Properties

Label 222.3.l.d.199.4
Level $222$
Weight $3$
Character 222.199
Analytic conductor $6.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [222,3,Mod(97,222)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("222.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(222, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 222 = 2 \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 222.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.04906186880\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 318 x^{13} + 8876 x^{12} - 14732 x^{11} + 38482 x^{10} + 1520688 x^{9} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 199.4
Root \(-5.10315 - 5.10315i\) of defining polynomial
Character \(\chi\) \(=\) 222.199
Dual form 222.3.l.d.193.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(1.50000 - 0.866025i) q^{3} +(1.73205 - 1.00000i) q^{4} +(8.33705 + 2.23391i) q^{5} +(1.73205 - 1.73205i) q^{6} +(-6.46144 - 11.1915i) q^{7} +(2.00000 - 2.00000i) q^{8} +(1.50000 - 2.59808i) q^{9} +12.2063 q^{10} +13.2455i q^{11} +(1.73205 - 3.00000i) q^{12} +(-11.9887 - 3.21235i) q^{13} +(-12.9229 - 12.9229i) q^{14} +(14.4402 - 3.86924i) q^{15} +(2.00000 - 3.46410i) q^{16} +(4.07838 + 15.2207i) q^{17} +(1.09808 - 4.09808i) q^{18} +(4.30012 + 1.15221i) q^{19} +(16.6741 - 4.46781i) q^{20} +(-19.3843 - 11.1915i) q^{21} +(4.84819 + 18.0937i) q^{22} +(-3.26464 + 3.26464i) q^{23} +(1.26795 - 4.73205i) q^{24} +(42.8655 + 24.7484i) q^{25} -17.5526 q^{26} -5.19615i q^{27} +(-22.3831 - 12.9229i) q^{28} +(6.05490 + 6.05490i) q^{29} +(18.3094 - 10.5710i) q^{30} +(-25.8855 - 25.8855i) q^{31} +(1.46410 - 5.46410i) q^{32} +(11.4709 + 19.8682i) q^{33} +(11.1423 + 19.2991i) q^{34} +(-28.8685 - 107.739i) q^{35} -6.00000i q^{36} +(-8.73010 + 35.9553i) q^{37} +6.29582 q^{38} +(-20.7650 + 5.56396i) q^{39} +(21.1419 - 12.2063i) q^{40} +(35.8353 - 20.6895i) q^{41} +(-30.5759 - 8.19277i) q^{42} +(20.0565 - 20.0565i) q^{43} +(13.2455 + 22.9419i) q^{44} +(18.3094 - 18.3094i) q^{45} +(-3.26464 + 5.65452i) q^{46} -53.2450 q^{47} -6.92820i q^{48} +(-59.0003 + 102.192i) q^{49} +(67.6138 + 18.1171i) q^{50} +(19.2991 + 19.2991i) q^{51} +(-23.9773 + 6.42471i) q^{52} +(-18.6282 + 32.2650i) q^{53} +(-1.90192 - 7.09808i) q^{54} +(-29.5892 + 110.428i) q^{55} +(-35.3060 - 9.46020i) q^{56} +(7.44803 - 1.99569i) q^{57} +(10.4874 + 6.05490i) q^{58} +(29.1262 + 108.700i) q^{59} +(21.1419 - 21.1419i) q^{60} +(-16.5497 + 61.7642i) q^{61} +(-44.8349 - 25.8855i) q^{62} -38.7686 q^{63} -8.00000i q^{64} +(-92.7741 - 53.5631i) q^{65} +(22.9419 + 22.9419i) q^{66} +(76.1457 - 43.9628i) q^{67} +(22.2847 + 22.2847i) q^{68} +(-2.06970 + 7.72422i) q^{69} +(-78.8702 - 136.607i) q^{70} +(-13.2247 - 22.9059i) q^{71} +(-2.19615 - 8.19615i) q^{72} -108.076i q^{73} +(1.23503 + 52.3113i) q^{74} +85.7309 q^{75} +(8.60025 - 2.30443i) q^{76} +(148.237 - 85.5849i) q^{77} +(-26.3290 + 15.2010i) q^{78} +(-137.251 - 36.7764i) q^{79} +(24.4126 - 24.4126i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(41.3790 - 41.3790i) q^{82} +(-13.4470 + 23.2908i) q^{83} -44.7662 q^{84} +136.007i q^{85} +(20.0565 - 34.7388i) q^{86} +(14.3261 + 3.83865i) q^{87} +(26.4910 + 26.4910i) q^{88} +(-69.2834 + 18.5644i) q^{89} +(18.3094 - 31.7129i) q^{90} +(41.5129 + 154.928i) q^{91} +(-2.38988 + 8.91916i) q^{92} +(-61.2456 - 16.4107i) q^{93} +(-72.7340 + 19.4890i) q^{94} +(33.2764 + 19.2121i) q^{95} +(-2.53590 - 9.46410i) q^{96} +(-21.0702 + 21.0702i) q^{97} +(-43.1913 + 161.192i) q^{98} +(34.4128 + 19.8682i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 24 q^{3} + 6 q^{5} - 14 q^{7} + 32 q^{8} + 24 q^{9} + 24 q^{10} - 16 q^{13} - 28 q^{14} + 18 q^{15} + 32 q^{16} - 16 q^{17} - 24 q^{18} + 42 q^{19} + 12 q^{20} - 42 q^{21} + 46 q^{22} - 34 q^{23}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/222\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(187\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 1.50000 0.866025i 0.500000 0.288675i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 8.33705 + 2.23391i 1.66741 + 0.446781i 0.964411 0.264409i \(-0.0851768\pi\)
0.703000 + 0.711190i \(0.251844\pi\)
\(6\) 1.73205 1.73205i 0.288675 0.288675i
\(7\) −6.46144 11.1915i −0.923062 1.59879i −0.794648 0.607071i \(-0.792345\pi\)
−0.128415 0.991721i \(-0.540989\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 1.50000 2.59808i 0.166667 0.288675i
\(10\) 12.2063 1.22063
\(11\) 13.2455i 1.20414i 0.798445 + 0.602068i \(0.205656\pi\)
−0.798445 + 0.602068i \(0.794344\pi\)
\(12\) 1.73205 3.00000i 0.144338 0.250000i
\(13\) −11.9887 3.21235i −0.922206 0.247104i −0.233678 0.972314i \(-0.575076\pi\)
−0.688528 + 0.725210i \(0.741743\pi\)
\(14\) −12.9229 12.9229i −0.923062 0.923062i
\(15\) 14.4402 3.86924i 0.962680 0.257949i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 4.07838 + 15.2207i 0.239905 + 0.895337i 0.975876 + 0.218325i \(0.0700591\pi\)
−0.735971 + 0.677013i \(0.763274\pi\)
\(18\) 1.09808 4.09808i 0.0610042 0.227671i
\(19\) 4.30012 + 1.15221i 0.226322 + 0.0606429i 0.370198 0.928953i \(-0.379290\pi\)
−0.143876 + 0.989596i \(0.545957\pi\)
\(20\) 16.6741 4.46781i 0.833705 0.223391i
\(21\) −19.3843 11.1915i −0.923062 0.532930i
\(22\) 4.84819 + 18.0937i 0.220372 + 0.822440i
\(23\) −3.26464 + 3.26464i −0.141941 + 0.141941i −0.774507 0.632566i \(-0.782002\pi\)
0.632566 + 0.774507i \(0.282002\pi\)
\(24\) 1.26795 4.73205i 0.0528312 0.197169i
\(25\) 42.8655 + 24.7484i 1.71462 + 0.989935i
\(26\) −17.5526 −0.675101
\(27\) 5.19615i 0.192450i
\(28\) −22.3831 12.9229i −0.799396 0.461531i
\(29\) 6.05490 + 6.05490i 0.208790 + 0.208790i 0.803753 0.594963i \(-0.202833\pi\)
−0.594963 + 0.803753i \(0.702833\pi\)
\(30\) 18.3094 10.5710i 0.610315 0.352365i
\(31\) −25.8855 25.8855i −0.835015 0.835015i 0.153183 0.988198i \(-0.451048\pi\)
−0.988198 + 0.153183i \(0.951048\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 11.4709 + 19.8682i 0.347604 + 0.602068i
\(34\) 11.1423 + 19.2991i 0.327716 + 0.567621i
\(35\) −28.8685 107.739i −0.824814 3.07825i
\(36\) 6.00000i 0.166667i
\(37\) −8.73010 + 35.9553i −0.235949 + 0.971766i
\(38\) 6.29582 0.165679
\(39\) −20.7650 + 5.56396i −0.532436 + 0.142666i
\(40\) 21.1419 12.2063i 0.528548 0.305157i
\(41\) 35.8353 20.6895i 0.874032 0.504622i 0.00534580 0.999986i \(-0.498298\pi\)
0.868686 + 0.495363i \(0.164965\pi\)
\(42\) −30.5759 8.19277i −0.727996 0.195066i
\(43\) 20.0565 20.0565i 0.466430 0.466430i −0.434326 0.900756i \(-0.643013\pi\)
0.900756 + 0.434326i \(0.143013\pi\)
\(44\) 13.2455 + 22.9419i 0.301034 + 0.521406i
\(45\) 18.3094 18.3094i 0.406876 0.406876i
\(46\) −3.26464 + 5.65452i −0.0709704 + 0.122924i
\(47\) −53.2450 −1.13287 −0.566436 0.824106i \(-0.691678\pi\)
−0.566436 + 0.824106i \(0.691678\pi\)
\(48\) 6.92820i 0.144338i
\(49\) −59.0003 + 102.192i −1.20409 + 2.08554i
\(50\) 67.6138 + 18.1171i 1.35228 + 0.362341i
\(51\) 19.2991 + 19.2991i 0.378414 + 0.378414i
\(52\) −23.9773 + 6.42471i −0.461103 + 0.123552i
\(53\) −18.6282 + 32.2650i −0.351476 + 0.608774i −0.986508 0.163712i \(-0.947653\pi\)
0.635033 + 0.772485i \(0.280987\pi\)
\(54\) −1.90192 7.09808i −0.0352208 0.131446i
\(55\) −29.5892 + 110.428i −0.537985 + 2.00779i
\(56\) −35.3060 9.46020i −0.630463 0.168932i
\(57\) 7.44803 1.99569i 0.130667 0.0350122i
\(58\) 10.4874 + 6.05490i 0.180817 + 0.104395i
\(59\) 29.1262 + 108.700i 0.493664 + 1.84238i 0.537390 + 0.843334i \(0.319410\pi\)
−0.0437261 + 0.999044i \(0.513923\pi\)
\(60\) 21.1419 21.1419i 0.352365 0.352365i
\(61\) −16.5497 + 61.7642i −0.271306 + 1.01253i 0.686971 + 0.726685i \(0.258940\pi\)
