) 83.4405i 0.141185i
\(592\) −77.8379 + 125.878i −0.131483 + 0.212632i
\(593\) −669.803 −1.12952 −0.564758 0.825257i \(-0.691030\pi\)
−0.564758 + 0.825257i \(0.691030\pi\)
\(594\) −16.8910 63.0380i −0.0284360 0.106125i
\(595\) −715.768 + 413.249i −1.20297 + 0.694536i
\(596\) −378.382 + 218.459i −0.634869 + 0.366542i
\(597\) −113.681 + 424.263i −0.190420 + 0.710658i
\(598\) 645.431 + 645.431i 1.07932 + 1.07932i
\(599\) −192.911 334.132i −0.322055 0.557816i 0.658857 0.752268i \(-0.271040\pi\)
−0.980912 + 0.194453i \(0.937707\pi\)
\(600\) −202.519 202.519i −0.337532 0.337532i
\(601\) 322.435 558.473i 0.536497 0.929240i −0.462592 0.886571i \(-0.653081\pi\)
0.999089 0.0426688i \(-0.0135860\pi\)
\(602\) 116.466 0.193465
\(603\) 106.292i 0.176273i
\(604\) −189.625 + 328.441i −0.313949 + 0.543776i
\(605\) −99.6120 + 371.757i −0.164648 + 0.614474i
\(606\) −213.848 + 213.848i −0.352884 + 0.352884i
\(607\) −303.608 1133.08i −0.500178 1.86669i −0.498843 0.866692i \(-0.666242\pi\)
−0.00133517 0.999999i \(-0.500425\pi\)
\(608\) 85.7299 148.489i 0.141003 0.244225i
\(609\) −709.276 + 190.050i −1.16466 + 0.312069i
\(610\) 423.633 + 113.512i 0.694481 + 0.186086i
\(611\) 202.624 756.204i 0.331627 1.23765i
\(612\) −16.4443 61.3708i −0.0268697 0.100279i
\(613\) −363.563 209.903i −0.593087 0.342419i 0.173230 0.984881i \(-0.444580\pi\)
−0.766317 + 0.642462i \(0.777913\pi\)
\(614\) −380.927 + 102.069i −0.620403 + 0.166236i
\(615\) −437.122 437.122i −0.710768 0.710768i
\(616\) 207.291 + 55.5434i 0.336511 + 0.0901679i
\(617\) −26.2019 15.1277i −0.0424666 0.0245181i 0.478616 0.878024i \(-0.341138\pi\)
−0.521083 + 0.853506i \(0.674472\pi\)
\(618\) 89.3470 0.144574
\(619\) 1017.69i 1.64409i 0.569420 + 0.822046i \(0.307168\pi\)
−0.569420 + 0.822046i \(0.692832\pi\)
\(620\) −180.809 104.390i −0.291627 0.168371i
\(621\) 140.032 140.032i 0.225495 0.225495i
\(622\) 29.7606 17.1823i 0.0478467 0.0276243i
\(623\) 431.721 431.721i 0.692971 0.692971i
\(624\) 113.332 + 30.3672i 0.181622 + 0.0486654i
\(625\) 665.639 + 1152.92i 1.06502 + 1.84467i
\(626\) −314.105 544.046i −0.501765 0.869083i
\(627\) −450.353 + 120.672i −0.718267 + 0.192459i
\(628\) 217.845i 0.346887i
\(629\) 381.344 89.9280i 0.606270 0.142970i
\(630\) −331.140 −0.525618
\(631\) 143.608 + 535.952i 0.227588 + 0.849369i 0.981351 + 0.192223i \(0.0615697\pi\)
−0.753764 + 0.657146i \(0.771764\pi\)
\(632\) 229.896 132.731i 0.363760 0.210017i
\(633\) 546.742 315.662i 0.863732 0.498676i
\(634\) −31.0257 + 115.789i −0.0489364 + 0.182633i
\(635\) 542.895 + 542.895i 0.854953 + 0.854953i
\(636\) 84.5064 + 146.369i 0.132872 + 0.230141i
\(637\) −287.271 287.271i −0.450975 0.450975i
\(638\) 311.622 539.745i 0.488435 0.845995i
\(639\) 250.456 0.391949
\(640\) 103.359i 0.161499i
\(641\) 562.003 973.417i 0.876759 1.51859i 0.0218828 0.999761i \(-0.493034\pi\)
0.854877 0.518831i \(-0.173633\pi\)
