Properties

Label 222.3.l.d.193.2
Level $222$
Weight $3$
Character 222.193
Analytic conductor $6.049$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [222,3,Mod(97,222)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("222.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(222, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 222 = 2 \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 222.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,8,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.04906186880\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 318 x^{13} + 8876 x^{12} - 14732 x^{11} + 38482 x^{10} + 1520688 x^{9} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.2
Root \(0.0303820 - 0.0303820i\) of defining polynomial
Character \(\chi\) \(=\) 222.193
Dual form 222.3.l.d.199.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(1.73205 + 1.00000i) q^{4} +(1.32452 - 0.354905i) q^{5} +(1.73205 + 1.73205i) q^{6} +(0.749275 - 1.29778i) q^{7} +(2.00000 + 2.00000i) q^{8} +(1.50000 + 2.59808i) q^{9} +1.93924 q^{10} +13.9681i q^{11} +(1.73205 + 3.00000i) q^{12} +(18.1732 - 4.86949i) q^{13} +(1.49855 - 1.49855i) q^{14} +(2.29414 + 0.614713i) q^{15} +(2.00000 + 3.46410i) q^{16} +(5.39402 - 20.1307i) q^{17} +(1.09808 + 4.09808i) q^{18} +(-22.1889 + 5.94550i) q^{19} +(2.64905 + 0.709810i) q^{20} +(2.24783 - 1.29778i) q^{21} +(-5.11266 + 19.0807i) q^{22} +(0.638443 + 0.638443i) q^{23} +(1.26795 + 4.73205i) q^{24} +(-20.0222 + 11.5598i) q^{25} +26.6074 q^{26} +5.19615i q^{27} +(2.59557 - 1.49855i) q^{28} +(-18.4700 + 18.4700i) q^{29} +(2.90885 + 1.67943i) q^{30} +(29.2146 - 29.2146i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-12.0967 + 20.9521i) q^{33} +(14.7367 - 25.5248i) q^{34} +(0.531843 - 1.98486i) q^{35} +6.00000i q^{36} +(-7.20452 - 36.2918i) q^{37} -32.4868 q^{38} +(31.4769 + 8.43421i) q^{39} +(3.35886 + 1.93924i) q^{40} +(12.2618 + 7.07934i) q^{41} +(3.54561 - 0.950043i) q^{42} +(-59.2758 - 59.2758i) q^{43} +(-13.9681 + 24.1934i) q^{44} +(2.90885 + 2.90885i) q^{45} +(0.638443 + 1.10582i) q^{46} -3.69578 q^{47} +6.92820i q^{48} +(23.3772 + 40.4905i) q^{49} +(-31.5821 + 8.46239i) q^{50} +(25.5248 - 25.5248i) q^{51} +(36.3464 + 9.73898i) q^{52} +(-26.2884 - 45.5328i) q^{53} +(-1.90192 + 7.09808i) q^{54} +(4.95733 + 18.5010i) q^{55} +(4.09412 - 1.09702i) q^{56} +(-38.4323 - 10.2979i) q^{57} +(-31.9909 + 18.4700i) q^{58} +(-2.55567 + 9.53789i) q^{59} +(3.35886 + 3.35886i) q^{60} +(-14.0922 - 52.5927i) q^{61} +(50.6011 - 29.2146i) q^{62} +4.49565 q^{63} +8.00000i q^{64} +(22.3426 - 12.8995i) q^{65} +(-24.1934 + 24.1934i) q^{66} +(-57.1834 - 33.0149i) q^{67} +(29.4735 - 29.4735i) q^{68} +(0.404757 + 1.51057i) q^{69} +(1.45302 - 2.51671i) q^{70} +(-56.4797 + 97.8256i) q^{71} +(-2.19615 + 8.19615i) q^{72} -124.914i q^{73} +(3.44216 - 52.2126i) q^{74} -40.0445 q^{75} +(-44.3778 - 11.8910i) q^{76} +(18.1275 + 10.4659i) q^{77} +(39.9111 + 23.0427i) q^{78} +(-11.6945 + 3.13354i) q^{79} +(3.87847 + 3.87847i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(14.1587 + 14.1587i) q^{82} +(59.4411 + 102.955i) q^{83} +5.19113 q^{84} -28.5780i q^{85} +(-59.2758 - 102.669i) q^{86} +(-43.7004 + 11.7095i) q^{87} +(-27.9361 + 27.9361i) q^{88} +(-8.89198 - 2.38260i) q^{89} +(2.90885 + 5.03828i) q^{90} +(7.29718 - 27.2334i) q^{91} +(0.467373 + 1.74426i) q^{92} +(69.1224 - 18.5213i) q^{93} +(-5.04853 - 1.35275i) q^{94} +(-27.2796 + 15.7499i) q^{95} +(-2.53590 + 9.46410i) q^{96} +(-49.1179 - 49.1179i) q^{97} +(17.1133 + 63.8676i) q^{98} +(-36.2901 + 20.9521i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 24 q^{3} + 6 q^{5} - 14 q^{7} + 32 q^{8} + 24 q^{9} + 24 q^{10} - 16 q^{13} - 28 q^{14} + 18 q^{15} + 32 q^{16} - 16 q^{17} - 24 q^{18} + 42 q^{19} + 12 q^{20} - 42 q^{21} + 46 q^{22} - 34 q^{23}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/222\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(187\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 1.50000 + 0.866025i 0.500000 + 0.288675i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 1.32452 0.354905i 0.264905 0.0709810i −0.123922 0.992292i \(-0.539547\pi\)
0.388826 + 0.921311i \(0.372881\pi\)
\(6\) 1.73205 + 1.73205i 0.288675 + 0.288675i
\(7\) 0.749275 1.29778i 0.107039 0.185398i −0.807530 0.589826i \(-0.799196\pi\)
0.914570 + 0.404429i \(0.132530\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 1.93924 0.193924
\(11\) 13.9681i 1.26982i 0.772585 + 0.634912i \(0.218963\pi\)
−0.772585 + 0.634912i \(0.781037\pi\)
\(12\) 1.73205 + 3.00000i 0.144338 + 0.250000i
\(13\) 18.1732 4.86949i 1.39794 0.374576i 0.520334 0.853963i \(-0.325808\pi\)
0.877604 + 0.479387i \(0.159141\pi\)