−0.958277 + 0.285843i \(0.907727\pi\)
\(62\) −44.8349 25.8855i −0.723144 0.417507i
\(63\) −38.7686 −0.615375
\(64\) 8.00000i 0.125000i
\(65\) −92.7741 53.5631i −1.42729 0.824048i
\(66\) 22.9419 + 22.9419i 0.347604 + 0.347604i
\(67\) 76.1457 43.9628i 1.13650 0.656161i 0.190941 0.981602i \(-0.438846\pi\)
0.945562 + 0.325441i \(0.105513\pi\)
\(68\) 22.2847 + 22.2847i 0.327716 + 0.327716i
\(69\) −2.06970 + 7.72422i −0.0299956 + 0.111945i
\(70\) −78.8702 136.607i −1.12672 1.95153i
\(71\) −13.2247 22.9059i −0.186263 0.322618i 0.757738 0.652559i \(-0.226304\pi\)
−0.944002 + 0.329941i \(0.892971\pi\)
\(72\) −2.19615 8.19615i −0.0305021 0.113835i
\(73\) 108.076i 1.48049i −0.672338 0.740244i \(-0.734710\pi\)
0.672338 0.740244i \(-0.265290\pi\)
\(74\) 1.23503 + 52.3113i 0.0166896 + 0.706910i
\(75\) 85.7309 1.14308
\(76\) 8.60025 2.30443i 0.113161 0.0303214i
\(77\) 148.237 85.5849i 1.92516 1.11149i
\(78\) −26.3290 + 15.2010i −0.337551 + 0.194885i
\(79\) −137.251 36.7764i −1.73736 0.465524i −0.755502 0.655146i \(-0.772607\pi\)
−0.981857 + 0.189622i \(0.939274\pi\)
\(80\) 24.4126 24.4126i 0.305157 0.305157i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) 41.3790 41.3790i 0.504622 0.504622i
\(83\) −13.4470 + 23.2908i −0.162012 + 0.280612i −0.935590 0.353088i \(-0.885132\pi\)
0.773578 + 0.633701i \(0.218465\pi\)
\(84\) −44.7662 −0.532930
\(85\) 136.007i 1.60008i
\(86\) 20.0565 34.7388i 0.233215 0.403940i
\(87\) 14.3261 + 3.83865i 0.164667 + 0.0441225i
\(88\) 26.4910 + 26.4910i 0.301034 + 0.301034i
\(89\) −69.2834 + 18.5644i −0.778465 + 0.208589i −0.626108 0.779737i \(-0.715353\pi\)
−0.152357 + 0.988326i \(0.548686\pi\)
\(90\) 18.3094 31.7129i 0.203438 0.352365i
\(91\) 41.5129 + 154.928i 0.456185 + 1.70251i
\(92\) −2.38988 + 8.91916i −0.0259770 + 0.0969474i
\(93\) −61.2456 16.4107i −0.658555 0.176459i
\(94\) −72.7340 + 19.4890i −0.773765 + 0.207330i
\(95\) 33.2764 + 19.2121i 0.350278 + 0.202233i
\(96\) −2.53590 9.46410i −0.0264156 0.0985844i
\(97\) −21.0702 + 21.0702i −0.217219 + 0.217219i −0.807325 0.590106i \(-0.799086\pi\)
0.590106 + 0.807325i \(0.299086\pi\)
\(98\) −43.1913 + 161.192i −0.440727 + 1.64482i
\(99\) 34.4128 + 19.8682i 0.347604 + 0.200689i
\(100\) 98.9935 0.989935
\(101\) 136.519i 1.35167i −0.737053 0.675835i \(-0.763783\pi\)
0.737053 0.675835i \(-0.236217\pi\)
\(102\) 33.4270 + 19.2991i 0.327716 + 0.189207i
\(103\) −13.3213 13.3213i −0.129333 0.129333i 0.639477 0.768810i \(-0.279151\pi\)
−0.768810 + 0.639477i \(0.779151\pi\)
\(104\) −30.4021 + 17.5526i −0.292327 + 0.168775i
\(105\) −136.607 136.607i −1.30102 1.30102i
\(106\) −13.6368 + 50.8932i −0.128649 + 0.480125i
\(107\) −90.1581 156.158i −0.842599 1.45942i −0.887690 0.460441i \(-0.847691\pi\)
0.0450918 0.998983i \(-0.485642\pi\)
\(108\) −5.19615 9.00000i −0.0481125 0.0833333i
\(109\) 19.1545 + 71.4855i 0.175729 + 0.655830i 0.996426 + 0.0844669i \(0.0269187\pi\)
−0.820697 + 0.571364i \(0.806415\pi\)
\(110\) 161.678i 1.46980i
\(111\) 18.0431 + 61.4935i 0.162550 + 0.553995i
\(112\) −51.6915 −0.461531
\(113\) 14.2577 3.82033i 0.126174 0.0338082i −0.195179 0.980768i \(-0.562529\pi\)
0.321353 + 0.946959i \(0.395862\pi\)
\(114\) 9.44373 5.45234i 0.0828397 0.0478275i
\(115\) −34.5104 + 19.9246i −0.300090 + 0.173257i
\(116\) 16.5423 + 4.43250i 0.142606 + 0.0382112i
\(117\) −26.3290 + 26.3290i −0.225034 + 0.225034i
\(118\) 79.5741 + 137.826i 0.674357 + 1.16802i
\(119\) 143.991 143.991i 1.21001 1.21001i
\(120\) 21.1419 36.6189i 0.176183 0.305157i
\(121\) −54.4429 −0.449942
\(122\) 90.4291i 0.741222i
\(123\) 35.8353 62.0686i 0.291344 0.504622i
\(124\) −70.7204 18.9495i −0.570326 0.152818i
\(125\) 149.507 + 149.507i 1.19606 + 1.19606i
\(126\) −52.9589 + 14.1903i −0.420309 + 0.112621i
\(127\) 77.1894 133.696i 0.607790 1.05272i −0.383813 0.923411i \(-0.625389\pi\)
0.991604 0.129313i \(-0.0412773\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 12.7153 47.4541i 0.0985682 0.367862i
\(130\) −146.337 39.2109i −1.12567 0.301623i
\(131\) 140.927 37.7613i 1.07578 0.288254i 0.322913 0.946429i \(-0.395338\pi\)
0.752865 + 0.658175i \(0.228671\pi\)
\(132\) 39.7365 + 22.9419i 0.301034 + 0.173802i
\(133\) −14.8899 55.5700i −0.111954 0.417819i
\(134\) 87.9255 87.9255i 0.656161 0.656161i
\(135\) 11.6077 43.3206i 0.0859831 0.320893i
\(136\) 38.5982 + 22.2847i 0.283811 + 0.163858i
\(137\) −94.5607 −0.690224 −0.345112 0.938561i \(-0.612159\pi\)
−0.345112 + 0.938561i \(0.612159\pi\)
\(138\) 11.3090i 0.0819496i
\(139\) 111.198 + 64.2005i 0.799989 + 0.461874i 0.843467 0.537180i \(-0.180511\pi\)
−0.0434783 + 0.999054i \(0.513844\pi\)
\(140\) −157.740 157.740i −1.12672 1.12672i
\(141\) −79.8674 + 46.1115i −0.566436 + 0.327032i
\(142\) −26.4494 26.4494i −0.186263 0.186263i
\(143\) 42.5492 158.796i 0.297547 1.11046i
\(144\) −6.00000 10.3923i −0.0416667 0.0721688i
\(145\) 36.9539 + 64.0061i 0.254855 + 0.441421i
\(146\) −39.5584 147.634i −0.270948 1.01119i
\(147\) 204.383i 1.39036i
\(148\) 20.8344 + 71.0065i 0.140773 + 0.479774i
\(149\) 57.4816 0.385783 0.192891 0.981220i \(-0.438214\pi\)
0.192891 + 0.981220i \(0.438214\pi\)
\(150\) 117.111 31.3797i 0.780737 0.209198i
\(151\) −34.8951 + 20.1467i −0.231093 + 0.133422i −0.611076 0.791572i \(-0.709263\pi\)
0.379983 + 0.924993i \(0.375930\pi\)
\(152\) 10.9047 6.29582i 0.0717413 0.0414199i
\(153\) 45.6622 + 12.2351i 0.298446 + 0.0799683i
\(154\) 171.170 171.170i 1.11149 1.11149i
\(155\) −157.983 273.634i −1.01924 1.76538i
\(156\) −30.4021 + 30.4021i −0.194885 + 0.194885i
\(157\) 130.988 226.878i 0.834319 1.44508i −0.0602647 0.998182i \(-0.519194\pi\)
0.894584 0.446900i \(-0.147472\pi\)
\(158\) −200.950 −1.27184
\(159\) 64.5300i 0.405849i
\(160\) 24.4126 42.2838i 0.152579 0.264274i
\(161\) 57.6306 + 15.4421i 0.357954 + 0.0959135i
\(162\) −9.00000 9.00000i −0.0555556 0.0555556i
\(163\) 68.2662 18.2919i 0.418811 0.112220i −0.0432583 0.999064i \(-0.513774\pi\)
0.462069 + 0.886844i \(0.347107\pi\)
\(164\) 41.3790 71.6706i 0.252311 0.437016i
\(165\) 51.2500 + 191.267i 0.310606 + 1.15920i
\(166\) −9.84386 + 36.7378i −0.0593004 + 0.221312i
\(167\) −8.35747 2.23938i −0.0500447 0.0134094i 0.233710 0.972306i \(-0.424913\pi\)
−0.283755 + 0.958897i \(0.591580\pi\)
\(168\) −61.1517 + 16.3855i −0.363998 + 0.0975330i
\(169\) −12.9493 7.47626i −0.0766229 0.0442382i
\(170\) 49.7819 + 185.789i 0.292835 + 1.09287i
\(171\) 9.44373 9.44373i 0.0552265 0.0552265i
\(172\) 14.6824 54.7953i 0.0853626 0.318577i
\(173\) 228.445 + 131.893i 1.32049 + 0.762387i 0.983807 0.179229i \(-0.0573604\pi\)
0.336686 + 0.941617i \(0.390694\pi\)
\(174\) 20.9748 0.120545
\(175\) 639.641i 3.65509i
\(176\) 45.8837 + 26.4910i 0.260703 + 0.150517i
\(177\) 137.826 + 137.826i 0.778680 + 0.778680i
\(178\) −87.8478 + 50.7189i −0.493527 + 0.284938i
\(179\) 30.4410 + 30.4410i 0.170061 + 0.170061i 0.787006 0.616945i \(-0.211630\pi\)
−0.616945 + 0.787006i \(0.711630\pi\)
\(180\) 13.4034 50.0223i 0.0744635 0.277902i
\(181\) 40.4663 + 70.0896i 0.223571 + 0.387235i 0.955890 0.293726i \(-0.0948954\pi\)
−0.732319 + 0.680962i \(0.761562\pi\)
\(182\) 113.415 + 196.441i 0.623161 + 1.07935i
\(183\) 28.6649 + 106.979i 0.156639 + 0.584583i
\(184\) 13.0586i 0.0709704i
\(185\) −153.104 + 280.259i −0.827590 + 1.51491i
\(186\) −89.6699 −0.482096
\(187\) −201.606 + 54.0202i −1.07811 + 0.288878i
\(188\) −92.2230 + 53.2450i −0.490548 + 0.283218i
\(189\) −58.1529 + 33.5746i −0.307687 + 0.177643i
\(190\) 52.4886 + 14.0643i 0.276256 + 0.0740225i
\(191\) −103.726 + 103.726i −0.543066 + 0.543066i −0.924427 0.381360i \(-0.875456\pi\)
0.381360 + 0.924427i \(0.375456\pi\)