\(642\) 46.9712 175.299i 0.0731639 0.273051i
\(643\) 465.705 465.705i 0.724269 0.724269i −0.245203 0.969472i \(-0.578854\pi\)
0.969472 + 0.245203i \(0.0788545\pi\)
\(644\) 168.546 + 629.021i 0.261717 + 0.976741i
\(645\) 76.2658 132.096i 0.118242 0.204800i
\(646\) −438.443 + 117.480i −0.678704 + 0.181858i
\(647\) −351.920 94.2968i −0.543926 0.145745i −0.0236148 0.999721i \(-0.507518\pi\)
−0.520312 + 0.853976i \(0.674184\pi\)
\(648\) 6.58846 24.5885i 0.0101674 0.0379452i
\(649\) 69.7158 + 260.183i 0.107420 + 0.400898i
\(650\) −1212.58 700.081i −1.86550 1.07705i
\(651\) −163.323 + 43.7623i −0.250881 + 0.0672233i
\(652\) 38.9051 + 38.9051i 0.0596704 + 0.0596704i
\(653\) −590.305 158.172i −0.903989 0.242223i −0.223261 0.974759i \(-0.571670\pi\)
−0.680729 + 0.732536i \(0.738337\pi\)
\(654\) 145.293 + 83.8850i 0.222161 + 0.128265i
\(655\) −225.928 −0.344928
\(656\) 156.269i 0.238215i
\(657\) 144.030 + 83.1560i 0.219224 + 0.126569i
\(658\) 394.945 394.945i 0.600221 0.600221i
\(659\) 571.145 329.751i 0.866685 0.500381i 0.000439553 1.00000i \(-0.499860\pi\)
0.866245 + 0.499619i \(0.166527\pi\)
\(660\) 198.739 198.739i 0.301119 0.301119i
\(661\) 71.5635 + 19.1754i 0.108266 + 0.0290097i 0.312545 0.949903i \(-0.398818\pi\)
−0.204280 + 0.978913i \(0.565485\pi\)
\(662\) 300.907 + 521.186i 0.454542 + 0.787289i
\(663\) −155.305 268.996i −0.234246 0.405726i
\(664\) −177.871 + 47.6604i −0.267878 + 0.0717776i
\(665\) 2365.71i 3.55747i
\(666\) 150.332 + 45.1905i 0.225724 + 0.0678537i
\(667\) 1891.22 2.83542
\(668\) −39.0008 145.553i −0.0583844 0.217894i
\(669\) 66.5803 38.4402i 0.0995222 0.0574592i
\(670\) 396.434 228.881i 0.591693 0.341614i
\(671\) −78.0268 + 291.200i −0.116284 + 0.433979i
\(672\) 59.1903 + 59.1903i 0.0880808 + 0.0880808i
\(673\) 235.551 + 407.986i 0.350001 + 0.606220i 0.986249 0.165264i \(-0.0528478\pi\)
−0.636248 + 0.771485i \(0.719514\pi\)
\(674\) −397.319 397.319i −0.589494 0.589494i
\(675\) −151.889 + 263.080i −0.225021 + 0.389748i
\(676\) 235.596 0.348515
\(677\) 1264.81i 1.86825i −0.356945 0.934125i \(-0.616182\pi\)
0.356945 0.934125i \(-0.383818\pi\)
\(678\) 254.266 440.402i 0.375024 0.649560i
\(679\) −328.276 + 1225.14i −0.483471 + 1.80434i
\(680\) 193.482 193.482i 0.284533 0.284533i
\(681\) 139.924 + 522.203i 0.205468 + 0.766818i
\(682\) 71.7564 124.286i 0.105215 0.182237i
\(683\) 899.080 240.908i 1.31637 0.352720i 0.468753 0.883329i \(-0.344703\pi\)
0.847617 + 0.530609i \(0.178037\pi\)
\(684\) −175.664 47.0690i −0.256819 0.0688143i
\(685\) 11.4787 42.8390i 0.0167572 0.0625387i
\(686\) 78.2106 + 291.886i 0.114010 + 0.425490i
\(687\) 60.8199 + 35.1144i 0.0885297 + 0.0511126i
\(688\) −37.2441 + 9.97954i −0.0541339 + 0.0145051i
\(689\) 584.255 + 584.255i 0.847975 + 0.847975i
\(690\) 823.808 + 220.739i 1.19393 + 0.319911i
\(691\) −688.307 397.394i −0.996102 0.575100i −0.0890097 0.996031i \(-0.528370\pi\)