\(14\) 1.49855 1.49855i 0.107039 0.107039i
\(15\) 2.29414 + 0.614713i 0.152943 + 0.0409809i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 5.39402 20.1307i 0.317295 1.18416i −0.604539 0.796576i \(-0.706643\pi\)
0.921834 0.387586i \(-0.126691\pi\)
\(18\) 1.09808 + 4.09808i 0.0610042 + 0.227671i
\(19\) −22.1889 + 5.94550i −1.16784 + 0.312921i −0.790092 0.612988i \(-0.789967\pi\)
−0.377746 + 0.925909i \(0.623301\pi\)
\(20\) 2.64905 + 0.709810i 0.132452 + 0.0354905i
\(21\) 2.24783 1.29778i 0.107039 0.0617992i
\(22\) −5.11266 + 19.0807i −0.232394 + 0.867305i
\(23\) 0.638443 + 0.638443i 0.0277584 + 0.0277584i 0.720850 0.693091i \(-0.243752\pi\)
−0.693091 + 0.720850i \(0.743752\pi\)
\(24\) 1.26795 + 4.73205i 0.0528312 + 0.197169i
\(25\) −20.0222 + 11.5598i −0.800889 + 0.462394i
\(26\) 26.6074 1.02336
\(27\) 5.19615i 0.192450i
\(28\) 2.59557 1.49855i 0.0926988 0.0535197i
\(29\) −18.4700 + 18.4700i −0.636895 + 0.636895i −0.949788 0.312893i \(-0.898702\pi\)
0.312893 + 0.949788i \(0.398702\pi\)
\(30\) 2.90885 + 1.67943i 0.0969618 + 0.0559809i
\(31\) 29.2146 29.2146i 0.942406 0.942406i −0.0560238 0.998429i \(-0.517842\pi\)
0.998429 + 0.0560238i \(0.0178423\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) −12.0967 + 20.9521i −0.366566 + 0.634912i
\(34\) 14.7367 25.5248i 0.433433 0.750728i
\(35\) 0.531843 1.98486i 0.0151955 0.0567104i
\(36\) 6.00000i 0.166667i
\(37\) −7.20452 36.2918i −0.194717 0.980860i
\(38\) −32.4868 −0.854917
\(39\) 31.4769 + 8.43421i 0.807100 + 0.216262i
\(40\) 3.35886 + 1.93924i 0.0839714 + 0.0484809i
\(41\) 12.2618 + 7.07934i 0.299068 + 0.172667i 0.642024 0.766685i \(-0.278095\pi\)
−0.342956 + 0.939351i \(0.611428\pi\)
\(42\) 3.54561 0.950043i 0.0844193 0.0226201i
\(43\) −59.2758 59.2758i −1.37851 1.37851i −0.847145 0.531361i \(-0.821681\pi\)
−0.531361 0.847145i \(-0.678319\pi\)
\(44\) −13.9681 + 24.1934i −0.317456 + 0.549849i
\(45\) 2.90885 + 2.90885i 0.0646412 + 0.0646412i
\(46\) 0.638443 + 1.10582i 0.0138792 + 0.0240395i
\(47\) −3.69578 −0.0786337 −0.0393168 0.999227i \(-0.512518\pi\)
−0.0393168 + 0.999227i \(0.512518\pi\)
\(48\) 6.92820i 0.144338i
\(49\) 23.3772 + 40.4905i 0.477085 + 0.826336i
\(50\) −31.5821 + 8.46239i −0.631641 + 0.169248i
\(51\) 25.5248 25.5248i 0.500485 0.500485i
\(52\) 36.3464 + 9.73898i 0.698969 + 0.187288i
\(53\) −26.2884 45.5328i −0.496007 0.859109i 0.503983 0.863714i \(-0.331868\pi\)
−0.999989 + 0.00460487i \(0.998534\pi\)
\(54\) −1.90192 + 7.09808i −0.0352208 + 0.131446i
\(55\) 4.95733 + 18.5010i 0.0901333 + 0.336382i
\(56\) 4.09412 1.09702i 0.0731092 0.0195896i
\(57\) −38.4323 10.2979i −0.674252 0.180665i
\(58\) −31.9909 + 18.4700i −0.551567 + 0.318447i
\(59\) −2.55567 + 9.53789i −0.0433164 + 0.161659i −0.984196 0.177082i \(-0.943334\pi\)
0.940880 + 0.338741i \(0.110001\pi\)
\(60\) 3.35886 + 3.35886i 0.0559809 + 0.0559809i
\(61\) −14.0922 52.5927i −0.231019 0.862175i −0.979903 0.199474i \(-0.936077\pi\)
0.748884 0.662701i \(-0.230590\pi\)
\(62\) 50.6011 29.2146i 0.816147 0.471203i
\(63\) 4.49565 0.0713596
\(64\) 8.00000i 0.125000i
\(65\) 22.3426 12.8995i 0.343732 0.198454i
\(66\) −24.1934 + 24.1934i −0.366566 + 0.366566i
\(67\) −57.1834 33.0149i −0.853484 0.492759i 0.00834107 0.999965i \(-0.497345\pi\)
−0.861825 + 0.507206i \(0.830678\pi\)
\(68\) 29.4735 29.4735i 0.433433 0.433433i
\(69\) 0.404757 + 1.51057i 0.00586604 + 0.0218924i
\(70\) 1.45302 2.51671i 0.0207575 0.0359530i
\(71\) −56.4797 + 97.8256i −0.795488 + 1.37783i 0.127041 + 0.991898i \(0.459452\pi\)
−0.922529 + 0.385928i \(0.873881\pi\)
\(72\) −2.19615 + 8.19615i −0.0305021 + 0.113835i
\(73\) 124.914i 1.71115i −0.517676 0.855577i \(-0.673203\pi\)
0.517676 0.855577i \(-0.326797\pi\)
\(74\) 3.44216 52.2126i 0.0465157 0.705575i
\(75\) −40.0445 −0.533926
\(76\) −44.3778 11.8910i −0.583919 0.156461i
\(77\) 18.1275 + 10.4659i 0.235422 + 0.135921i
\(78\) 39.9111 + 23.0427i 0.511681 + 0.295419i
\(79\) −11.6945 + 3.13354i −0.148032 + 0.0396651i −0.332074 0.943253i \(-0.607748\pi\)
0.184042 + 0.982918i \(0.441082\pi\)
\(80\) 3.87847 + 3.87847i 0.0484809 + 0.0484809i
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 14.1587 + 14.1587i 0.172667 + 0.172667i
\(83\) 59.4411 + 102.955i 0.716158 + 1.24042i 0.962511 + 0.271242i \(0.0874343\pi\)
−0.246353 + 0.969180i \(0.579232\pi\)
\(84\) 5.19113 0.0617992
\(85\) 28.5780i 0.336212i
\(86\) −59.2758 102.669i −0.689253 1.19382i
\(87\) −43.7004 + 11.7095i −0.502303 + 0.134592i
\(88\) −27.9361 + 27.9361i −0.317456 + 0.317456i
\(89\) −8.89198 2.38260i −0.0999099 0.0267708i 0.208518 0.978019i \(-0.433136\pi\)
−0.308428 + 0.951248i \(0.599803\pi\)
\(90\) 2.90885 + 5.03828i 0.0323206 + 0.0559809i
\(91\) 7.29718 27.2334i 0.0801888 0.299269i