\(192\) −6.92820 12.0000i −0.0360844 0.0625000i
\(193\) 205.840 205.840i 1.06653 1.06653i 0.0689070 0.997623i \(-0.478049\pi\)
0.997623 0.0689070i \(-0.0219512\pi\)
\(194\) −21.0702 + 36.4947i −0.108609 + 0.188117i
\(195\) −185.548 −0.951529
\(196\) 236.001i 1.20409i
\(197\) −79.4814 + 137.666i −0.403459 + 0.698812i −0.994141 0.108093i \(-0.965526\pi\)
0.590682 + 0.806905i \(0.298859\pi\)
\(198\) 54.2810 + 14.5446i 0.274147 + 0.0734573i
\(199\) −213.808 213.808i −1.07441 1.07441i −0.996999 0.0774127i \(-0.975334\pi\)
−0.0774127 0.996999i \(-0.524666\pi\)
\(200\) 135.228 36.2341i 0.676138 0.181171i
\(201\) 76.1457 131.888i 0.378834 0.656161i
\(202\) −49.9693 186.488i −0.247373 0.923207i
\(203\) 28.6403 106.887i 0.141085 0.526537i
\(204\) 52.7262 + 14.1279i 0.258462 + 0.0692546i
\(205\) 344.979 92.4369i 1.68283 0.450912i
\(206\) −23.0731 13.3213i −0.112005 0.0646663i
\(207\) 3.58482 + 13.3787i 0.0173180 + 0.0646316i
\(208\) −35.1053 + 35.1053i −0.168775 + 0.168775i
\(209\) −15.2616 + 56.9572i −0.0730222 + 0.272523i
\(210\) −236.611 136.607i −1.12672 0.650510i
\(211\) 397.448 1.88364 0.941820 0.336118i \(-0.109114\pi\)
0.941820 + 0.336118i \(0.109114\pi\)
\(212\) 74.5129i 0.351476i
\(213\) −39.6741 22.9059i −0.186263 0.107539i
\(214\) −180.316 180.316i −0.842599 0.842599i
\(215\) 212.016 122.408i 0.986122 0.569338i
\(216\) −10.3923 10.3923i −0.0481125 0.0481125i
\(217\) −122.441 + 456.955i −0.564243 + 2.10578i
\(218\) 52.3310 + 90.6400i 0.240051 + 0.415780i
\(219\) −93.5963 162.113i −0.427380 0.740244i
\(220\) 59.1784 + 220.857i 0.268993 + 1.00389i
\(221\) 195.578i 0.884966i
\(222\) 47.1555 + 77.3974i 0.212412 + 0.348637i
\(223\) 5.38998 0.0241703 0.0120852 0.999927i \(-0.496153\pi\)
0.0120852 + 0.999927i \(0.496153\pi\)
\(224\) −70.6119 + 18.9204i −0.315232 + 0.0844661i
\(225\) 128.596 74.2452i 0.571539 0.329978i
\(226\) 18.0780 10.4373i 0.0799912 0.0461829i
\(227\) −214.518 57.4800i −0.945014 0.253216i −0.246769 0.969074i \(-0.579369\pi\)
−0.698245 + 0.715859i \(0.746036\pi\)
\(228\) 10.9047 10.9047i 0.0478275 0.0478275i
\(229\) −106.678 184.772i −0.465842 0.806862i 0.533397 0.845865i \(-0.320915\pi\)
−0.999239 + 0.0390026i \(0.987582\pi\)
\(230\) −39.8492 + 39.8492i −0.173257 + 0.173257i
\(231\) 148.237 256.755i 0.641720 1.11149i
\(232\) 24.2196 0.104395
\(233\) 188.995i 0.811139i −0.914064 0.405569i \(-0.867073\pi\)
0.914064 0.405569i \(-0.132927\pi\)
\(234\) −26.3290 + 45.6031i −0.112517 + 0.194885i
\(235\) −443.906 118.944i −1.88896 0.506146i
\(236\) 159.148 + 159.148i 0.674357 + 0.674357i
\(237\) −237.726 + 63.6986i −1.00306 + 0.268770i
\(238\) 143.991 249.400i 0.605005 1.04790i
\(239\) 63.7008 + 237.735i 0.266531 + 0.994706i 0.961307 + 0.275480i \(0.0888368\pi\)
−0.694776 + 0.719226i \(0.744497\pi\)
\(240\) 15.4770 57.7608i 0.0644873 0.240670i
\(241\) 133.251 + 35.7046i 0.552911 + 0.148152i 0.524447 0.851443i \(-0.324272\pi\)
0.0284633 + 0.999595i \(0.490939\pi\)
\(242\) −74.3704 + 19.9275i −0.307316 + 0.0823450i
\(243\) −13.5000 7.79423i −0.0555556 0.0320750i
\(244\) 33.0993 + 123.528i 0.135653 + 0.506264i
\(245\) −720.175 + 720.175i −2.93949 + 2.93949i
\(246\) 26.2333 97.9039i 0.106639 0.397983i
\(247\) −47.8515 27.6270i −0.193731 0.111850i
\(248\) −103.542 −0.417507
\(249\) 46.5817i 0.187075i
\(250\) 258.954 + 149.507i 1.03582 + 0.598029i
\(251\) 43.6282 + 43.6282i 0.173818 + 0.173818i 0.788654 0.614837i \(-0.210778\pi\)
−0.614837 + 0.788654i \(0.710778\pi\)
\(252\) −67.1492 + 38.7686i −0.266465 + 0.153844i
\(253\) −43.2418 43.2418i −0.170916 0.170916i
\(254\) 56.5066 210.885i 0.222467 0.830257i
\(255\) 117.785 + 204.010i 0.461903 + 0.800040i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 84.6679 + 315.985i 0.329447 + 1.22951i 0.909765 + 0.415123i \(0.136262\pi\)
−0.580318 + 0.814390i \(0.697072\pi\)
\(258\) 69.4777i 0.269293i
\(259\) 458.804 134.620i 1.77145 0.519768i
\(260\) −214.253 −0.824048
\(261\) 24.8135 6.64874i 0.0950707 0.0254741i
\(262\) 178.688 103.166i 0.682016 0.393762i
\(263\) 311.134 179.633i 1.18302 0.683015i 0.226307 0.974056i \(-0.427335\pi\)
0.956711 + 0.291041i \(0.0940015\pi\)
\(264\) 62.6783 + 16.7946i 0.237418 + 0.0636159i
\(265\) −227.381 + 227.381i −0.858043 + 0.858043i
\(266\) −40.6800 70.4599i −0.152932 0.264887i
\(267\) −87.8478 + 87.8478i −0.329018 + 0.329018i
\(268\) 87.9255 152.291i 0.328080 0.568252i
\(269\) −462.224 −1.71830 −0.859152 0.511721i \(-0.829008\pi\)
−0.859152 + 0.511721i \(0.829008\pi\)
\(270\) 63.4257i 0.234910i
\(271\) −41.2912 + 71.5184i −0.152366 + 0.263906i −0.932097 0.362209i \(-0.882023\pi\)
0.779731 + 0.626115i \(0.215356\pi\)
\(272\) 60.8829 + 16.3135i 0.223834 + 0.0599762i
\(273\) 196.441 + 196.441i 0.719564 + 0.719564i
\(274\) −129.172 + 34.6116i −0.471432 + 0.126320i
\(275\) −327.804 + 567.774i −1.19202 + 2.06463i
\(276\) 4.13940 + 15.4484i 0.0149978 + 0.0559726i
\(277\) −1.69193 + 6.31439i −0.00610807 + 0.0227956i −0.968913 0.247403i \(-0.920423\pi\)
0.962805 + 0.270199i \(0.0870894\pi\)
\(278\) 175.399 + 46.9980i 0.630932 + 0.169058i
\(279\) −106.081 + 28.4242i −0.380217 + 0.101879i
\(280\) −273.214 157.740i −0.975765 0.563358i
\(281\) −71.3610 266.323i −0.253954 0.947768i −0.968670 0.248353i \(-0.920111\pi\)
0.714716 0.699415i \(-0.246556\pi\)
\(282\) −92.2230 + 92.2230i −0.327032 + 0.327032i
\(283\) −87.7544 + 327.504i −0.310086 + 1.15726i 0.618392 + 0.785870i \(0.287785\pi\)
−0.928478 + 0.371388i \(0.878882\pi\)
\(284\) −45.8117 26.4494i −0.161309 0.0931317i
\(285\) 66.5528 0.233519
\(286\) 232.493i 0.812913i
\(287\) −463.095 267.368i −1.61357 0.931596i
\(288\) −12.0000 12.0000i −0.0416667 0.0416667i
\(289\) 35.2439 20.3481i 0.121951 0.0704085i
\(290\) 73.9079 + 73.9079i 0.254855 + 0.254855i
\(291\) −13.3580 + 49.8527i −0.0459038 + 0.171315i
\(292\) −108.076 187.193i −0.370122 0.641070i
\(293\) −25.2608 43.7530i −0.0862144 0.149328i 0.819694 0.572802i \(-0.194144\pi\)
−0.905908 + 0.423474i \(0.860810\pi\)
\(294\) 74.8094 + 279.193i 0.254454 + 0.949635i
\(295\) 971.305i 3.29256i
\(296\) 54.4505 + 89.3708i 0.183954 + 0.301929i
\(297\) 68.8256 0.231736
\(298\) 78.5214 21.0397i 0.263494 0.0706031i
\(299\) 49.6259 28.6515i 0.165973 0.0958245i
\(300\) 148.490 85.7309i 0.494968 0.285770i
\(301\) −354.057 94.8692i −1.17627 0.315180i
\(302\) −40.2934 + 40.2934i −0.133422 + 0.133422i
\(303\) −118.229 204.778i −0.390193 0.675835i
\(304\) 12.5916 12.5916i 0.0414199 0.0414199i
\(305\) −275.951 + 477.961i −0.904757 + 1.56709i
\(306\) 66.8541 0.218477
\(307\) 282.699i 0.920843i −0.887701 0.460421i \(-0.847698\pi\)
0.887701 0.460421i \(-0.152302\pi\)
\(308\) 171.170 296.475i 0.555746 0.962580i
\(309\) −31.5184 8.44534i −0.102001 0.0273312i
\(310\) −315.965 315.965i −1.01924 1.01924i
\(311\) 286.637 76.8042i 0.921663 0.246959i 0.233367 0.972389i \(-0.425026\pi\)
0.688296 + 0.725430i \(0.258359\pi\)
\(312\) −30.4021 + 52.6579i −0.0974425 + 0.168775i
\(313\) −79.3492 296.135i −0.253512 0.946119i −0.968912 0.247404i \(-0.920422\pi\)
0.715401 0.698715i \(-0.246244\pi\)
\(314\) 95.8899 357.866i 0.305382 1.13970i
\(315\) −323.216 86.6055i −1.02608 0.274938i
\(316\) −274.503 + 73.5528i −0.868680 + 0.232762i
\(317\) 357.471 + 206.386i 1.12767 + 0.651060i 0.943347 0.331807i \(-0.107658\pi\)
0.184321 + 0.982866i \(0.440991\pi\)
\(318\) 23.6196 + 88.1497i 0.0742756 + 0.277200i
\(319\) −80.2001 + 80.2001i −0.251411 + 0.251411i
\(320\) 17.8713 66.6964i 0.0558477 0.208426i
\(321\) −270.474 156.158i −0.842599 0.486475i
\(322\) 84.3771 0.262041
\(323\) 70.1502i 0.217183i