−0.907093 + 0.420931i \(0.861704\pi\)
\(692\) −281.677 −0.407047
\(693\) 227.621i 0.328458i
\(694\) 69.6242 + 40.1976i 0.100323 + 0.0579216i
\(695\) −1274.10 + 1274.10i −1.83324 + 1.83324i
\(696\) 210.532 121.550i 0.302488 0.174641i
\(697\) 292.526 292.526i 0.419693 0.419693i
\(698\) −79.9552 21.4239i −0.114549 0.0306933i
\(699\) −65.8615 114.075i −0.0942224 0.163198i
\(700\) −499.465 865.099i −0.713522 1.23586i
\(701\) 779.484 208.862i 1.11196 0.297949i 0.344334 0.938847i \(-0.388105\pi\)
0.767626 + 0.640898i \(0.221438\pi\)
\(702\) 124.447i 0.177275i
\(703\) 322.849 1074.00i 0.459244 1.52774i
\(704\) −71.0480 −0.100920
\(705\) −189.326 706.572i −0.268547 1.00223i
\(706\) −582.163 + 336.112i −0.824594 + 0.476080i
\(707\) −913.492 + 527.405i −1.29207 + 0.745976i
\(708\) −27.1932 + 101.486i −0.0384085 + 0.143342i
\(709\) −749.019 749.019i −1.05644 1.05644i −0.998309 0.0581363i \(-0.981484\pi\)
−0.0581363 0.998309i \(-0.518516\pi\)
\(710\) 539.311 + 934.114i 0.759593 + 1.31565i
\(711\) −199.096 199.096i −0.280022 0.280022i
\(712\) −101.066 + 175.051i −0.141946 + 0.245858i
\(713\) 435.488 0.610782
\(714\) 221.601i 0.310366i
\(715\) 687.013 1189.94i 0.960857 1.66425i
\(716\) 40.6183 151.590i 0.0567295 0.211717i
\(717\) 469.801 469.801i 0.655232 0.655232i
\(718\) −46.5783 173.833i −0.0648723 0.242107i
\(719\) 144.216 249.789i 0.200578 0.347412i −0.748136 0.663545i \(-0.769051\pi\)
0.948715 + 0.316133i \(0.102384\pi\)
\(720\) 105.894 28.3741i 0.147075 0.0394085i
\(721\) 301.008 + 80.6548i 0.417487 + 0.111865i
\(722\) −204.133 + 761.836i −0.282733 + 1.05517i
\(723\) 87.3923 + 326.153i 0.120875 + 0.451110i
\(724\) 280.027 + 161.674i 0.386778 + 0.223306i
\(725\) −2802.21 + 750.849i −3.86511 + 1.03565i
\(726\) −72.9677 72.9677i −0.100507 0.100507i
\(727\) 1296.88 + 347.498i 1.78388 + 0.477989i 0.991282 0.131755i \(-0.0420611\pi\)
0.792598 + 0.609744i \(0.208728\pi\)
\(728\) 354.400 + 204.613i 0.486813 + 0.281062i
\(729\) −27.0000 −0.0370370
\(730\) 716.246i 0.981159i
\(731\) 88.3998 + 51.0377i 0.120930 + 0.0698190i
\(732\) −83.1499 + 83.1499i −0.113593 + 0.113593i
\(733\) 309.756 178.838i 0.422586 0.243980i −0.273597 0.961844i \(-0.588213\pi\)
0.696183 + 0.717864i \(0.254880\pi\)
\(734\) −124.463 + 124.463i −0.169568 + 0.169568i
\(735\) −366.664 98.2473i −0.498863 0.133670i
\(736\) −107.797 186.710i −0.146463 0.253682i
\(737\) 157.330 + 272.504i 0.213474 + 0.369748i
\(738\) 160.100 42.8988i 0.216938 0.0581284i
\(739\) 1149.98i 1.55613i 0.628181 + 0.778067i \(0.283800\pi\)
−0.628181 + 0.778067i \(0.716200\pi\)
\(740\) 155.168 + 657.998i 0.209687 + 0.889187i
\(741\) −889.071 −1.19983
\(742\) 152.570 + 569.400i 0.205620 + 0.767386i
\(743\) −694.973 + 401.243i −0.935361 + 0.540031i −0.888503 0.458871i \(-0.848254\pi\)
−0.0468578 + 0.998902i \(0.514921\pi\)