\(92\) 0.467373 + 1.74426i 0.00508014 + 0.0189593i
\(93\) 69.1224 18.5213i 0.743252 0.199154i
\(94\) −5.04853 1.35275i −0.0537078 0.0143910i
\(95\) −27.2796 + 15.7499i −0.287154 + 0.165789i
\(96\) −2.53590 + 9.46410i −0.0264156 + 0.0985844i
\(97\) −49.1179 49.1179i −0.506370 0.506370i 0.407040 0.913410i \(-0.366561\pi\)
−0.913410 + 0.407040i \(0.866561\pi\)
\(98\) 17.1133 + 63.8676i 0.174625 + 0.651710i
\(99\) −36.2901 + 20.9521i −0.366566 + 0.211637i
\(100\) −46.2394 −0.462394
\(101\) 116.875i 1.15718i 0.815620 + 0.578588i \(0.196396\pi\)
−0.815620 + 0.578588i \(0.803604\pi\)
\(102\) 44.2102 25.5248i 0.433433 0.250243i
\(103\) 18.6974 18.6974i 0.181528 0.181528i −0.610493 0.792022i \(-0.709029\pi\)
0.792022 + 0.610493i \(0.209029\pi\)
\(104\) 46.0854 + 26.6074i 0.443128 + 0.255840i
\(105\) 2.51671 2.51671i 0.0239686 0.0239686i
\(106\) −19.2444 71.8211i −0.181551 0.677558i
\(107\) 35.5463 61.5681i 0.332209 0.575402i −0.650736 0.759304i \(-0.725540\pi\)
0.982945 + 0.183902i \(0.0588728\pi\)
\(108\) −5.19615 + 9.00000i −0.0481125 + 0.0833333i
\(109\) 12.0351 44.9155i 0.110414 0.412069i −0.888489 0.458897i \(-0.848245\pi\)
0.998903 + 0.0468281i \(0.0149113\pi\)
\(110\) 27.0874i 0.246249i
\(111\) 20.6228 60.6770i 0.185791 0.546640i
\(112\) 5.99420 0.0535197
\(113\) 20.2852 + 5.43540i 0.179515 + 0.0481009i 0.347457 0.937696i \(-0.387045\pi\)
−0.167942 + 0.985797i \(0.553712\pi\)
\(114\) −48.7303 28.1344i −0.427458 0.246793i
\(115\) 1.07222 + 0.619046i 0.00932364 + 0.00538301i
\(116\) −50.4608 + 13.5209i −0.435007 + 0.116560i
\(117\) 39.9111 + 39.9111i 0.341120 + 0.341120i
\(118\) −6.98222 + 12.0936i −0.0591713 + 0.102488i
\(119\) −22.0837 22.0837i −0.185578 0.185578i
\(120\) 3.35886 + 5.81771i 0.0279905 + 0.0484809i
\(121\) −74.1065 −0.612450
\(122\) 77.0010i 0.631156i
\(123\) 12.2618 + 21.2380i 0.0996892 + 0.172667i
\(124\) 79.8157 21.3866i 0.643675 0.172472i
\(125\) −46.6577 + 46.6577i −0.373262 + 0.373262i
\(126\) 6.14118 + 1.64552i 0.0487395 + 0.0130597i
\(127\) 113.781 + 197.074i 0.895913 + 1.55177i 0.832671 + 0.553768i \(0.186810\pi\)
0.0632414 + 0.997998i \(0.479856\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −37.5793 140.248i −0.291313 1.08719i
\(130\) 35.2421 9.44309i 0.271093 0.0726392i
\(131\) 168.276 + 45.0895i 1.28455 + 0.344195i 0.835589 0.549356i \(-0.185127\pi\)
0.448963 + 0.893550i \(0.351793\pi\)
\(132\) −41.9042 + 24.1934i −0.317456 + 0.183283i
\(133\) −8.90964 + 33.2512i −0.0669898 + 0.250009i
\(134\) −66.0297 66.0297i −0.492759 0.492759i
\(135\) 1.84414 + 6.88242i 0.0136603 + 0.0509809i
\(136\) 51.0495 29.4735i 0.375364 0.216717i
\(137\) 54.3456 0.396684 0.198342 0.980133i \(-0.436444\pi\)
0.198342 + 0.980133i \(0.436444\pi\)
\(138\) 2.21163i 0.0160263i
\(139\) −121.362 + 70.0682i −0.873106 + 0.504088i −0.868379 0.495901i \(-0.834838\pi\)
−0.00472668 + 0.999989i \(0.501505\pi\)
\(140\) 2.90604 2.90604i 0.0207575 0.0207575i
\(141\) −5.54367 3.20064i −0.0393168 0.0226996i
\(142\) −112.959 + 112.959i −0.795488 + 0.795488i
\(143\) 68.0173 + 253.844i 0.475646 + 1.77513i
\(144\) −6.00000 + 10.3923i −0.0416667 + 0.0721688i
\(145\) −17.9088 + 31.0189i −0.123509 + 0.213924i
\(146\) 45.7218 170.636i 0.313163 1.16874i
\(147\) 80.9809i 0.550890i
\(148\) 23.8132 70.0638i 0.160900 0.473404i
\(149\) 149.593 1.00398 0.501992 0.864872i \(-0.332601\pi\)
0.501992 + 0.864872i \(0.332601\pi\)
\(150\) −54.7018 14.6573i −0.364678 0.0977153i
\(151\) 115.225 + 66.5254i 0.763081 + 0.440565i 0.830401 0.557166i \(-0.188111\pi\)
−0.0673196 + 0.997731i \(0.521445\pi\)
\(152\) −56.2689 32.4868i −0.370190 0.213729i
\(153\) 60.3922 16.1820i 0.394720 0.105765i
\(154\) 20.9318 + 20.9318i 0.135921 + 0.135921i
\(155\) 28.3270 49.0638i 0.182755 0.316540i
\(156\) 46.0854 + 46.0854i 0.295419 + 0.295419i
\(157\) −40.8748 70.7973i −0.260349 0.450938i 0.705985 0.708226i \(-0.250504\pi\)
−0.966335 + 0.257288i \(0.917171\pi\)
\(158\) −17.1220 −0.108367
\(159\) 91.0655i 0.572739i
\(160\) 3.87847 + 6.71771i 0.0242404 + 0.0419857i
\(161\) 1.30693 0.350191i 0.00811758 0.00217510i
\(162\) −9.00000 + 9.00000i −0.0555556 + 0.0555556i
\(163\) 141.671 + 37.9607i 0.869149 + 0.232888i 0.665720 0.746202i \(-0.268125\pi\)
0.203429 + 0.979090i \(0.434791\pi\)
\(164\) 14.1587 + 24.5235i 0.0863334 + 0.149534i
\(165\) −8.58635 + 32.0447i −0.0520385 + 0.194210i
\(166\) 43.5139 + 162.396i 0.262132 + 0.978290i
\(167\) −116.880 + 31.3178i −0.699879 + 0.187532i −0.591176 0.806542i \(-0.701336\pi\)
−0.108702 + 0.994074i \(0.534670\pi\)
\(168\) 7.09122 + 1.90009i 0.0422096 + 0.0113100i
\(169\) 160.195 92.4883i 0.947896 0.547268i
\(170\) 10.4603 39.0383i 0.0615310 0.229637i
\(171\) −48.7303 48.7303i −0.284972 0.284972i
\(172\) −43.3929 161.944i −0.252284 0.941537i