\(324\) −15.5885 9.00000i −0.0481125 0.0277778i
\(325\) −434.399 434.399i −1.33661 1.33661i
\(326\) 86.5580 49.9743i 0.265515 0.153295i
\(327\) 90.6400 + 90.6400i 0.277187 + 0.277187i
\(328\) 30.2916 113.050i 0.0923523 0.344664i
\(329\) 344.039 + 595.893i 1.04571 + 1.81122i
\(330\) 140.017 + 242.517i 0.424295 + 0.734901i
\(331\) 87.6889 + 327.259i 0.264921 + 0.988699i 0.962299 + 0.271995i \(0.0876834\pi\)
−0.697378 + 0.716704i \(0.745650\pi\)
\(332\) 53.7879i 0.162012i
\(333\) 80.3195 + 76.6144i 0.241200 + 0.230073i
\(334\) −12.2362 −0.0366353
\(335\) 733.040 196.417i 2.18818 0.586320i
\(336\) −77.5372 + 44.7662i −0.230766 + 0.133233i
\(337\) −450.823 + 260.283i −1.33775 + 0.772352i −0.986474 0.163919i \(-0.947586\pi\)
−0.351279 + 0.936271i \(0.614253\pi\)
\(338\) −20.4255 5.47300i −0.0604305 0.0161923i
\(339\) 18.0780 18.0780i 0.0533274 0.0533274i
\(340\) 136.007 + 235.571i 0.400020 + 0.692855i
\(341\) 342.866 342.866i 1.00547 1.00547i
\(342\) 9.44373 16.3570i 0.0276132 0.0478275i
\(343\) 891.687 2.59967
\(344\) 80.2259i 0.233215i
\(345\) −34.5104 + 59.7737i −0.100030 + 0.173257i
\(346\) 360.338 + 96.5524i 1.04144 + 0.279053i
\(347\) −366.677 366.677i −1.05671 1.05671i −0.998292 0.0584143i \(-0.981396\pi\)
−0.0584143 0.998292i \(-0.518604\pi\)
\(348\) 28.6521 7.67731i 0.0823336 0.0220612i
\(349\) −117.841 + 204.106i −0.337653 + 0.584832i −0.983991 0.178220i \(-0.942966\pi\)
0.646338 + 0.763051i \(0.276300\pi\)
\(350\) −234.125 873.765i −0.668928 2.49647i
\(351\) −16.6919 + 62.2950i −0.0475552 + 0.177479i
\(352\) 72.3747 + 19.3927i 0.205610 + 0.0550930i
\(353\) 236.057 63.2512i 0.668716 0.179182i 0.0915394 0.995801i \(-0.470821\pi\)
0.577176 + 0.816620i \(0.304155\pi\)
\(354\) 238.722 + 137.826i 0.674357 + 0.389340i
\(355\) −59.0855 220.510i −0.166438 0.621155i
\(356\) −101.438 + 101.438i −0.284938 + 0.284938i
\(357\) 91.2868 340.687i 0.255705 0.954305i
\(358\) 52.7253 + 30.4410i 0.147277 + 0.0850307i
\(359\) −318.760 −0.887911 −0.443955 0.896049i \(-0.646425\pi\)
−0.443955 + 0.896049i \(0.646425\pi\)
\(360\) 73.2377i 0.203438i
\(361\) −295.472 170.591i −0.818481 0.472550i
\(362\) 80.9325 + 80.9325i 0.223571 + 0.223571i
\(363\) −81.6644 + 47.1490i −0.224971 + 0.129887i
\(364\) 226.830 + 226.830i 0.623161 + 0.623161i
\(365\) 241.431 901.032i 0.661454 2.46858i
\(366\) 78.3139 + 135.644i 0.213972 + 0.370611i
\(367\) −37.3197 64.6397i −0.101689 0.176130i 0.810692 0.585473i \(-0.199091\pi\)
−0.912380 + 0.409343i \(0.865758\pi\)
\(368\) 4.77977 + 17.8383i 0.0129885 + 0.0484737i
\(369\) 124.137i 0.336415i
\(370\) −106.562 + 438.881i −0.288006 + 1.18617i
\(371\) 481.460 1.29774
\(372\) −122.491 + 32.8214i −0.329278 + 0.0882297i
\(373\) −293.775 + 169.611i −0.787601 + 0.454722i −0.839117 0.543950i \(-0.816928\pi\)
0.0515163 + 0.998672i \(0.483595\pi\)
\(374\) −255.626 + 147.586i −0.683492 + 0.394615i
\(375\) 353.738 + 94.7839i 0.943302 + 0.252757i
\(376\) −106.490 + 106.490i −0.283218 + 0.283218i
\(377\) −53.1397 92.0407i −0.140954 0.244140i
\(378\) −67.1492 + 67.1492i −0.177643 + 0.177643i
\(379\) −191.809 + 332.223i −0.506093 + 0.876578i 0.493882 + 0.869529i \(0.335577\pi\)
−0.999975 + 0.00704971i \(0.997756\pi\)
\(380\) 76.8486 0.202233
\(381\) 267.392i 0.701816i
\(382\) −103.726 + 179.658i −0.271533 + 0.470309i
\(383\) −45.5100 12.1944i −0.118825 0.0318391i 0.198916 0.980016i \(-0.436258\pi\)
−0.317742 + 0.948177i \(0.602924\pi\)
\(384\) −13.8564 13.8564i −0.0360844 0.0360844i
\(385\) 1427.05 382.377i 3.70663 0.993188i
\(386\) 205.840 356.526i 0.533265 0.923642i
\(387\) −22.0235 82.1930i −0.0569084 0.212385i
\(388\) −15.4245 + 57.5650i −0.0397538 + 0.148363i
\(389\) 403.816 + 108.202i 1.03809 + 0.278155i 0.737321 0.675543i \(-0.236091\pi\)
0.300767 + 0.953698i \(0.402757\pi\)
\(390\) −253.463 + 67.9153i −0.649906 + 0.174142i
\(391\) −63.0047 36.3758i −0.161137 0.0930326i
\(392\) 86.3825 + 322.384i 0.220364 + 0.822408i
\(393\) 178.688 178.688i 0.454677 0.454677i
\(394\) −58.1845 + 217.147i −0.147676 + 0.551135i
\(395\) −1062.12 613.214i −2.68890 1.55244i
\(396\) 79.4729 0.200689
\(397\) 392.565i 0.988828i −0.869227 0.494414i \(-0.835383\pi\)
0.869227 0.494414i \(-0.164617\pi\)
\(398\) −370.326 213.808i −0.930468 0.537206i
\(399\) −70.4599 70.4599i −0.176591 0.176591i
\(400\) 171.462 98.9935i 0.428655 0.247484i
\(401\) 487.920 + 487.920i 1.21676 + 1.21676i 0.968761 + 0.247998i \(0.0797725\pi\)
0.247998 + 0.968761i \(0.420227\pi\)
\(402\) 55.7425 208.034i 0.138663 0.517497i
\(403\) 227.179 + 393.486i 0.563720 + 0.976391i
\(404\) −136.519 236.457i −0.337917 0.585290i
\(405\) −20.1052 75.0335i −0.0496424 0.185268i
\(406\) 156.493i 0.385452i
\(407\) −476.246 115.634i −1.17014 0.284114i
\(408\) 77.1965 0.189207
\(409\) 34.5191 9.24937i 0.0843988 0.0226146i −0.216373 0.976311i \(-0.569423\pi\)
0.300771 + 0.953696i \(0.402756\pi\)
\(410\) 437.416 252.542i 1.06687 0.615957i
\(411\) −141.841 + 81.8920i −0.345112 + 0.199251i
\(412\) −36.3943 9.75183i −0.0883358 0.0236695i
\(413\) 1028.33 1028.33i 2.48989 2.48989i
\(414\) 9.79392 + 16.9636i 0.0236568 + 0.0409748i
\(415\) −164.138 + 164.138i −0.395512 + 0.395512i
\(416\) −35.1053 + 60.8041i −0.0843877 + 0.146164i
\(417\) 222.397 0.533326
\(418\) 83.3912i 0.199500i
\(419\) 158.171 273.961i 0.377498 0.653845i −0.613200 0.789928i \(-0.710118\pi\)
0.990697 + 0.136083i \(0.0434513\pi\)
\(420\) −373.218 100.003i −0.888614 0.238103i
\(421\) −108.805 108.805i −0.258443 0.258443i 0.565977 0.824421i \(-0.308499\pi\)
−0.824421 + 0.565977i \(0.808499\pi\)
\(422\) 542.924 145.476i 1.28655 0.344730i
\(423\) −79.8674 + 138.334i −0.188812 + 0.327032i
\(424\) 27.2736 + 101.786i 0.0643245 + 0.240062i
\(425\) −201.867 + 753.377i −0.474981 + 1.77265i
\(426\) −62.5800 16.7683i −0.146901 0.0393621i
\(427\) 798.171 213.869i 1.86925 0.500865i
\(428\) −312.317 180.316i −0.729712 0.421299i
\(429\) −73.6974 275.042i −0.171789 0.641124i
\(430\) 244.815 244.815i 0.569338 0.569338i
\(431\) −139.505 + 520.639i −0.323677 + 1.20798i 0.591959 + 0.805968i \(0.298355\pi\)
−0.915635 + 0.402010i \(0.868312\pi\)
\(432\) −18.0000 10.3923i −0.0416667 0.0240563i
\(433\) 358.433 0.827791 0.413895 0.910324i \(-0.364168\pi\)
0.413895 + 0.910324i \(0.364168\pi\)
\(434\) 669.029i 1.54154i
\(435\) 110.862 + 64.0061i 0.254855 + 0.147140i
\(436\) 104.662 + 104.662i 0.240051 + 0.240051i
\(437\) −17.7999 + 10.2768i −0.0407321 + 0.0235167i
\(438\) −187.193 187.193i −0.427380 0.427380i
\(439\) −26.5492 + 99.0828i −0.0604764 + 0.225701i −0.989549 0.144196i \(-0.953940\pi\)
0.929073 + 0.369897i \(0.120607\pi\)
\(440\) 161.678 + 280.035i 0.367451 + 0.636443i
\(441\) 177.001 + 306.575i 0.401363 + 0.695181i
\(442\) −71.5864 267.164i −0.161960 0.604443i
\(443\) 342.682i 0.773549i 0.922174 + 0.386774i \(0.126411\pi\)
−0.922174 + 0.386774i \(0.873589\pi\)
\(444\) 92.7450 + 88.4667i 0.208885 + 0.199249i
\(445\) −619.090 −1.39121
\(446\) 7.36285 1.97287i 0.0165086 0.00442348i
\(447\) 86.2224 49.7805i 0.192891 0.111366i
\(448\) −89.5323 + 51.6915i −0.199849 + 0.115383i
\(449\) −245.503 65.7825i −0.546778 0.146509i −0.0251532 0.999684i \(-0.508007\pi\)
−0.521625 + 0.853175i \(0.674674\pi\)
\(450\) 148.490 148.490i 0.329978 0.329978i
\(451\) 274.043 + 474.656i 0.607634 + 1.05245i
\(452\) 20.8747 20.8747i 0.0461829 0.0461829i
\(453\) −34.8951 + 60.4401i −0.0770311 + 0.133422i
\(454\) −314.077 −0.691799
\(455\) 1384.38i 3.04259i
\(456\) 10.9047 18.8875i 0.0239138 0.0414199i
\(457\) 21.5568 + 5.77614i 0.0471703 + 0.0126392i 0.282327 0.959318i \(-0.408894\pi\)
−0.235157 + 0.971957i \(0.575560\pi\)