\(744\) 48.4786 27.9891i 0.0651594 0.0376198i
\(745\) −516.548 + 1927.78i −0.693354 + 2.58763i
\(746\) −178.434 178.434i −0.239188 0.239188i
\(747\) 97.6579 + 169.148i 0.130733 + 0.226437i
\(748\) 132.997 + 132.997i 0.177804 + 0.177804i
\(749\) 316.490 548.177i 0.422550 0.731878i
\(750\) −748.817 −0.998423
\(751\) 289.206i 0.385095i 0.981288 + 0.192547i \(0.0616749\pi\)
−0.981288 + 0.192547i \(0.938325\pi\)
\(752\) −92.4565 + 160.139i −0.122947 + 0.212951i
\(753\) −60.5529 + 225.986i −0.0804155 + 0.300115i
\(754\) 840.367 840.367i 1.11455 1.11455i
\(755\) 448.371 + 1673.34i 0.593869 + 2.21635i
\(756\) 44.3927 76.8904i 0.0587205 0.101707i
\(757\) 400.517 107.318i 0.529085 0.141768i 0.0156190 0.999878i \(-0.495028\pi\)
0.513465 + 0.858110i \(0.328361\pi\)
\(758\) −447.984 120.037i −0.591008 0.158360i
\(759\) −151.733 + 566.276i −0.199912 + 0.746081i
\(760\) −202.709 756.522i −0.266723 0.995423i
\(761\) −97.0558 56.0352i −0.127537 0.0736336i 0.434874 0.900491i \(-0.356793\pi\)
−0.562411 + 0.826858i \(0.690126\pi\)
\(762\) −198.841 + 53.2792i −0.260946 + 0.0699202i
\(763\) 413.765 + 413.765i 0.542287 + 0.542287i
\(764\) −383.491 102.756i −0.501952 0.134498i
\(765\) −251.341 145.112i −0.328550 0.189689i
\(766\) −556.011 −0.725863
\(767\) 513.643i 0.669678i
\(768\) −24.0000 13.8564i −0.0312500 0.0180422i
\(769\) −303.708 + 303.708i −0.394939 + 0.394939i −0.876444 0.481505i \(-0.840090\pi\)
0.481505 + 0.876444i \(0.340090\pi\)
\(770\) 848.950 490.141i 1.10253 0.636547i
\(771\) −212.098 + 212.098i −0.275095 + 0.275095i
\(772\) 280.792 + 75.2379i 0.363720 + 0.0974584i
\(773\) 82.7843 + 143.387i 0.107095 + 0.185494i 0.914592 0.404378i \(-0.132512\pi\)
−0.807497 + 0.589871i \(0.799179\pi\)
\(774\) 20.4485 + 35.4178i 0.0264192 + 0.0457594i
\(775\) −645.258 + 172.896i −0.832591 + 0.223092i
\(776\) 419.912i 0.541124i
\(777\) 465.672 + 287.953i 0.599320 + 0.370596i
\(778\) 760.412 0.977393
\(779\) −306.476 1143.78i −0.393422 1.46827i
\(780\) 464.146 267.975i 0.595059 0.343557i
\(781\) −642.098 + 370.716i −0.822149 + 0.474668i
\(782\) −147.720 + 551.299i −0.188900 + 0.704986i
\(783\) −182.326 182.326i −0.232855 0.232855i
\(784\) 47.9787 + 83.1016i 0.0611974 + 0.105997i
\(785\) −703.636 703.636i −0.896352 0.896352i
\(786\) 30.2880 52.4603i 0.0385343 0.0667434i
\(787\) −345.812 −0.439405 −0.219703 0.975567i \(-0.570509\pi\)
−0.219703 + 0.975567i \(0.570509\pi\)
\(788\) 96.3488i 0.122270i
\(789\) −25.9264 + 44.9059i −0.0328598 + 0.0569149i
\(790\) 313.843 1171.28i 0.397269 1.48263i
\(791\) 1254.17 1254.17i 1.58555 1.58555i
\(792\) 19.5040 + 72.7900i 0.0246263 + 0.0919065i
\(793\) −287.438 + 497.857i −0.362469 + 0.627815i
\(794\) 872.205 233.707i 1.09850 0.294341i
\(795\) 745.725 + 199.816i 0.938019 + 0.251341i
\(796\) 131.267 489.897i 0.164909 0.615448i
\(797\) 324.739 + 1211.94i 0.407451 + 1.52063i 0.799490 + 0.600680i \(0.205103\pi\)