\(173\) −39.7628 + 22.9571i −0.229843 + 0.132700i −0.610500 0.792017i \(-0.709031\pi\)
0.380657 + 0.924716i \(0.375698\pi\)
\(174\) −63.9818 −0.367711
\(175\) 34.6460i 0.197977i
\(176\) −48.3868 + 27.9361i −0.274925 + 0.158728i
\(177\) −12.0936 + 12.0936i −0.0683252 + 0.0683252i
\(178\) −11.2746 6.50938i −0.0633403 0.0365696i
\(179\) −108.822 + 108.822i −0.607946 + 0.607946i −0.942409 0.334463i \(-0.891445\pi\)
0.334463 + 0.942409i \(0.391445\pi\)
\(180\) 2.12943 + 7.94714i 0.0118302 + 0.0441508i
\(181\) −75.2695 + 130.371i −0.415854 + 0.720280i −0.995518 0.0945758i \(-0.969851\pi\)
0.579664 + 0.814856i \(0.303184\pi\)
\(182\) 19.9363 34.5306i 0.109540 0.189729i
\(183\) 24.4083 91.0932i 0.133379 0.497777i
\(184\) 2.55377i 0.0138792i
\(185\) −22.4227 45.5124i −0.121204 0.246013i
\(186\) 101.202 0.544098
\(187\) 281.187 + 75.3439i 1.50368 + 0.402909i
\(188\) −6.40128 3.69578i −0.0340494 0.0196584i
\(189\) 6.74348 + 3.89335i 0.0356798 + 0.0205997i
\(190\) −43.0296 + 11.5297i −0.226471 + 0.0606828i
\(191\) 234.534 + 234.534i 1.22793 + 1.22793i 0.964746 + 0.263184i \(0.0847725\pi\)
0.263184 + 0.964746i \(0.415228\pi\)
\(192\) −6.92820 + 12.0000i −0.0360844 + 0.0625000i
\(193\) 220.924 + 220.924i 1.14468 + 1.14468i 0.987582 + 0.157102i \(0.0502152\pi\)
0.157102 + 0.987582i \(0.449785\pi\)
\(194\) −49.1179 85.0747i −0.253185 0.438529i
\(195\) 44.6852 0.229155
\(196\) 93.5087i 0.477085i
\(197\) −67.6691 117.206i −0.343498 0.594956i 0.641582 0.767055i \(-0.278279\pi\)
−0.985080 + 0.172099i \(0.944945\pi\)
\(198\) −57.2421 + 15.3380i −0.289102 + 0.0774646i
\(199\) −84.6582 + 84.6582i −0.425418 + 0.425418i −0.887064 0.461646i \(-0.847259\pi\)
0.461646 + 0.887064i \(0.347259\pi\)
\(200\) −63.1641 16.9248i −0.315821 0.0846239i
\(201\) −57.1834 99.0446i −0.284495 0.492759i
\(202\) −42.7791 + 159.654i −0.211778 + 0.790366i
\(203\) 10.1309 + 37.8091i 0.0499060 + 0.186252i
\(204\) 69.7349 18.6854i 0.341838 0.0915952i
\(205\) 18.7535 + 5.02498i 0.0914804 + 0.0245121i
\(206\) 32.3849 18.6974i 0.157208 0.0907642i
\(207\) −0.701059 + 2.61639i −0.00338676 + 0.0126396i
\(208\) 53.2148 + 53.2148i 0.255840 + 0.255840i
\(209\) −83.0471 309.936i −0.397355 1.48295i
\(210\) 4.35907 2.51671i 0.0207575 0.0119843i
\(211\) 73.7146 0.349358 0.174679 0.984625i \(-0.444111\pi\)
0.174679 + 0.984625i \(0.444111\pi\)
\(212\) 105.153i 0.496007i
\(213\) −169.439 + 97.8256i −0.795488 + 0.459275i
\(214\) 71.0927 71.0927i 0.332209 0.332209i
\(215\) −99.5494 57.4749i −0.463020 0.267325i
\(216\) −10.3923 + 10.3923i −0.0481125 + 0.0481125i
\(217\) −16.0244 59.8039i −0.0738452 0.275594i
\(218\) 32.8805 56.9506i 0.150828 0.261241i
\(219\) 108.179 187.371i 0.493967 0.855577i
\(220\) −9.91466 + 37.0020i −0.0450666 + 0.168191i
\(221\) 392.106i 1.77423i
\(222\) 50.3807 75.3378i 0.226940 0.339360i
\(223\) 180.708 0.810348 0.405174 0.914239i \(-0.367211\pi\)
0.405174 + 0.914239i \(0.367211\pi\)
\(224\) 8.18823 + 2.19403i 0.0365546 + 0.00979478i
\(225\) −60.0667 34.6795i −0.266963 0.154131i
\(226\) 25.7206 + 14.8498i 0.113808 + 0.0657070i
\(227\) −205.897 + 55.1699i −0.907034 + 0.243039i −0.682035 0.731320i \(-0.738905\pi\)
−0.225000 + 0.974359i \(0.572238\pi\)
\(228\) −56.2689 56.2689i −0.246793 0.246793i
\(229\) −125.275 + 216.982i −0.547051 + 0.947520i 0.451424 + 0.892310i \(0.350916\pi\)
−0.998475 + 0.0552104i \(0.982417\pi\)
\(230\) 1.23809 + 1.23809i 0.00538301 + 0.00538301i
\(231\) 18.1275 + 31.3978i 0.0784740 + 0.135921i
\(232\) −73.8798 −0.318447
\(233\) 237.554i 1.01954i −0.860310 0.509772i \(-0.829730\pi\)
0.860310 0.509772i \(-0.170270\pi\)
\(234\) 39.9111 + 69.1280i 0.170560 + 0.295419i
\(235\) −4.89515 + 1.31165i −0.0208304 + 0.00558149i
\(236\) −13.9644 + 13.9644i −0.0591713 + 0.0591713i
\(237\) −20.2555 5.42745i −0.0854664 0.0229006i
\(238\) −22.0837 38.2501i −0.0927888 0.160715i
\(239\) −24.5883 + 91.7648i −0.102880 + 0.383953i −0.998096 0.0616791i \(-0.980354\pi\)
0.895216 + 0.445632i \(0.147021\pi\)
\(240\) 2.45885 + 9.17656i 0.0102452 + 0.0382357i
\(241\) −15.1791 + 4.06724i −0.0629840 + 0.0168765i −0.290173 0.956974i \(-0.593713\pi\)
0.227189 + 0.973851i \(0.427046\pi\)
\(242\) −101.231 27.1249i −0.418311 0.112086i
\(243\) −13.5000 + 7.79423i −0.0555556 + 0.0320750i
\(244\) 28.1843 105.185i 0.115510 0.431088i
\(245\) 45.3339 + 45.3339i 0.185036 + 0.185036i
\(246\) 8.97624 + 33.4998i 0.0364888 + 0.136178i
\(247\) −374.292 + 216.098i −1.51535 + 0.874889i
\(248\) 116.858 0.471203
\(249\) 205.910i 0.826948i
\(250\) −80.8135 + 46.6577i −0.323254 + 0.186631i
\(251\) −115.250 + 115.250i −0.459164 + 0.459164i −0.898381 0.439217i \(-0.855256\pi\)
0.439217 + 0.898381i \(0.355256\pi\)