\(458\) −213.356 213.356i −0.465842 0.465842i
\(459\) 79.0892 21.1919i 0.172308 0.0461697i
\(460\) −39.8492 + 69.0208i −0.0866286 + 0.150045i
\(461\) −56.5725 211.132i −0.122717 0.457986i 0.877031 0.480434i \(-0.159521\pi\)
−0.999748 + 0.0224476i \(0.992854\pi\)
\(462\) 108.517 404.992i 0.234886 0.876606i
\(463\) −116.780 31.2911i −0.252225 0.0675834i 0.130491 0.991449i \(-0.458345\pi\)
−0.382716 + 0.923866i \(0.625011\pi\)
\(464\) 33.0846 8.86499i 0.0713030 0.0191056i
\(465\) −473.948 273.634i −1.01924 0.588460i
\(466\) −69.1771 258.172i −0.148449 0.554018i
\(467\) −112.257 + 112.257i −0.240380 + 0.240380i −0.817007 0.576628i \(-0.804368\pi\)
0.576628 + 0.817007i \(0.304368\pi\)
\(468\) −19.2741 + 71.9320i −0.0411840 + 0.153701i
\(469\) −984.022 568.125i −2.09813 1.21135i
\(470\) −649.923 −1.38282
\(471\) 453.756i 0.963389i
\(472\) 275.653 + 159.148i 0.584010 + 0.337179i
\(473\) 265.658 + 265.658i 0.561644 + 0.561644i
\(474\) −301.425 + 174.028i −0.635918 + 0.367147i
\(475\) 155.811 + 155.811i 0.328024 + 0.328024i
\(476\) 105.409 393.391i 0.221447 0.826452i
\(477\) 55.8846 + 96.7950i 0.117159 + 0.202925i
\(478\) 174.034 + 301.436i 0.364088 + 0.630618i
\(479\) −180.423 673.350i −0.376667 1.40574i −0.850894 0.525338i \(-0.823939\pi\)
0.474227 0.880403i \(-0.342728\pi\)
\(480\) 84.5677i 0.176183i
\(481\) 220.164 403.012i 0.457720 0.837864i
\(482\) 195.094 0.404759
\(483\) 99.8192 26.7465i 0.206665 0.0553757i
\(484\) −94.2980 + 54.4429i −0.194830 + 0.112485i
\(485\) −222.733 + 128.595i −0.459242 + 0.265144i
\(486\) −21.2942 5.70577i −0.0438153 0.0117403i
\(487\) −363.592 + 363.592i −0.746596 + 0.746596i −0.973838 0.227242i \(-0.927029\pi\)
0.227242 + 0.973838i \(0.427029\pi\)
\(488\) 90.4291 + 156.628i 0.185305 + 0.320959i
\(489\) 86.5580 86.5580i 0.177010 0.177010i
\(490\) −720.175 + 1247.38i −1.46975 + 2.54567i
\(491\) 224.922 0.458090 0.229045 0.973416i \(-0.426440\pi\)
0.229045 + 0.973416i \(0.426440\pi\)
\(492\) 143.341i 0.291344i
\(493\) −67.4658 + 116.854i −0.136848 + 0.237027i
\(494\) −75.4785 20.2244i −0.152790 0.0409401i
\(495\) 242.517 + 242.517i 0.489934 + 0.489934i
\(496\) −141.441 + 37.8989i −0.285163 + 0.0764092i
\(497\) −170.901 + 296.010i −0.343866 + 0.595593i
\(498\) 17.0501 + 63.6317i 0.0342371 + 0.127775i
\(499\) −96.7698 + 361.150i −0.193927 + 0.723747i 0.798614 + 0.601843i \(0.205567\pi\)
−0.992542 + 0.121904i \(0.961100\pi\)
\(500\) 408.462 + 109.447i 0.816923 + 0.218894i
\(501\) −14.4756 + 3.87872i −0.0288933 + 0.00774195i
\(502\) 75.5663 + 43.6282i 0.150530 + 0.0869088i
\(503\) 4.47789 + 16.7117i 0.00890236 + 0.0332241i 0.970234 0.242169i \(-0.0778588\pi\)
−0.961332 + 0.275393i \(0.911192\pi\)
\(504\) −77.5372 + 77.5372i −0.153844 + 0.153844i
\(505\) 304.970 1138.16i 0.603901 2.25379i
\(506\) −74.8969 43.2418i −0.148018 0.0854580i
\(507\) −25.8985 −0.0510819
\(508\) 308.758i 0.607790i
\(509\) −14.6995 8.48678i −0.0288792 0.0166734i 0.485491 0.874242i \(-0.338641\pi\)
−0.514370 + 0.857568i \(0.671974\pi\)
\(510\) 235.571 + 235.571i 0.461903 + 0.461903i
\(511\) −1209.53 + 698.324i −2.36699 + 1.36658i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 5.98708 22.3441i 0.0116707 0.0435557i
\(514\) 231.317 + 400.653i 0.450033 + 0.779480i
\(515\) −81.3015 140.818i −0.157867 0.273434i
\(516\) −25.4306 94.9083i −0.0492841 0.183931i
\(517\) 705.255i 1.36413i
\(518\) 577.464 351.828i 1.11480 0.679205i
\(519\) 456.891 0.880329
\(520\) −292.674 + 78.4219i −0.562835 + 0.150811i
\(521\) 154.105 88.9727i 0.295787 0.170773i −0.344762 0.938690i \(-0.612040\pi\)
0.640549 + 0.767917i \(0.278707\pi\)
\(522\) 31.4622 18.1647i 0.0602724 0.0347983i
\(523\) −98.0174 26.2637i −0.187414 0.0502174i 0.163891 0.986478i \(-0.447595\pi\)
−0.351305 + 0.936261i \(0.614262\pi\)
\(524\) 206.331 206.331i 0.393762 0.393762i
\(525\) −553.945 959.461i −1.05513 1.82754i
\(526\) 359.266 359.266i 0.683015 0.683015i
\(527\) 288.425 499.566i 0.547296 0.947944i
\(528\) 91.7674 0.173802
\(529\) 507.684i 0.959706i
\(530\) −227.381 + 393.836i −0.429021 + 0.743087i
\(531\) 326.101 + 87.3785i 0.614126 + 0.164555i
\(532\) −81.3601 81.3601i −0.152932 0.152932i
\(533\) −496.080 + 132.924i −0.930731 + 0.249389i
\(534\) −87.8478 + 152.157i −0.164509 + 0.284938i
\(535\) −402.809 1503.30i −0.752915 2.80992i
\(536\) 64.3659 240.217i 0.120086 0.448166i
\(537\) 72.0241 + 19.2988i 0.134123 + 0.0359382i
\(538\) −631.409 + 169.186i −1.17362 + 0.314471i
\(539\) −1353.58 781.488i −2.51128 1.44989i
\(540\) −23.2154 86.6412i −0.0429915 0.160447i
\(541\) 123.584 123.584i 0.228437 0.228437i −0.583603 0.812039i \(-0.698357\pi\)
0.812039 + 0.583603i \(0.198357\pi\)
\(542\) −30.2272 + 112.810i −0.0557698 + 0.208136i
\(543\) 121.399 + 70.0896i 0.223571 + 0.129078i
\(544\) 89.1388 0.163858
\(545\) 638.768i 1.17205i
\(546\) 340.246 + 196.441i 0.623161 + 0.359782i
\(547\) 582.996 + 582.996i 1.06581 + 1.06581i 0.997677 + 0.0681290i \(0.0217029\pi\)
0.0681290 + 0.997677i \(0.478297\pi\)
\(548\) −163.784 + 94.5607i −0.298876 + 0.172556i
\(549\) 135.644 + 135.644i 0.247074 + 0.247074i
\(550\) −239.969 + 895.578i −0.436308 + 1.62832i
\(551\) 19.0603 + 33.0134i 0.0345922 + 0.0599154i
\(552\) 11.3090 + 19.5878i 0.0204874 + 0.0354852i
\(553\) 475.257 + 1773.68i 0.859416 + 3.20738i
\(554\) 9.24490i 0.0166876i
\(555\) 13.0555 + 552.981i 0.0235234 + 0.996362i
\(556\) 256.802 0.461874
\(557\) 87.0469 23.3241i 0.156278 0.0418746i −0.179832 0.983697i \(-0.557555\pi\)
0.336110 + 0.941823i \(0.390889\pi\)
\(558\) −134.505 + 77.6564i −0.241048 + 0.139169i
\(559\) −304.879 + 176.022i −0.545401 + 0.314887i
\(560\) −430.955 115.474i −0.769562 0.206204i
\(561\) −255.626 + 255.626i −0.455662 + 0.455662i
\(562\) −194.962 337.684i −0.346907 0.600861i
\(563\) 115.035 115.035i 0.204326 0.204326i −0.597525 0.801850i \(-0.703849\pi\)
0.801850 + 0.597525i \(0.203849\pi\)
\(564\) −92.2230 + 159.735i −0.163516 + 0.283218i
\(565\) 127.401 0.225489
\(566\) 479.499i 0.847172i
\(567\) −58.1529 + 100.724i −0.102562 + 0.177643i
\(568\) −72.2611 19.3623i −0.127220 0.0340886i
\(569\) −257.854 257.854i −0.453170 0.453170i 0.443235 0.896405i \(-0.353831\pi\)
−0.896405 + 0.443235i \(0.853831\pi\)
\(570\) 90.9129 24.3600i 0.159496 0.0427369i
\(571\) −482.525 + 835.758i −0.845053 + 1.46368i 0.0405217 + 0.999179i \(0.487098\pi\)
−0.885575 + 0.464496i \(0.846235\pi\)
\(572\) −85.0984 317.592i −0.148773 0.555230i
\(573\) −65.7594 + 245.418i −0.114763 + 0.428303i
\(574\) −730.463 195.727i −1.27258 0.340988i
\(575\) −220.735 + 59.1457i −0.383887 + 0.102862i
\(576\) −20.7846 12.0000i −0.0360844 0.0208333i
\(577\) −43.7233 163.178i −0.0757770 0.282803i 0.917631 0.397433i \(-0.130099\pi\)
−0.993408 + 0.114629i \(0.963432\pi\)
\(578\) 40.6961 40.6961i 0.0704085 0.0704085i
\(579\) 130.498 487.023i 0.225384 0.841146i
\(580\) 128.012 + 73.9079i 0.220711 + 0.127427i
\(581\) 347.547 0.598187
\(582\) 72.9894i 0.125411i
\(583\) −427.366 246.740i −0.733046 0.423224i
\(584\) −216.151 216.151i −0.370122 0.370122i
\(585\) −278.322 + 160.689i −0.475765 + 0.274683i
\(586\) −50.5216 50.5216i −0.0862144 0.0862144i
\(587\) −2.92172 + 10.9040i −0.00497737 + 0.0185758i −0.968370 0.249519i \(-0.919727\pi\)
0.963392 + 0.268095i \(0.0863941\pi\)
\(588\) 204.383 + 354.002i 0.347590 + 0.602044i
\(589\) −81.4851 141.136i −0.138345 0.239620i
\(590\) 355.522 + 1326.83i 0.602580 + 2.24886i
\(591\) 275.332i 0.465874i
\(592\) 107.093 + 102.153i 0.180900 + 0.172555i
\(593\) 596.119 1.00526 0.502630 0.864502i \(-0.332366\pi\)
0.502630 + 0.864502i \(0.332366\pi\)
\(594\) 94.0175 25.1919i 0.158279 0.0424106i