−0.392039 + 0.919949i \(0.628230\pi\)
\(798\) −549.318 317.149i −0.688368 0.397429i
\(799\) 472.844 126.698i 0.591795 0.158571i
\(800\) 233.849 + 233.849i 0.292311 + 0.292311i
\(801\) 207.087 + 55.4888i 0.258536 + 0.0692744i
\(802\) 707.384 + 408.409i 0.882025 + 0.509238i
\(803\) −492.338 −0.613124
\(804\) 122.736i 0.152656i
\(805\) 2576.13 + 1487.33i 3.20016 + 1.84761i
\(806\) 193.509 193.509i 0.240086 0.240086i
\(807\) −162.863 + 94.0290i −0.201813 + 0.116517i
\(808\) 246.930 246.930i 0.305607 0.305607i
\(809\) −743.195 199.138i −0.918658 0.246154i −0.231647 0.972800i \(-0.574411\pi\)
−0.687012 + 0.726646i \(0.741078\pi\)
\(810\) −58.1397 100.701i −0.0717774 0.124322i
\(811\) 634.104 + 1098.30i 0.781879 + 1.35425i 0.930846 + 0.365411i \(0.119072\pi\)
−0.148967 + 0.988842i \(0.547595\pi\)
\(812\) 819.001 219.451i 1.00862 0.270260i
\(813\) 90.6804i 0.111538i
\(814\) −452.300 + 106.661i −0.555651 + 0.131033i
\(815\) 251.325 0.308375
\(816\) 18.9882 + 70.8649i 0.0232698 + 0.0868442i
\(817\) 253.030 146.087i 0.309706 0.178809i
\(818\) −139.808 + 80.7180i −0.170914 + 0.0986773i
\(819\) 112.340 419.259i 0.137168 0.511916i
\(820\) 504.746 + 504.746i 0.615543 + 0.615543i
\(821\) 9.69377 + 16.7901i 0.0118073 + 0.0204508i 0.871869 0.489740i \(-0.162908\pi\)
−0.860061 + 0.510191i \(0.829575\pi\)
\(822\) 8.40836 + 8.40836i 0.0102292 + 0.0102292i
\(823\) −79.0872 + 136.983i −0.0960962 + 0.166444i −0.910066 0.414464i \(-0.863969\pi\)
0.813969 + 0.580908i \(0.197302\pi\)
\(824\) −103.169 −0.125205
\(825\) 899.286i 1.09004i
\(826\) −183.227 + 317.358i −0.221824 + 0.384210i
\(827\) 59.4239 221.773i 0.0718547 0.268165i −0.920647 0.390396i \(-0.872338\pi\)
0.992502 + 0.122231i \(0.0390047\pi\)
\(828\) −161.696 + 161.696i −0.195284 + 0.195284i
\(829\) −14.4001 53.7420i −0.0173705 0.0648275i 0.956697 0.291087i \(-0.0940169\pi\)
−0.974067 + 0.226260i \(0.927350\pi\)
\(830\) −420.578 + 728.462i −0.506720 + 0.877665i
\(831\) 578.803 155.090i 0.696514 0.186630i
\(832\) −130.864 35.0650i −0.157289 0.0421455i
\(833\) 65.7479 245.374i 0.0789290 0.294567i
\(834\) −125.039 466.653i −0.149927 0.559536i
\(835\) −596.105 344.161i −0.713898 0.412169i
\(836\) 520.023 139.340i 0.622038 0.166674i
\(837\) −41.9837 41.9837i −0.0501597 0.0501597i
\(838\) 1080.54 + 289.530i 1.28943 + 0.345501i
\(839\) −402.163 232.189i −0.479336 0.276744i 0.240804 0.970574i \(-0.422589\pi\)
−0.720140 + 0.693829i \(0.755922\pi\)
\(840\) 382.367 0.455199
\(841\) 1621.42i 1.92797i
\(842\) −91.1655 52.6344i −0.108273 0.0625112i
\(843\) −96.7695 + 96.7695i −0.114792 + 0.114792i
\(844\) −631.323 + 364.495i −0.748013 + 0.431866i
\(845\) 760.971 760.971i 0.900557 0.900557i
\(846\) 189.447 + 50.7621i 0.223932 + 0.0600025i
\(847\) −179.958 311.696i −0.212465 0.367999i
\(848\) −97.5796 169.013i −0.115070 0.199308i