\(252\) 7.78670 + 4.49565i 0.0308996 + 0.0178399i
\(253\) −8.91781 + 8.91781i −0.0352482 + 0.0352482i
\(254\) 83.2934 + 310.855i 0.327927 + 1.22384i
\(255\) 24.7493 42.8670i 0.0970559 0.168106i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 27.8872 104.077i 0.108511 0.404967i −0.890209 0.455552i \(-0.849442\pi\)
0.998720 + 0.0505848i \(0.0161085\pi\)
\(258\) 205.337i 0.795881i
\(259\) −52.4971 17.8427i −0.202691 0.0688905i
\(260\) 51.5980 0.198454
\(261\) −75.6913 20.2814i −0.290005 0.0777066i
\(262\) 213.366 + 123.187i 0.814373 + 0.470179i
\(263\) −436.840 252.210i −1.66099 0.958972i −0.972245 0.233965i \(-0.924830\pi\)
−0.688742 0.725006i \(-0.741837\pi\)
\(264\) −66.0975 + 17.7108i −0.250369 + 0.0670863i
\(265\) −50.9793 50.9793i −0.192375 0.192375i
\(266\) −24.3416 + 42.1609i −0.0915097 + 0.158499i
\(267\) −11.2746 11.2746i −0.0422269 0.0422269i
\(268\) −66.0297 114.367i −0.246380 0.426742i
\(269\) −75.2286 −0.279660 −0.139830 0.990176i \(-0.544656\pi\)
−0.139830 + 0.990176i \(0.544656\pi\)
\(270\) 10.0766i 0.0373206i
\(271\) −199.152 344.942i −0.734879 1.27285i −0.954777 0.297324i \(-0.903906\pi\)
0.219898 0.975523i \(-0.429428\pi\)
\(272\) 80.5230 21.5761i 0.296040 0.0793238i
\(273\) 34.5306 34.5306i 0.126486 0.126486i
\(274\) 74.2375 + 19.8919i 0.270940 + 0.0725981i
\(275\) −161.468 279.672i −0.587158 1.01699i
\(276\) −0.809513 + 3.02114i −0.00293302 + 0.0109462i
\(277\) −85.5864 319.413i −0.308976 1.15311i −0.929468 0.368902i \(-0.879734\pi\)
0.620492 0.784213i \(-0.286933\pi\)
\(278\) −191.430 + 51.2935i −0.688597 + 0.184509i
\(279\) 119.724 + 32.0798i 0.429117 + 0.114981i
\(280\) 5.03342 2.90604i 0.0179765 0.0103787i
\(281\) 130.378 486.578i 0.463979 1.73160i −0.196271 0.980550i \(-0.562883\pi\)
0.660251 0.751045i \(-0.270450\pi\)
\(282\) −6.40128 6.40128i −0.0226996 0.0226996i
\(283\) 77.9355 + 290.859i 0.275390 + 1.02777i 0.955579 + 0.294734i \(0.0952310\pi\)
−0.680189 + 0.733037i \(0.738102\pi\)
\(284\) −195.651 + 112.959i −0.688913 + 0.397744i
\(285\) −54.5593 −0.191436
\(286\) 371.653i 1.29949i
\(287\) 18.3749 10.6087i 0.0640240 0.0369643i
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −125.870 72.6711i −0.435537 0.251457i
\(290\) −35.8176 + 35.8176i −0.123509 + 0.123509i
\(291\) −31.1395 116.214i −0.107009 0.399361i
\(292\) 124.914 216.358i 0.427788 0.740951i
\(293\) 162.762 281.913i 0.555503 0.962160i −0.442361 0.896837i \(-0.645859\pi\)
0.997864 0.0653227i \(-0.0208077\pi\)
\(294\) −29.6411 + 110.622i −0.100820 + 0.376265i
\(295\) 13.5402i 0.0458989i
\(296\) 58.1746 86.9926i 0.196536 0.293894i
\(297\) −72.5801 −0.244378
\(298\) 204.349 + 54.7550i 0.685733 + 0.183742i
\(299\) 14.7114 + 8.49365i 0.0492021 + 0.0284069i
\(300\) −69.3590 40.0445i −0.231197 0.133482i
\(301\) −121.341 + 32.5132i −0.403126 + 0.108017i
\(302\) 133.051 + 133.051i 0.440565 + 0.440565i
\(303\) −101.216 + 175.312i −0.334048 + 0.578588i
\(304\) −64.9737 64.9737i −0.213729 0.213729i
\(305\) −37.3308 64.6588i −0.122396 0.211996i
\(306\) 88.4204 0.288955
\(307\) 274.523i 0.894213i −0.894481 0.447107i \(-0.852454\pi\)
0.894481 0.447107i \(-0.147546\pi\)
\(308\) 20.9318 + 36.2550i 0.0679605 + 0.117711i
\(309\) 44.2386 11.8537i 0.143167 0.0383615i
\(310\) 56.6540 56.6540i 0.182755 0.182755i
\(311\) 238.416 + 63.8833i 0.766610 + 0.205413i 0.620873 0.783911i \(-0.286778\pi\)
0.145737 + 0.989323i \(0.453445\pi\)
\(312\) 46.0854 + 79.8222i 0.147709 + 0.255840i
\(313\) −5.83011 + 21.7583i −0.0186265 + 0.0695152i −0.974614 0.223894i \(-0.928123\pi\)
0.955987 + 0.293409i \(0.0947898\pi\)
\(314\) −29.9225 111.672i −0.0952944 0.355644i
\(315\) 5.95459 1.59553i 0.0189035 0.00506517i
\(316\) −23.3891 6.26708i −0.0740160 0.0198325i
\(317\) −533.610 + 308.080i −1.68331 + 0.971860i −0.723876 + 0.689930i \(0.757641\pi\)
−0.959435 + 0.281930i \(0.909025\pi\)
\(318\) 33.3323 124.398i 0.104819 0.391188i
\(319\) −257.989 257.989i −0.808744 0.808744i
\(320\) 2.83924 + 10.5962i 0.00887262 + 0.0331131i
\(321\) 106.639 61.5681i 0.332209 0.191801i
\(322\) 1.91348 0.00594248
\(323\) 478.750i 1.48220i
\(324\) −15.5885 + 9.00000i −0.0481125 + 0.0277778i
\(325\) −307.577 + 307.577i −0.946391 + 0.946391i
\(326\) 179.632 + 103.711i 0.551019 + 0.318131i
\(327\) 56.9506 56.9506i 0.174161 0.174161i
\(328\) 10.3649 + 38.6822i 0.0316002 + 0.117934i
\(329\) −2.76916 + 4.79632i −0.00841689 + 0.0145785i
\(330\) −23.4583 + 40.6310i −0.0710859 + 0.123124i
\(331\) 81.6470 304.711i 0.246668 0.920576i −0.725870 0.687832i \(-0.758563\pi\)
0.972538 0.232744i \(-0.0747706\pi\)
\(332\) 237.764i 0.716158i
\(333\) 83.4821 73.1556i 0.250697 0.219686i
\(334\) −171.124 −0.512347
\(335\) −87.4579 23.4343i −0.261068 0.0699530i
\(336\) 8.99130 + 5.19113i 0.0267598 + 0.0154498i