\(595\) 1522.12 878.799i 2.55819 1.47697i
\(596\) 99.5611 57.4816i 0.167049 0.0964457i
\(597\) −505.875 135.549i −0.847362 0.227050i
\(598\) 57.3030 57.3030i 0.0958245 0.0958245i
\(599\) 272.940 + 472.745i 0.455659 + 0.789224i 0.998726 0.0504652i \(-0.0160704\pi\)
−0.543067 + 0.839689i \(0.682737\pi\)
\(600\) 171.462 171.462i 0.285770 0.285770i
\(601\) −121.877 + 211.098i −0.202791 + 0.351244i −0.949427 0.313989i \(-0.898335\pi\)
0.746636 + 0.665233i \(0.231668\pi\)
\(602\) −518.375 −0.861088
\(603\) 263.777i 0.437440i
\(604\) −40.2934 + 69.7902i −0.0667109 + 0.115547i
\(605\) −453.894 121.620i −0.750237 0.201026i
\(606\) −236.457 236.457i −0.390193 0.390193i
\(607\) −760.511 + 203.778i −1.25290 + 0.335714i −0.823456 0.567379i \(-0.807957\pi\)
−0.429444 + 0.903093i \(0.641291\pi\)
\(608\) 12.5916 21.8094i 0.0207099 0.0358706i
\(609\) −49.6064 185.134i −0.0814556 0.303996i
\(610\) −202.010 + 753.912i −0.331164 + 1.23592i
\(611\) 638.336 + 171.042i 1.04474 + 0.279937i
\(612\) 91.3244 24.4703i 0.149223 0.0399841i
\(613\) 692.435 + 399.778i 1.12958 + 0.652166i 0.943830 0.330431i \(-0.107194\pi\)
0.185754 + 0.982596i \(0.440527\pi\)
\(614\) −103.475 386.174i −0.168526 0.628947i
\(615\) 437.416 437.416i 0.711246 0.711246i
\(616\) 125.305 467.645i 0.203417 0.759163i
\(617\) 728.315 + 420.493i 1.18041 + 0.681512i 0.956110 0.293008i \(-0.0946563\pi\)
0.224303 + 0.974520i \(0.427990\pi\)
\(618\) −46.1462 −0.0746702
\(619\) 115.168i 0.186056i −0.995664 0.0930278i \(-0.970345\pi\)
0.995664 0.0930278i \(-0.0296545\pi\)
\(620\) −547.268 315.965i −0.882691 0.509622i
\(621\) 16.9636 + 16.9636i 0.0273165 + 0.0273165i
\(622\) 363.441 209.833i 0.584311 0.337352i
\(623\) 655.434 + 655.434i 1.05206 + 1.05206i
\(624\) −22.2558 + 83.0600i −0.0356664 + 0.133109i
\(625\) 293.755 + 508.799i 0.470009 + 0.814079i
\(626\) −216.786 375.484i −0.346304 0.599815i
\(627\) 26.4339 + 98.6528i 0.0421594 + 0.157341i
\(628\) 523.952i 0.834319i
\(629\) −582.871 + 13.7611i −0.926663 + 0.0218778i
\(630\) −473.221 −0.751145
\(631\) 411.795 110.340i 0.652607 0.174866i 0.0826998 0.996575i \(-0.473646\pi\)
0.569907 + 0.821709i \(0.306979\pi\)
\(632\) −348.056 + 200.950i −0.550721 + 0.317959i
\(633\) 596.172 344.200i 0.941820 0.543760i
\(634\) 563.857 + 151.085i 0.889364 + 0.238304i
\(635\) 942.196 942.196i 1.48377 1.48377i
\(636\) 64.5300 + 111.769i 0.101462 + 0.175738i
\(637\) 1035.61 1035.61i 1.62576 1.62576i
\(638\) −80.2001 + 138.911i −0.125706 + 0.217728i
\(639\) −79.3482 −0.124176
\(640\) 97.6503i 0.152579i
\(641\) −277.571 + 480.767i −0.433028 + 0.750027i −0.997132 0.0756766i \(-0.975888\pi\)
0.564104 + 0.825704i \(0.309222\pi\)
\(642\) −426.632 114.316i −0.664537 0.178062i
\(643\) 129.409 + 129.409i 0.201258 + 0.201258i 0.800539 0.599281i \(-0.204547\pi\)
−0.599281 + 0.800539i \(0.704547\pi\)
\(644\) 115.261 30.8842i 0.178977 0.0479568i
\(645\) 212.016 367.223i 0.328707 0.569338i
\(646\) 25.6768 + 95.8270i 0.0397473 + 0.148339i
\(647\) 231.442 863.753i 0.357715 1.33501i −0.519317 0.854581i \(-0.673814\pi\)
0.877033 0.480430i \(-0.159520\pi\)
\(648\) −24.5885 6.58846i −0.0379452 0.0101674i
\(649\) −1439.79 + 385.790i −2.21847 + 0.594438i
\(650\) −752.402 434.399i −1.15754 0.668307i
\(651\) 212.074 + 791.470i 0.325766 + 1.21578i
\(652\) 99.9486 99.9486i 0.153295 0.153295i
\(653\) 150.712 562.463i 0.230799 0.861353i −0.749199 0.662345i \(-0.769561\pi\)
0.979998 0.199008i \(-0.0637720\pi\)
\(654\) 156.993 + 90.6400i 0.240051 + 0.138593i
\(655\) 1259.27 1.92255
\(656\) 165.516i 0.252311i
\(657\) −280.789 162.113i −0.427380 0.246748i
\(658\) 688.078 + 688.078i 1.04571 + 1.04571i
\(659\) −996.667 + 575.426i −1.51239 + 0.873181i −0.512499 + 0.858688i \(0.671280\pi\)
−0.999895 + 0.0144927i \(0.995387\pi\)
\(660\) 280.035 + 280.035i 0.424295 + 0.424295i
\(661\) 123.143 459.576i 0.186298 0.695274i −0.808051 0.589113i \(-0.799477\pi\)
0.994349 0.106161i \(-0.0338560\pi\)
\(662\) 239.570 + 414.948i 0.361889 + 0.626810i
\(663\) −169.375 293.366i −0.255468 0.442483i
\(664\) 19.6877 + 73.4756i 0.0296502 + 0.110656i
\(665\) 496.552i 0.746695i
\(666\) 137.761 + 75.2583i 0.206849 + 0.113000i
\(667\) −39.5342 −0.0592716
\(668\) −16.7149 + 4.47876i −0.0250224 + 0.00670472i
\(669\) 8.08498 4.66786i 0.0120852 0.00697737i
\(670\) 929.457 536.622i 1.38725 0.800929i
\(671\) −818.097 219.208i −1.21922 0.326689i
\(672\) −89.5323 + 89.5323i −0.133233 + 0.133233i
\(673\) −636.394 1102.27i −0.945608 1.63784i −0.754529 0.656267i \(-0.772135\pi\)
−0.191079 0.981575i \(-0.561199\pi\)
\(674\) −520.565 + 520.565i −0.772352 + 0.772352i
\(675\) 128.596 222.735i 0.190513 0.329978i
\(676\) −29.9050 −0.0442382
\(677\) 24.4441i 0.0361065i −0.999837 0.0180533i \(-0.994253\pi\)
0.999837 0.0180533i \(-0.00574685\pi\)
\(678\) 18.0780 31.3120i 0.0266637 0.0461829i
\(679\) 371.952 + 99.6643i 0.547794 + 0.146781i
\(680\) 272.014 + 272.014i 0.400020 + 0.400020i
\(681\) −371.557 + 99.5583i −0.545604 + 0.146194i
\(682\) 342.866 593.860i 0.502735 0.870763i
\(683\) 107.529 + 401.305i 0.157437 + 0.587562i 0.998884 + 0.0472235i \(0.0150373\pi\)
−0.841447 + 0.540339i \(0.818296\pi\)
\(684\) 6.91329 25.8007i 0.0101071 0.0377204i
\(685\) −788.358 211.240i −1.15089 0.308379i
\(686\) 1218.07 326.380i 1.77561 0.475773i
\(687\) −320.034 184.772i −0.465842 0.268954i
\(688\) −29.3647 109.591i −0.0426813 0.159289i
\(689\) 326.974 326.974i 0.474563 0.474563i
\(690\) −25.2634 + 94.2841i −0.0366136 + 0.136644i
\(691\) −994.065 573.924i −1.43859 0.830570i −0.440838 0.897587i \(-0.645319\pi\)
−0.997752 + 0.0670169i \(0.978652\pi\)
\(692\) 527.572 0.762387
\(693\) 513.509i 0.740995i
\(694\) −635.104 366.677i −0.915135 0.528353i
\(695\) 783.650 + 783.650i 1.12755 + 1.12755i
\(696\) 36.3294 20.9748i 0.0521974 0.0301362i
\(697\) 461.060 + 461.060i 0.661492 + 0.661492i
\(698\) −86.2655 + 321.947i −0.123589 + 0.461242i
\(699\) −163.675 283.493i −0.234156 0.405569i
\(700\) −639.641 1107.89i −0.913772 1.58270i
\(701\) −259.404 968.109i −0.370049 1.38104i −0.860446 0.509541i \(-0.829815\pi\)
0.490398 0.871499i \(-0.336852\pi\)
\(702\) 91.2062i 0.129923i
\(703\) −78.9687 + 144.553i −0.112331 + 0.205624i
\(704\) 105.964 0.150517
\(705\) −768.868 + 206.017i −1.09059 + 0.292223i
\(706\) 299.308 172.805i 0.423949 0.244767i
\(707\) −1527.85 + 882.107i −2.16104 + 1.24768i
\(708\) 376.549 + 100.896i 0.531849 + 0.142508i
\(709\) −482.069 + 482.069i −0.679928 + 0.679928i −0.959984 0.280055i \(-0.909647\pi\)
0.280055 + 0.959984i \(0.409647\pi\)
\(710\) −161.425 279.596i −0.227359 0.393797i
\(711\) −301.425 + 301.425i −0.423945 + 0.423945i
\(712\) −101.438 + 175.696i −0.142469 + 0.246763i
\(713\) 169.013 0.237045
\(714\) 498.800i 0.698600i
\(715\) 709.470 1228.84i 0.992266 1.71865i
\(716\) 83.1663 + 22.2843i 0.116154 + 0.0311234i
\(717\) 301.436 + 301.436i 0.420412 + 0.420412i
\(718\) −435.434 + 116.674i −0.606454 + 0.162499i
\(719\) −17.6334 + 30.5419i −0.0245249 + 0.0424783i −0.878027 0.478610i \(-0.841141\pi\)
0.853502 + 0.521089i \(0.174474\pi\)
\(720\) −26.8069 100.045i −0.0372318 0.138951i
\(721\) −63.0109 + 235.160i −0.0873937 + 0.326158i
\(722\) −466.062 124.881i −0.645516 0.172965i
\(723\) 230.798 61.8422i 0.319223 0.0855356i
\(724\) 140.179 + 80.9325i 0.193618 + 0.111785i
\(725\) 109.697 + 409.395i 0.151306 + 0.564683i
\(726\) −94.2980 + 94.2980i −0.129887 + 0.129887i
\(727\) −193.703 + 722.911i −0.266442 + 0.994376i 0.694919 + 0.719088i \(0.255440\pi\)
−0.961362 + 0.275288i \(0.911227\pi\)
\(728\) 392.882 + 226.830i 0.539673 + 0.311580i
\(729\) −27.0000 −0.0370370