\(849\) −100.534 + 26.9379i −0.118414 + 0.0317290i
\(850\) 875.502i 1.03000i
\(851\) −966.547 1026.79i −1.13578 1.20657i
\(852\) −289.201 −0.339438
\(853\) −50.9442 190.126i −0.0597236 0.222891i 0.929613 0.368536i \(-0.120141\pi\)
−0.989337 + 0.145645i \(0.953474\pi\)
\(854\) −355.191 + 205.069i −0.415914 + 0.240128i
\(855\) −719.423 + 415.359i −0.841431 + 0.485800i
\(856\) −54.2377 + 202.418i −0.0633618 + 0.236469i
\(857\) −734.782 734.782i −0.857388 0.857388i 0.133642 0.991030i \(-0.457333\pi\)
−0.991030 + 0.133642i \(0.957333\pi\)
\(858\) 184.202 + 319.048i 0.214688 + 0.371851i
\(859\) −188.861 188.861i −0.219862 0.219862i 0.588578 0.808440i \(-0.299688\pi\)
−0.808440 + 0.588578i \(0.799688\pi\)
\(860\) −88.0642 + 152.532i −0.102400 + 0.177362i
\(861\) 578.100 0.671428
\(862\) 401.285i 0.465528i
\(863\) −697.425 + 1207.98i −0.808140 + 1.39974i 0.106010 + 0.994365i \(0.466192\pi\)
−0.914150 + 0.405375i \(0.867141\pi\)
\(864\) −7.60770 + 28.3923i −0.00880520 + 0.0328615i
\(865\) −909.811 + 909.811i −1.05180 + 1.05180i
\(866\) 181.139 + 676.020i 0.209168 + 0.780624i
\(867\) −153.171 + 265.301i −0.176668 + 0.305998i
\(868\) 188.589 50.5324i 0.217269 0.0582171i
\(869\) 805.121 + 215.732i 0.926492 + 0.248253i
\(870\) 287.407 1072.62i 0.330353 1.23290i
\(871\) 155.298 + 579.579i 0.178298 + 0.665418i
\(872\) −167.770 96.8621i −0.192397 0.111080i
\(873\) −430.208 + 115.274i −0.492793 + 0.132043i
\(874\) 1155.18 + 1155.18i 1.32172 + 1.32172i
\(875\) −2522.75 675.968i −2.88314 0.772535i
\(876\) −166.312 96.0202i −0.189854 0.109612i
\(877\) −1361.48 −1.55243 −0.776214 0.630470i \(-0.782862\pi\)
−0.776214 + 0.630470i \(0.782862\pi\)
\(878\) 308.320i 0.351162i
\(879\) −351.981 203.216i −0.400433 0.231190i
\(880\) −229.484 + 229.484i −0.260777 + 0.260777i
\(881\) −770.928 + 445.096i −0.875061 + 0.505217i −0.869027 0.494765i \(-0.835254\pi\)
−0.00603404 + 0.999982i \(0.501921\pi\)
\(882\) 71.9681 71.9681i 0.0815965 0.0815965i
\(883\) 181.386 + 48.6022i 0.205420 + 0.0550421i 0.360062 0.932929i \(-0.382756\pi\)
−0.154642 + 0.987971i \(0.549422\pi\)
\(884\) 179.331 + 310.610i 0.202863 + 0.351369i
\(885\) 239.966 + 415.633i 0.271148 + 0.469642i
\(886\) 583.851 156.442i 0.658973 0.176571i
\(887\) 217.677i 0.245408i 0.992443 + 0.122704i \(0.0391566\pi\)
−0.992443 + 0.122704i \(0.960843\pi\)
\(888\) −173.589 52.1815i −0.195483 0.0587630i
\(889\) −717.985 −0.807633
\(890\) 238.971 + 891.850i 0.268506 + 1.00208i
\(891\) 69.2205 39.9645i 0.0776886 0.0448535i
\(892\) −76.8804 + 44.3869i −0.0861887 + 0.0497611i
\(893\) 362.653 1353.44i 0.406106 1.51561i
\(894\) −378.382 378.382i −0.423246 0.423246i
\(895\) −358.435 620.828i −0.400486 0.693662i
\(896\) −68.3471 68.3471i −0.0762802 0.0762802i
\(897\) −558.960 + 968.147i −0.623144 + 1.07932i
\(898\) −503.873 −0.561106
\(899\) 567.016i 0.630718i