\(337\) 435.090 + 251.200i 1.29107 + 0.745399i 0.978844 0.204609i \(-0.0655922\pi\)
0.312226 + 0.950008i \(0.398926\pi\)
\(338\) 252.683 67.7062i 0.747582 0.200314i
\(339\) 25.7206 + 25.7206i 0.0758720 + 0.0758720i
\(340\) 28.5780 49.4985i 0.0840529 0.145584i
\(341\) 408.071 + 408.071i 1.19669 + 1.19669i
\(342\) −48.7303 84.4033i −0.142486 0.246793i
\(343\) 143.493 0.418346
\(344\) 237.103i 0.689253i
\(345\) 1.07222 + 1.85714i 0.00310788 + 0.00538301i
\(346\) −62.7199 + 16.8057i −0.181271 + 0.0485715i
\(347\) −95.3180 + 95.3180i −0.274692 + 0.274692i −0.830986 0.556294i \(-0.812223\pi\)
0.556294 + 0.830986i \(0.312223\pi\)
\(348\) −87.4008 23.4190i −0.251152 0.0672959i
\(349\) −143.406 248.386i −0.410905 0.711708i 0.584084 0.811693i \(-0.301454\pi\)
−0.994989 + 0.0999854i \(0.968120\pi\)
\(350\) −12.6813 + 47.3273i −0.0362323 + 0.135221i
\(351\) 25.3026 + 94.4307i 0.0720872 + 0.269033i
\(352\) −76.3229 + 20.4506i −0.216826 + 0.0580984i
\(353\) 84.2935 + 22.5864i 0.238792 + 0.0639841i 0.376230 0.926526i \(-0.377220\pi\)
−0.137438 + 0.990510i \(0.543887\pi\)
\(354\) −20.9467 + 12.0936i −0.0591713 + 0.0341626i
\(355\) −40.0898 + 149.617i −0.112929 + 0.421457i
\(356\) −13.0188 13.0188i −0.0365696 0.0365696i
\(357\) −14.0005 52.2507i −0.0392172 0.146360i
\(358\) −188.486 + 108.822i −0.526496 + 0.303973i
\(359\) −12.4041 −0.0345517 −0.0172759 0.999851i \(-0.505499\pi\)
−0.0172759 + 0.999851i \(0.505499\pi\)
\(360\) 11.6354i 0.0323206i
\(361\) 144.364 83.3486i 0.399900 0.230883i
\(362\) −150.539 + 150.539i −0.415854 + 0.415854i
\(363\) −111.160 64.1781i −0.306225 0.176799i
\(364\) 39.8725 39.8725i 0.109540 0.109540i
\(365\) −44.3326 165.452i −0.121459 0.453292i
\(366\) 66.6848 115.502i 0.182199 0.315578i
\(367\) 129.064 223.545i 0.351672 0.609114i −0.634870 0.772619i \(-0.718947\pi\)
0.986543 + 0.163505i \(0.0522798\pi\)
\(368\) −0.934745 + 3.48852i −0.00254007 + 0.00947967i
\(369\) 42.4760i 0.115111i
\(370\) −13.9713 70.3784i −0.0377602 0.190212i
\(371\) −78.7889 −0.212369
\(372\) 138.245 + 37.0426i 0.371626 + 0.0995769i
\(373\) 505.950 + 292.110i 1.35643 + 0.783137i 0.989141 0.146968i \(-0.0469514\pi\)
0.367293 + 0.930105i \(0.380285\pi\)
\(374\) 356.531 + 205.843i 0.953292 + 0.550383i
\(375\) −110.393 + 29.5798i −0.294382 + 0.0788795i
\(376\) −7.39156 7.39156i −0.0196584 0.0196584i
\(377\) −245.719 + 425.597i −0.651774 + 1.12890i
\(378\) 7.78670 + 7.78670i 0.0205997 + 0.0205997i
\(379\) −75.9432 131.537i −0.200378 0.347064i 0.748272 0.663392i \(-0.230884\pi\)
−0.948650 + 0.316327i \(0.897550\pi\)
\(380\) −62.9996 −0.165789
\(381\) 394.149i 1.03451i
\(382\) 234.534 + 406.226i 0.613965 + 1.06342i
\(383\) 498.670 133.618i 1.30201 0.348872i 0.459800 0.888022i \(-0.347921\pi\)
0.842210 + 0.539150i \(0.181254\pi\)
\(384\) −13.8564 + 13.8564i −0.0360844 + 0.0360844i
\(385\) 27.7247 + 7.42881i 0.0720122 + 0.0192956i
\(386\) 220.924 + 382.652i 0.572342 + 0.991326i
\(387\) 65.0893 242.917i 0.168189 0.627692i
\(388\) −35.9568 134.193i −0.0926721 0.345857i
\(389\) 509.566 136.538i 1.30994 0.350997i 0.464738 0.885448i \(-0.346148\pi\)
0.845199 + 0.534452i \(0.179482\pi\)
\(390\) 61.0411 + 16.3559i 0.156516 + 0.0419382i
\(391\) 16.2961 9.40856i 0.0416780 0.0240628i
\(392\) −34.2266 + 127.735i −0.0873126 + 0.325855i
\(393\) 213.366 + 213.366i 0.542915 + 0.542915i
\(394\) −49.5372 184.875i −0.125729 0.469227i
\(395\) −14.3776 + 8.30089i −0.0363989 + 0.0210149i
\(396\) −83.8083 −0.211637
\(397\) 664.112i 1.67283i 0.548099 + 0.836413i \(0.315352\pi\)
−0.548099 + 0.836413i \(0.684648\pi\)
\(398\) −146.632 + 84.6582i −0.368423 + 0.212709i
\(399\) −42.1609 + 42.1609i −0.105666 + 0.105666i
\(400\) −80.0889 46.2394i −0.200222 0.115598i
\(401\) 485.976 485.976i 1.21191 1.21191i 0.241513 0.970398i \(-0.422356\pi\)
0.970398 0.241513i \(-0.0776436\pi\)
\(402\) −41.8612 156.228i −0.104132 0.388627i
\(403\) 388.662 673.182i 0.964421 1.67043i
\(404\) −116.875 + 202.433i −0.289294 + 0.501072i
\(405\) −3.19414 + 11.9207i −0.00788677 + 0.0294338i
\(406\) 55.3563i 0.136346i
\(407\) 506.926 100.633i 1.24552 0.247256i
\(408\) 102.099 0.250243
\(409\) −334.801 89.7095i −0.818583 0.219339i −0.174856 0.984594i \(-0.555946\pi\)
−0.643727 + 0.765255i \(0.722613\pi\)
\(410\) 23.7785 + 13.7285i 0.0579963 + 0.0334842i
\(411\) 81.5185 + 47.0647i 0.198342 + 0.114513i
\(412\) 51.0823 13.6875i 0.123986 0.0332220i
\(413\) 10.4632 + 10.4632i 0.0253346 + 0.0253346i
\(414\) −1.91533 + 3.31745i −0.00462640 + 0.00801316i
\(415\) 115.270 + 115.270i 0.277760 + 0.277760i
\(416\) 53.2148 + 92.1707i 0.127920 + 0.221564i
\(417\) −242.723 −0.582070
\(418\) 453.778i 1.08559i
\(419\) 82.7667 + 143.356i 0.197534 + 0.342139i 0.947728 0.319079i \(-0.103373\pi\)