\(730\) 1319.20i 1.80713i
\(731\) 387.072 + 223.476i 0.529511 + 0.305713i
\(732\) 156.628 + 156.628i 0.213972 + 0.213972i
\(733\) 160.212 92.4983i 0.218570 0.126191i −0.386718 0.922198i \(-0.626391\pi\)
0.605288 + 0.796007i \(0.293058\pi\)
\(734\) −74.6395 74.6395i −0.101689 0.101689i
\(735\) −456.573 + 1703.95i −0.621188 + 2.31830i
\(736\) 13.0586 + 22.6181i 0.0177426 + 0.0307311i
\(737\) 582.308 + 1008.59i 0.790106 + 1.36850i
\(738\) −45.4373 169.574i −0.0615682 0.229776i
\(739\) 1105.39i 1.49580i 0.663813 + 0.747898i \(0.268937\pi\)
−0.663813 + 0.747898i \(0.731063\pi\)
\(740\) 15.0751 + 638.527i 0.0203718 + 0.862875i
\(741\) −95.7029 −0.129154
\(742\) 657.687 176.227i 0.886370 0.237502i
\(743\) −349.037 + 201.516i −0.469766 + 0.271220i −0.716142 0.697955i \(-0.754094\pi\)
0.246375 + 0.969174i \(0.420760\pi\)
\(744\) −155.313 + 89.6699i −0.208754 + 0.120524i
\(745\) 479.227 + 128.409i 0.643258 + 0.172360i
\(746\) −339.222 + 339.222i −0.454722 + 0.454722i
\(747\) 40.3409 + 69.8725i 0.0540039 + 0.0935375i
\(748\) −295.172 + 295.172i −0.394615 + 0.394615i
\(749\) −1165.10 + 2018.01i −1.55554 + 2.69428i
\(750\) 517.909 0.690545
\(751\) 502.543i 0.669165i 0.942366 + 0.334583i \(0.108595\pi\)
−0.942366 + 0.334583i \(0.891405\pi\)
\(752\) −106.490 + 184.446i −0.141609 + 0.245274i
\(753\) 103.225 + 27.6592i 0.137086 + 0.0367320i
\(754\) −106.279 106.279i −0.140954 0.140954i
\(755\) −335.928 + 90.0117i −0.444938 + 0.119221i
\(756\) −67.1492 + 116.306i −0.0888217 + 0.153844i
\(757\) 272.129 + 1015.60i 0.359484 + 1.34161i 0.874747 + 0.484581i \(0.161028\pi\)
−0.515263 + 0.857032i \(0.672306\pi\)
\(758\) −140.414 + 524.032i −0.185243 + 0.691336i
\(759\) −102.311 27.4142i −0.134797 0.0361188i
\(760\) 104.977 28.1285i 0.138128 0.0370112i
\(761\) −865.105 499.469i −1.13680 0.656332i −0.191164 0.981558i \(-0.561226\pi\)
−0.945636 + 0.325226i \(0.894560\pi\)
\(762\) −97.8722 365.264i −0.128441 0.479349i
\(763\) 676.267 676.267i 0.886327 0.886327i
\(764\) −75.9325 + 283.384i −0.0993880 + 0.370921i
\(765\) 353.356 + 204.010i 0.461903 + 0.266680i
\(766\) −66.6313 −0.0869860
\(767\) 1396.74i 1.82104i
\(768\) −24.0000 13.8564i −0.0312500 0.0180422i
\(769\) −366.269 366.269i −0.476293 0.476293i 0.427651 0.903944i \(-0.359341\pi\)
−0.903944 + 0.427651i \(0.859341\pi\)
\(770\) 1809.43 1044.67i 2.34991 1.35672i
\(771\) 400.653 + 400.653i 0.519654 + 0.519654i
\(772\) 150.686 562.366i 0.195189 0.728454i
\(773\) 284.671 + 493.065i 0.368268 + 0.637858i 0.989295 0.145931i \(-0.0466176\pi\)
−0.621027 + 0.783789i \(0.713284\pi\)
\(774\) −60.1694 104.217i −0.0777383 0.134647i
\(775\) −468.969 1750.22i −0.605121 2.25834i
\(776\) 84.2809i 0.108609i
\(777\) 571.622 599.266i 0.735679 0.771256i
\(778\) 591.228 0.759933
\(779\) 177.935 47.6775i 0.228415 0.0612035i
\(780\) −321.379 + 185.548i −0.412024 + 0.237882i
\(781\) 303.399 175.168i 0.388475 0.224286i
\(782\) −99.3804 26.6289i −0.127085 0.0340523i
\(783\) 31.4622 31.4622i 0.0401816 0.0401816i
\(784\) 236.001 + 408.766i 0.301022 + 0.521386i
\(785\) 1598.88 1598.88i 2.03679 2.03679i
\(786\) 178.688 309.497i 0.227339 0.393762i
\(787\) −1045.99 −1.32908 −0.664541 0.747252i \(-0.731373\pi\)
−0.664541 + 0.747252i \(0.731373\pi\)
\(788\) 317.926i 0.403459i
\(789\) 311.134 538.899i 0.394339 0.683015i
\(790\) −1675.33 448.903i −2.12067 0.568232i
\(791\) −134.880 134.880i −0.170519 0.170519i
\(792\) 108.562 29.0891i 0.137073 0.0367287i
\(793\) 396.817 687.307i 0.500400 0.866718i
\(794\) −143.689 536.253i −0.180968 0.675382i
\(795\) −144.154 + 537.990i −0.181326 + 0.676717i
\(796\) −584.134 156.518i −0.733837 0.196631i
\(797\) −1429.45 + 383.019i −1.79353 + 0.480576i −0.992939 0.118629i \(-0.962150\pi\)
−0.800596 + 0.599205i \(0.795483\pi\)
\(798\) −122.040 70.4599i −0.152932 0.0882956i
\(799\) −217.153 810.427i −0.271781 1.01430i
\(800\) 197.987 197.987i 0.247484 0.247484i
\(801\) −55.6933 + 207.850i −0.0695297 + 0.259488i
\(802\) 845.102 + 487.920i 1.05374 + 0.608379i
\(803\) 1431.51 1.78271
\(804\) 304.583i 0.378834i
\(805\) 445.973 + 257.483i 0.554004 + 0.319854i
\(806\) 454.358 + 454.358i 0.563720 + 0.563720i
\(807\) −693.335 + 400.297i −0.859152 + 0.496031i
\(808\) −273.037 273.037i −0.337917 0.337917i
\(809\) −14.8368 + 55.3716i −0.0183397 + 0.0684446i −0.974489 0.224434i \(-0.927947\pi\)
0.956150 + 0.292879i \(0.0946133\pi\)
\(810\) −54.9283 95.1386i −0.0678127 0.117455i
\(811\) −393.872 682.206i −0.485662 0.841192i 0.514202 0.857669i \(-0.328088\pi\)
−0.999864 + 0.0164775i \(0.994755\pi\)
\(812\) −57.2806 213.774i −0.0705426 0.263269i
\(813\) 143.037i 0.175937i
\(814\) −692.889 + 16.3586i −0.851215 + 0.0200965i
\(815\) 610.001 0.748467
\(816\) 105.452 28.2559i 0.129231 0.0346273i
\(817\) 109.355 63.1360i 0.133849 0.0772778i
\(818\) 43.7685 25.2697i 0.0535067 0.0308921i
\(819\) 464.784 + 124.539i 0.567502 + 0.152062i
\(820\) 505.085 505.085i 0.615957 0.615957i
\(821\) 148.781 + 257.696i 0.181219 + 0.313880i 0.942296 0.334781i \(-0.108662\pi\)
−0.761077 + 0.648662i \(0.775329\pi\)
\(822\) −163.784 + 163.784i −0.199251 + 0.199251i
\(823\) 5.37236 9.30520i 0.00652778 0.0113064i −0.862743 0.505643i \(-0.831255\pi\)
0.869271 + 0.494336i \(0.164589\pi\)
\(824\) −53.2850 −0.0646663
\(825\) 1135.55i 1.37642i
\(826\) 1028.33 1781.11i 1.24495 2.15631i
\(827\) 126.628 + 33.9300i 0.153118 + 0.0410278i 0.334564 0.942373i \(-0.391411\pi\)
−0.181446 + 0.983401i \(0.558078\pi\)
\(828\) 19.5878 + 19.5878i 0.0236568 + 0.0236568i
\(829\) 839.753 225.011i 1.01297 0.271425i 0.286101 0.958200i \(-0.407641\pi\)
0.726870 + 0.686775i \(0.240974\pi\)
\(830\) −164.138 + 284.295i −0.197756 + 0.342524i
\(831\) 2.93052 + 10.9368i 0.00352649 + 0.0131611i
\(832\) −25.6988 + 95.9094i −0.0308880 + 0.115276i
\(833\) −1796.06 481.252i −2.15613 0.577734i
\(834\) 303.800 81.4029i 0.364268 0.0976054i
\(835\) −64.6741 37.3396i −0.0774540 0.0447181i
\(836\) 30.5233 + 113.914i 0.0365111 + 0.136261i
\(837\) −134.505 + 134.505i −0.160699 + 0.160699i
\(838\) 115.790 432.133i 0.138174 0.515671i
\(839\) 283.276 + 163.550i 0.337636 + 0.194934i 0.659226 0.751945i \(-0.270884\pi\)
−0.321590 + 0.946879i \(0.604217\pi\)
\(840\) −546.429 −0.650510
\(841\) 767.676i 0.912814i
\(842\) −188.455 108.805i −0.223819 0.129222i
\(843\) −337.684 337.684i −0.400574 0.400574i
\(844\) 688.400 397.448i 0.815640 0.470910i
\(845\) −91.2574 91.2574i −0.107997 0.107997i
\(846\) −58.4670 + 218.202i −0.0691099 + 0.257922i
\(847\) 351.780 + 609.300i 0.415324 + 0.719363i
\(848\) 74.5129 + 129.060i 0.0878689 + 0.152193i
\(849\) 151.995 + 567.254i 0.179028 + 0.668143i
\(850\) 1103.02i 1.29767i
\(851\) −88.8806 145.882i −0.104443 0.171424i
\(852\) −91.6234 −0.107539
\(853\) 1137.18 304.706i 1.33315 0.357217i 0.479263 0.877671i \(-0.340904\pi\)
0.853890 + 0.520454i \(0.174237\pi\)
\(854\) 1012.04 584.302i 1.18506 0.684194i
\(855\) 99.8292 57.6364i 0.116759 0.0674110i
\(856\) −492.633 132.001i −0.575506 0.154206i
\(857\) 344.846 344.846i 0.402387 0.402387i −0.476686 0.879073i \(-0.658162\pi\)
0.879073 + 0.476686i \(0.158162\pi\)
\(858\) −201.345 348.740i −0.234668 0.406457i
\(859\) −284.680 + 284.680i −0.331408 + 0.331408i −0.853121 0.521713i \(-0.825293\pi\)
0.521713 + 0.853121i \(0.325293\pi\)
\(860\) 244.815 424.032i 0.284669 0.493061i
\(861\) −926.190 −1.07571
\(862\) 762.268i 0.884301i
\(863\) 130.236 225.575i 0.150911 0.261385i −0.780652 0.624966i \(-0.785113\pi\)
0.931563 + 0.363581i \(0.118446\pi\)
\(864\) −28.3923 7.60770i −0.0328615 0.00880520i
\(865\) 1609.92 + 1609.92i 1.86118 + 1.86118i