\(900\) 175.387 303.779i 0.194874 0.337532i
\(901\) −133.719 + 499.045i −0.148411 + 0.553879i
\(902\) −346.956 + 346.956i −0.384652 + 0.384652i
\(903\) 36.9182 + 137.781i 0.0408840 + 0.152581i
\(904\) −293.601 + 508.532i −0.324780 + 0.562535i
\(905\) 1426.68 382.279i 1.57645 0.422408i
\(906\) −448.658 120.218i −0.495208 0.132691i
\(907\) −24.3713 + 90.9549i −0.0268702 + 0.100281i −0.978059 0.208330i \(-0.933197\pi\)
0.951188 + 0.308611i \(0.0998640\pi\)
\(908\) −161.570 602.988i −0.177941 0.664084i
\(909\) −320.772 185.198i −0.352884 0.203738i
\(910\) 1805.60 483.809i 1.98418 0.531658i
\(911\) 106.207 + 106.207i 0.116583 + 0.116583i 0.762992 0.646408i \(-0.223730\pi\)
−0.646408 + 0.762992i \(0.723730\pi\)
\(912\) 202.839 + 54.3506i 0.222411 + 0.0595950i
\(913\) −500.735 289.100i −0.548451 0.316648i
\(914\) −134.809 −0.147494
\(915\) 537.145i 0.587044i
\(916\) −70.2288 40.5466i −0.0766689 0.0442648i
\(917\) 149.396 149.396i 0.162918 0.162918i
\(918\) 67.3898 38.9075i 0.0734094 0.0423829i
\(919\) 222.228 222.228i 0.241815 0.241815i −0.575786 0.817601i \(-0.695304\pi\)
0.817601 + 0.575786i \(0.195304\pi\)
\(920\) −951.252 254.887i −1.03397 0.277051i
\(921\) −241.498 418.287i −0.262213 0.454166i
\(922\) −558.536 967.413i −0.605788 1.04926i
\(923\) −1365.66 + 365.926i −1.47958 + 0.396453i
\(924\) 262.834i 0.284453i
\(925\) 1839.78 + 1137.64i 1.98895 + 1.22989i
\(926\) 342.804 0.370199
\(927\) 28.3219 + 105.699i 0.0305522 + 0.114022i
\(928\) −243.101 + 140.354i −0.261962 + 0.151244i
\(929\) 823.257 475.308i 0.886176 0.511634i 0.0134861 0.999909i \(-0.495707\pi\)
0.872690 + 0.488275i \(0.162374\pi\)
\(930\) 66.1806 246.989i 0.0711620 0.265580i
\(931\) −514.152 514.152i −0.552258 0.552258i
\(932\) 76.0503 + 131.723i 0.0815990 + 0.141334i
\(933\) 29.7606 + 29.7606i 0.0318978 + 0.0318978i
\(934\) −73.8392 + 127.893i −0.0790570 + 0.136931i
\(935\) 859.158 0.918886
\(936\) 143.699i 0.153525i
\(937\) 204.011 353.358i 0.217728 0.377116i −0.736385 0.676563i \(-0.763469\pi\)
0.954113 + 0.299447i \(0.0968021\pi\)
\(938\) −110.795 + 413.494i −0.118119 + 0.440825i
\(939\) 544.046 544.046i 0.579389 0.579389i
\(940\) 218.614 + 815.880i 0.232568 + 0.867957i
\(941\) 793.453 1374.30i 0.843202 1.46047i −0.0439719 0.999033i \(-0.514001\pi\)
0.887174 0.461436i \(-0.152665\pi\)
\(942\) 257.714 69.0542i 0.273581 0.0733059i
\(943\) −1438.20 385.363i −1.52513 0.408657i
\(944\) 31.4000 117.186i 0.0332627 0.124138i
\(945\) −104.967 391.742i −0.111076 0.414542i
\(946\) −104.848 60.5342i −0.110833 0.0639896i
\(947\) 1400.43 375.243i 1.47880 0.396244i 0.572863 0.819651i \(-0.305833\pi\)
0.905940 + 0.423407i \(0.139166\pi\)
\(948\) 229.896 + 229.896i 0.242506 + 0.242506i
\(949\) −906.847 242.989i −0.955582 0.256047i
\(950\) −2170.24 1252.99i −2.28447 1.31894i
\(951\) −146.815 −0.154380
\(952\) 255.883i 0.268785i