−0.750194 + 0.661217i \(0.770040\pi\)
\(420\) 6.87577 1.84236i 0.0163709 0.00438657i
\(421\) −79.2329 + 79.2329i −0.188202 + 0.188202i −0.794918 0.606717i \(-0.792486\pi\)
0.606717 + 0.794918i \(0.292486\pi\)
\(422\) 100.696 + 26.9814i 0.238616 + 0.0639370i
\(423\) −5.54367 9.60192i −0.0131056 0.0226996i
\(424\) 38.4888 143.642i 0.0907755 0.338779i
\(425\) 124.708 + 465.416i 0.293430 + 1.09510i
\(426\) −267.265 + 71.6133i −0.627382 + 0.168106i
\(427\) −78.8128 21.1178i −0.184573 0.0494563i
\(428\) 123.136 71.0927i 0.287701 0.166104i
\(429\) −117.809 + 439.671i −0.274614 + 1.02487i
\(430\) −114.950 114.950i −0.267325 0.267325i
\(431\) 147.013 + 548.659i 0.341097 + 1.27299i 0.897107 + 0.441814i \(0.145665\pi\)
−0.556010 + 0.831176i \(0.687668\pi\)
\(432\) −18.0000 + 10.3923i −0.0416667 + 0.0240563i
\(433\) 373.987 0.863712 0.431856 0.901942i \(-0.357859\pi\)
0.431856 + 0.901942i \(0.357859\pi\)
\(434\) 87.5590i 0.201749i
\(435\) −53.7264 + 31.0189i −0.123509 + 0.0713079i
\(436\) 65.7609 65.7609i 0.150828 0.150828i
\(437\) −17.9622 10.3705i −0.0411035 0.0237311i
\(438\) 216.358 216.358i 0.493967 0.493967i
\(439\) 86.4365 + 322.585i 0.196894 + 0.734818i 0.991768 + 0.128044i \(0.0408700\pi\)
−0.794874 + 0.606774i \(0.792463\pi\)
\(440\) −27.0874 + 46.9167i −0.0615622 + 0.106629i
\(441\) −70.1315 + 121.471i −0.159028 + 0.275445i
\(442\) 143.521 535.627i 0.324707 1.21182i
\(443\) 211.523i 0.477478i −0.971084 0.238739i \(-0.923266\pi\)
0.971084 0.238739i \(-0.0767340\pi\)
\(444\) 96.3968 84.4728i 0.217110 0.190254i
\(445\) −12.6232 −0.0283668
\(446\) 246.851 + 66.1436i 0.553478 + 0.148304i
\(447\) 224.390 + 129.552i 0.501992 + 0.289825i
\(448\) 10.3823 + 5.99420i 0.0231747 + 0.0133799i
\(449\) −740.743 + 198.482i −1.64976 + 0.442053i −0.959546 0.281550i \(-0.909151\pi\)
−0.690216 + 0.723603i \(0.742485\pi\)
\(450\) −69.3590 69.3590i −0.154131 0.154131i
\(451\) −98.8846 + 171.273i −0.219256 + 0.379763i
\(452\) 29.6996 + 29.6996i 0.0657070 + 0.0657070i
\(453\) 115.225 + 199.576i 0.254360 + 0.440565i
\(454\) −301.454 −0.663995
\(455\) 38.6611i 0.0849695i
\(456\) −56.2689 97.4605i −0.123397 0.213729i
\(457\) −645.459 + 172.950i −1.41238 + 0.378447i −0.882775 0.469796i \(-0.844327\pi\)
−0.529607 + 0.848243i \(0.677661\pi\)
\(458\) −250.549 + 250.549i −0.547051 + 0.547051i
\(459\) 104.602 + 28.0281i 0.227892 + 0.0610635i
\(460\) 1.23809 + 2.14444i 0.00269150 + 0.00466182i
\(461\) −33.7914 + 126.111i −0.0733001 + 0.273560i −0.992842 0.119431i \(-0.961893\pi\)
0.919542 + 0.392991i \(0.128560\pi\)
\(462\) 13.2703 + 49.5253i 0.0287235 + 0.107198i
\(463\) −277.140 + 74.2594i −0.598575 + 0.160388i −0.545369 0.838196i \(-0.683610\pi\)
−0.0532055 + 0.998584i \(0.516944\pi\)
\(464\) −100.922 27.0419i −0.217504 0.0582799i
\(465\) 84.9809 49.0638i 0.182755 0.105513i
\(466\) 86.9507 324.504i 0.186589 0.696361i
\(467\) −501.603 501.603i −1.07410 1.07410i −0.997026 0.0770711i \(-0.975443\pi\)
−0.0770711 0.997026i \(-0.524557\pi\)
\(468\) 29.2169 + 109.039i 0.0624294 + 0.232990i
\(469\) −85.6922 + 49.4744i −0.182713 + 0.105489i
\(470\) −7.16699 −0.0152489
\(471\) 141.595i 0.300625i
\(472\) −24.1871 + 13.9644i −0.0512439 + 0.0295857i
\(473\) 827.967 827.967i 1.75046 1.75046i
\(474\) −25.6830 14.8281i −0.0541835 0.0312829i
\(475\) 375.543 375.543i 0.790616 0.790616i
\(476\) −16.1664 60.3339i −0.0339631 0.126752i
\(477\) 78.8651 136.598i 0.165336 0.286370i
\(478\) −67.1765 + 116.353i −0.140537 + 0.243417i
\(479\) 88.6134 330.710i 0.184997 0.690417i −0.809634 0.586934i \(-0.800335\pi\)
0.994631 0.103483i \(-0.0329987\pi\)
\(480\) 13.4354i 0.0279905i
\(481\) −307.652 624.455i −0.639608 1.29824i
\(482\) −22.2238 −0.0461075
\(483\) 2.26367 + 0.606548i 0.00468669 + 0.00125579i
\(484\) −128.356 74.1065i −0.265199 0.153113i
\(485\) −82.4899 47.6256i −0.170082 0.0981971i
\(486\) −21.2942 + 5.70577i −0.0438153 + 0.0117403i
\(487\) −100.998 100.998i −0.207389 0.207389i 0.595768 0.803157i \(-0.296848\pi\)
−0.803157 + 0.595768i \(0.796848\pi\)
\(488\) 77.0010 133.370i 0.157789 0.273299i
\(489\) 179.632 + 179.632i 0.367346 + 0.367346i
\(490\) 45.3339 + 78.5205i 0.0925181 + 0.160246i
\(491\) −713.681 −1.45352 −0.726762 0.686889i \(-0.758976\pi\)
−0.726762 + 0.686889i \(0.758976\pi\)
\(492\) 49.0471i 0.0996892i
\(493\) 272.187 + 471.441i 0.552103 + 0.956270i
\(494\) −590.389 + 158.194i −1.19512 + 0.320231i
\(495\) −40.6310 + 40.6310i −0.0820829 + 0.0820829i
\(496\) 159.631 + 42.7731i 0.321838 + 0.0862361i
\(497\) 84.6376 + 146.597i 0.170297 + 0.294963i
\(498\) −75.3683 + 281.278i −0.151342 + 0.564816i
\(499\) −121.753 454.388i −0.243994 0.910597i −0.973886 0.227036i \(-0.927097\pi\)
0.729893 0.683562i \(-0.239570\pi\)