\(866\) 489.629 131.196i 0.565392 0.151496i
\(867\) 35.2439 61.0442i 0.0406504 0.0704085i
\(868\) 244.882 + 913.911i 0.282122 + 1.05289i
\(869\) 487.121 1817.96i 0.560554 2.09202i
\(870\) 174.868 + 46.8557i 0.200998 + 0.0538572i
\(871\) −1054.11 + 282.448i −1.21023 + 0.324280i
\(872\) 181.280 + 104.662i 0.207890 + 0.120025i
\(873\) 23.1367 + 86.3474i 0.0265025 + 0.0989089i
\(874\) −20.5536 + 20.5536i −0.0235167 + 0.0235167i
\(875\) 707.185 2639.25i 0.808211 3.01629i
\(876\) −324.227 187.193i −0.370122 0.213690i
\(877\) 578.074 0.659149 0.329574 0.944130i \(-0.393095\pi\)
0.329574 + 0.944130i \(0.393095\pi\)
\(878\) 145.067i 0.165225i
\(879\) −75.7825 43.7530i −0.0862144 0.0497759i
\(880\) 323.357 + 323.357i 0.367451 + 0.367451i
\(881\) 1164.41 672.274i 1.32169 0.763081i 0.337696 0.941255i \(-0.390352\pi\)
0.983999 + 0.178174i \(0.0570191\pi\)
\(882\) 354.002 + 354.002i 0.401363 + 0.401363i
\(883\) 80.0049 298.582i 0.0906058 0.338146i −0.905711 0.423896i \(-0.860662\pi\)
0.996317 + 0.0857506i \(0.0273288\pi\)
\(884\) −195.578 338.750i −0.221242 0.383202i
\(885\) 841.175 + 1456.96i 0.950480 + 1.64628i
\(886\) 125.430 + 468.112i 0.141569 + 0.528344i
\(887\) 1645.51i 1.85515i 0.373642 + 0.927573i \(0.378109\pi\)
−0.373642 + 0.927573i \(0.621891\pi\)
\(888\) 159.073 + 86.9008i 0.179136 + 0.0978612i
\(889\) −1995.02 −2.24411
\(890\) −845.693 + 226.603i −0.950217 + 0.254610i
\(891\) 103.238 59.6047i 0.115868 0.0668964i
\(892\) 9.33573 5.38998i 0.0104661 0.00604258i
\(893\) −228.960 61.3496i −0.256394 0.0687006i
\(894\) 99.5611 99.5611i 0.111366 0.111366i
\(895\) 185.786 + 321.790i 0.207582 + 0.359542i
\(896\) −103.383 + 103.383i −0.115383 + 0.115383i
\(897\) 49.6259 85.9546i 0.0553243 0.0958245i
\(898\) −359.442 −0.400270
\(899\) 313.468i 0.348685i
\(900\) 148.490 257.193i 0.164989 0.285770i
\(901\) −567.070 151.946i −0.629379 0.168641i
\(902\) 548.086 + 548.086i 0.607634 + 0.607634i
\(903\) −613.244 + 164.318i −0.679118 + 0.181969i
\(904\) 20.8747 36.1560i 0.0230915 0.0399956i
\(905\) 180.796 + 674.739i 0.199774 + 0.745568i
\(906\) −25.5450 + 95.3352i −0.0281953 + 0.105226i
\(907\) 878.702 + 235.447i 0.968800 + 0.259589i 0.708321 0.705890i \(-0.249453\pi\)
0.260479 + 0.965480i \(0.416120\pi\)
\(908\) −429.037 + 114.960i −0.472507 + 0.126608i
\(909\) −354.686 204.778i −0.390193 0.225278i
\(910\) 506.718 + 1891.10i 0.556833 + 2.07813i
\(911\) −476.404 + 476.404i −0.522946 + 0.522946i −0.918460 0.395514i \(-0.870567\pi\)
0.395514 + 0.918460i \(0.370567\pi\)
\(912\) 7.98278 29.7921i 0.00875305 0.0326668i
\(913\) −308.498 178.112i −0.337895 0.195084i
\(914\) 31.5614 0.0345311
\(915\) 955.922i 1.04472i
\(916\) −369.543 213.356i −0.403431 0.232921i
\(917\) −1333.20 1333.20i −1.45387 1.45387i
\(918\) 100.281 57.8973i 0.109239 0.0630690i
\(919\) 778.050 + 778.050i 0.846626 + 0.846626i 0.989711 0.143084i \(-0.0457019\pi\)
−0.143084 + 0.989711i \(0.545702\pi\)
\(920\) −29.1716 + 108.870i −0.0317083 + 0.118337i
\(921\) −244.824 424.048i −0.265824 0.460421i
\(922\) −154.559 267.704i −0.167635 0.290352i
\(923\) 84.9649 + 317.093i 0.0920530 + 0.343546i
\(924\) 592.950i 0.641720i
\(925\) −1264.06 + 1325.19i −1.36655 + 1.43263i
\(926\) −170.978 −0.184641
\(927\) −54.5915 + 14.6278i −0.0588905 + 0.0157797i
\(928\) 41.9496 24.2196i 0.0452043 0.0260987i
\(929\) −814.847 + 470.452i −0.877123 + 0.506407i −0.869709 0.493565i \(-0.835693\pi\)
−0.00741430 + 0.999973i \(0.502360\pi\)
\(930\) −747.582 200.314i −0.803852 0.215391i
\(931\) −371.455 + 371.455i −0.398985 + 0.398985i
\(932\) −188.995 327.349i −0.202785 0.351233i
\(933\) 363.441 363.441i 0.389541 0.389541i
\(934\) −112.257 + 194.435i −0.120190 + 0.208175i
\(935\) −1801.48 −1.92671
\(936\) 105.316i 0.112517i
\(937\) 370.454 641.644i 0.395361 0.684786i −0.597786 0.801656i \(-0.703953\pi\)
0.993147 + 0.116870i \(0.0372860\pi\)
\(938\) −1552.15 415.897i −1.65474 0.443386i
\(939\) −375.484 375.484i −0.399877 0.399877i
\(940\) −887.812 + 237.888i −0.944481 + 0.253073i
\(941\) −313.412 + 542.846i −0.333063 + 0.576882i −0.983111 0.183011i \(-0.941415\pi\)
0.650048 + 0.759893i \(0.274749\pi\)
\(942\) −166.086 619.842i −0.176312 0.658007i
\(943\) −49.4455 + 184.533i −0.0524343 + 0.195687i
\(944\) 434.801 + 116.505i 0.460594 + 0.123416i
\(945\) −559.827 + 150.005i −0.592409 + 0.158736i
\(946\) 460.133 + 265.658i 0.486398 + 0.280822i
\(947\) 425.514 + 1588.04i 0.449329 + 1.67692i 0.704247 + 0.709955i \(0.251285\pi\)
−0.254918 + 0.966963i \(0.582049\pi\)
\(948\) −348.056 + 348.056i −0.367147 + 0.367147i
\(949\) −347.177 + 1295.68i −0.365835 + 1.36531i
\(950\) 269.873 + 155.811i 0.284077 + 0.164012i
\(951\) 714.942 0.751779
\(952\) 575.965i 0.605005i
\(953\) −419.556 242.231i −0.440248 0.254177i 0.263455 0.964672i \(-0.415138\pi\)
−0.703703 + 0.710494i \(0.748471\pi\)
\(954\) 111.769 + 111.769i 0.117159 + 0.117159i
\(955\) −1096.48 + 633.053i −1.14815 + 0.662883i
\(956\) 348.068 + 348.068i 0.364088 + 0.364088i
\(957\) −50.8448 + 189.756i −0.0531294 + 0.198282i
\(958\) −492.926 853.773i −0.514537 0.891204i
\(959\) 610.998 + 1058.28i 0.637120 + 1.10352i
\(960\) −30.9539 115.522i −0.0322437 0.120335i
\(961\) 379.114i 0.394499i
\(962\) 153.236 631.111i 0.159289 0.656040i
\(963\) −540.948 −0.561732
\(964\) 266.503 71.4092i 0.276455 0.0740760i
\(965\) 2175.93 1256.27i 2.25485 1.30184i
\(966\) 126.566 73.0727i 0.131020 0.0756446i
\(967\) 130.367 + 34.9317i 0.134816 + 0.0361237i 0.325596 0.945509i \(-0.394435\pi\)
−0.190780 + 0.981633i \(0.561102\pi\)
\(968\) −108.886 + 108.886i −0.112485 + 0.112485i
\(969\) 60.7519 + 105.225i 0.0626954 + 0.108592i
\(970\) −257.189 + 257.189i −0.265144 + 0.265144i
\(971\) −49.0286 + 84.9200i −0.0504929 + 0.0874562i −0.890167 0.455634i \(-0.849413\pi\)
0.839674 + 0.543090i \(0.182746\pi\)
\(972\) −31.1769 −0.0320750
\(973\) 1659.31i 1.70535i
\(974\) −363.592 + 629.760i −0.373298 + 0.646571i
\(975\) −1027.80 275.398i −1.05415 0.282460i
\(976\) 180.858 + 180.858i 0.185305 + 0.185305i
\(977\) 269.262 72.1486i 0.275601 0.0738471i −0.118371 0.992969i \(-0.537767\pi\)
0.393972 + 0.919122i \(0.371101\pi\)
\(978\) 86.5580 149.923i 0.0885051 0.153295i
\(979\) −245.895 917.692i −0.251169 0.937377i
\(980\) −527.205 + 1967.56i −0.537964 + 2.00771i
\(981\) 214.457 + 57.4635i 0.218610 + 0.0585764i
\(982\) 307.250 82.3273i 0.312882 0.0838364i
\(983\) 178.468 + 103.039i 0.181555 + 0.104821i 0.588023 0.808844i \(-0.299906\pi\)
−0.406468 + 0.913665i \(0.633240\pi\)
\(984\) −52.4665 195.808i −0.0533196 0.198992i
\(985\) −970.174 + 970.174i −0.984948 + 0.984948i
\(986\) −49.3884 + 184.320i −0.0500897 + 0.186937i
\(987\) 1032.12 + 595.893i 1.04571 + 0.603742i
\(988\) −110.508 −0.111850
\(989\) 130.954i 0.132411i
\(990\) 420.052 + 242.517i 0.424295 + 0.244967i
\(991\) −804.959 804.959i −0.812269 0.812269i 0.172704 0.984974i \(-0.444749\pi\)
−0.984974 + 0.172704i \(0.944749\pi\)
\(992\) −179.340 + 103.542i −0.180786 + 0.104377i
\(993\) 414.948 + 414.948i 0.417873 + 0.417873i
\(994\) −125.108 + 466.911i −0.125864 + 0.469729i
\(995\) −1304.90 2260.15i −1.31146 2.27151i
\(996\) 46.5817 + 80.6818i 0.0467687 + 0.0810058i
\(997\) −423.960 1582.24i −0.425236 1.58700i −0.763408 0.645917i \(-0.776475\pi\)
0.338173 0.941084i \(-0.390191\pi\)
\(998\) 528.760i 0.529820i
\(999\) 186.829 + 45.3629i 0.187016 + 0.0454083i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 222.3.l.d.199.4 yes 16
37.8 odd 12 inner 222.3.l.d.193.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
222.3.l.d.193.4 16 37.8 odd 12 inner
222.3.l.d.199.4 yes 16 1.1 even 1 trivial