\(953\) −956.250 552.091i −1.00341 0.579319i −0.0941548 0.995558i \(-0.530015\pi\)
−0.909256 + 0.416238i \(0.863348\pi\)
\(954\) −146.369 + 146.369i −0.153427 + 0.153427i
\(955\) −1570.57 + 906.769i −1.64458 + 0.949496i
\(956\) −542.480 + 542.480i −0.567447 + 0.567447i
\(957\) 737.305 + 197.560i 0.770433 + 0.206437i
\(958\) 26.0624 + 45.1414i 0.0272050 + 0.0471205i
\(959\) 20.7372 + 35.9179i 0.0216238 + 0.0374535i
\(960\) −122.275 + 32.7636i −0.127370 + 0.0341288i
\(961\) 830.435i 0.864136i
\(962\) −885.741 26.7679i −0.920728 0.0278252i
\(963\) 222.270 0.230810
\(964\) −100.912 376.609i −0.104680 0.390673i
\(965\) 1149.97 663.935i 1.19168 0.688016i
\(966\) −690.713 + 398.784i −0.715024 + 0.412819i
\(967\) −351.109 + 1310.36i −0.363091 + 1.35507i 0.506899 + 0.862005i \(0.330792\pi\)
−0.869990 + 0.493069i \(0.835875\pi\)
\(968\) 84.2559 + 84.2559i 0.0870412 + 0.0870412i
\(969\) −277.962 481.444i −0.286854 0.496846i
\(970\) −1356.31 1356.31i −1.39826 1.39826i
\(971\) 277.225 480.168i 0.285505 0.494509i −0.687227 0.726443i \(-0.741172\pi\)
0.972731 + 0.231934i \(0.0745055\pi\)
\(972\) 31.1769 0.0320750
\(973\) 1685.02i 1.73177i
\(974\) −429.852 + 744.525i −0.441326 + 0.764399i
\(975\) 443.834 1656.41i 0.455214 1.69888i
\(976\) 96.0133 96.0133i 0.0983742 0.0983742i
\(977\) 447.541 + 1670.25i 0.458077 + 1.70957i 0.678881 + 0.734249i \(0.262465\pi\)
−0.220803 + 0.975318i \(0.570868\pi\)
\(978\) −33.6928 + 58.3576i −0.0344507 + 0.0596704i
\(979\) −613.047 + 164.265i −0.626197 + 0.167789i
\(980\) 423.387 + 113.446i 0.432028 + 0.115761i
\(981\) −53.1810 + 198.474i −0.0542110 + 0.202318i
\(982\) −19.0635 71.1459i −0.0194129 0.0724500i
\(983\) 968.728 + 559.295i 0.985481 + 0.568968i 0.903920 0.427701i \(-0.140676\pi\)
0.0815605 + 0.996668i \(0.474010\pi\)
\(984\) −184.868 + 49.5352i −0.187874 + 0.0503407i
\(985\) −311.205 311.205i −0.315944 0.315944i
\(986\) 717.805 + 192.335i 0.727997 + 0.195066i
\(987\) 592.418 + 342.033i 0.600221 + 0.346538i
\(988\) 1026.61 1.03908
\(989\) 367.380i 0.371467i
\(990\) 298.108 + 172.113i 0.301119 + 0.173851i
\(991\) −1048.23 + 1048.23i −1.05775 + 1.05775i −0.0595241 + 0.998227i \(0.518958\pi\)
−0.998227 + 0.0595241i \(0.981042\pi\)
\(992\) −55.9783 + 32.3191i −0.0564297 + 0.0325797i
\(993\) −521.186 + 521.186i −0.524860 + 0.524860i
\(994\) −974.312 261.066i −0.980193 0.262642i
\(995\) −1158.37 2006.35i −1.16419 2.01643i
\(996\) −112.766 195.316i −0.113218 0.196100i
\(997\) 979.275 262.396i 0.982222 0.263185i 0.268242 0.963352i \(-0.413557\pi\)
0.713980 + 0.700166i \(0.246891\pi\)
\(998\) 477.185i 0.478141i
\(999\) −5.80754 + 192.170i −0.00581336 + 0.192362i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 222.3.l.d.97.1 16
37.29 odd 12 inner 222.3.l.d.103.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
222.3.l.d.97.1 16 1.1 even 1 trivial
222.3.l.d.103.1 yes 16 37.29 odd 12 inner