\(500\) −127.471 + 34.1558i −0.254942 + 0.0683116i
\(501\) −202.442 54.2441i −0.404075 0.108272i
\(502\) −199.619 + 115.250i −0.397648 + 0.229582i
\(503\) −225.082 + 840.018i −0.447479 + 1.67002i 0.261827 + 0.965115i \(0.415675\pi\)
−0.709306 + 0.704900i \(0.750992\pi\)
\(504\) 8.99130 + 8.99130i 0.0178399 + 0.0178399i
\(505\) 41.4794 + 154.803i 0.0821374 + 0.306541i
\(506\) −15.4461 + 8.91781i −0.0305259 + 0.0176241i
\(507\) 320.389 0.631931
\(508\) 455.124i 0.895913i
\(509\) −679.206 + 392.140i −1.33439 + 0.770412i −0.985969 0.166926i \(-0.946616\pi\)
−0.348423 + 0.937338i \(0.613283\pi\)
\(510\) 49.4985 49.4985i 0.0970559 0.0970559i
\(511\) −162.112 93.5951i −0.317244 0.183161i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −30.8937 115.297i −0.0602217 0.224751i
\(514\) 76.1894 131.964i 0.148228 0.256739i
\(515\) 18.1294 31.4010i 0.0352026 0.0609728i
\(516\) 75.1587 280.496i 0.145656 0.543597i
\(517\) 51.6229i 0.0998508i
\(518\) −65.1814 43.5888i −0.125833 0.0841482i
\(519\) −79.5256 −0.153229
\(520\) 70.4842 + 18.8862i 0.135547 + 0.0363196i
\(521\) 81.1657 + 46.8610i 0.155788 + 0.0899444i 0.575868 0.817543i \(-0.304664\pi\)
−0.420079 + 0.907487i \(0.637998\pi\)
\(522\) −95.9727 55.4099i −0.183856 0.106149i
\(523\) −133.022 + 35.6430i −0.254343 + 0.0681511i −0.383738 0.923442i \(-0.625363\pi\)
0.129394 + 0.991593i \(0.458697\pi\)
\(524\) 246.374 + 246.374i 0.470179 + 0.470179i
\(525\) −30.0043 + 51.9690i −0.0571511 + 0.0989886i
\(526\) −504.419 504.419i −0.958972 0.958972i
\(527\) −430.527 745.695i −0.816940 1.41498i
\(528\) −96.7735 −0.183283
\(529\) 528.185i 0.998459i
\(530\) −50.9793 88.2988i −0.0961874 0.166601i
\(531\) −28.6137 + 7.66701i −0.0538864 + 0.0144388i
\(532\) −48.6832 + 48.6832i −0.0915097 + 0.0915097i
\(533\) 257.308 + 68.9455i 0.482755 + 0.129354i
\(534\) −11.2746 19.5281i −0.0211134 0.0365696i
\(535\) 25.2311 94.1639i 0.0471610 0.176007i
\(536\) −48.3371 180.397i −0.0901812 0.336561i
\(537\) −257.476 + 68.9906i −0.479472 + 0.128474i
\(538\) −102.764 27.5356i −0.191011 0.0511814i
\(539\) −565.573 + 326.534i −1.04930 + 0.605814i
\(540\) −3.68828 + 13.7648i −0.00683015 + 0.0254905i
\(541\) 242.843 + 242.843i 0.448878 + 0.448878i 0.894982 0.446103i \(-0.147189\pi\)
−0.446103 + 0.894982i \(0.647189\pi\)
\(542\) −145.789 544.094i −0.268984 1.00386i
\(543\) −225.809 + 130.371i −0.415854 + 0.240093i
\(544\) 117.894 0.216717
\(545\) 63.7630i 0.116996i
\(546\) 59.8088 34.5306i 0.109540 0.0632429i
\(547\) −168.273 + 168.273i −0.307630 + 0.307630i −0.843989 0.536360i \(-0.819799\pi\)
0.536360 + 0.843989i \(0.319799\pi\)
\(548\) 94.1294 + 54.3456i 0.171769 + 0.0991709i
\(549\) 115.502 115.502i 0.210385 0.210385i
\(550\) −118.203 441.140i −0.214915 0.802073i
\(551\) 300.015 519.642i 0.544492 0.943088i
\(552\) −2.21163 + 3.83066i −0.00400658 + 0.00693960i
\(553\) −4.69577 + 17.5249i −0.00849145 + 0.0316905i
\(554\) 467.653i 0.844139i
\(555\) 5.78087 87.6872i 0.0104160 0.157995i
\(556\) −280.273 −0.504088
\(557\) 11.7595 + 3.15095i 0.0211122 + 0.00565700i 0.269360 0.963040i \(-0.413188\pi\)
−0.248247 + 0.968697i \(0.579855\pi\)
\(558\) 151.803 + 87.6437i 0.272049 + 0.157068i
\(559\) −1365.87 788.587i −2.44342 1.41071i
\(560\) 7.93946 2.12737i 0.0141776 0.00379888i
\(561\) 356.531 + 356.531i 0.635528 + 0.635528i
\(562\) 356.200 616.956i 0.633808 1.09779i
\(563\) 623.589 + 623.589i 1.10762 + 1.10762i 0.993463 + 0.114154i \(0.0364158\pi\)
0.114154 + 0.993463i \(0.463584\pi\)
\(564\) −6.40128 11.0873i −0.0113498 0.0196584i
\(565\) 28.7973 0.0509686
\(566\) 425.847i 0.752380i
\(567\) 6.74348 + 11.6800i 0.0118933 + 0.0205997i
\(568\) −308.611 + 82.6920i −0.543328 + 0.145584i
\(569\) 605.403 605.403i 1.06398 1.06398i 0.0661686 0.997808i \(-0.478922\pi\)
0.997808 0.0661686i \(-0.0210775\pi\)
\(570\) −74.5294 19.9701i −0.130753 0.0350352i
\(571\) 106.177 + 183.903i 0.185949 + 0.322073i 0.943896 0.330243i \(-0.107131\pi\)
−0.757947 + 0.652316i \(0.773798\pi\)
\(572\) −136.035 + 507.688i −0.237823 + 0.887567i
\(573\) 148.689 + 554.915i 0.259492 + 0.968437i
\(574\) 28.9836 7.76614i 0.0504941 0.0135299i
\(575\) −20.1634 5.40275i −0.0350667 0.00939609i
\(576\) −20.7846 + 12.0000i −0.0360844 + 0.0208333i
\(577\) 34.7926 129.848i 0.0602991 0.225039i −0.929200 0.369577i \(-0.879503\pi\)
0.989499 + 0.144537i \(0.0461694\pi\)
\(578\) −145.342 145.342i −0.251457 0.251457i
\(579\) 140.060 + 522.712i 0.241900 + 0.902784i
\(580\) −62.0379 + 35.8176i −0.106962 + 0.0617545i
\(581\) 178.151 0.306628
\(582\) 170.149i 0.292353i
\(583\) 636.004 367.197i 1.09092 0.629841i
\(584\) 249.828 249.828i 0.427788 0.427788i
\(585\) 67.0278 + 38.6985i 0.114577 + 0.0661513i
\(586\) 325.525 325.525i 0.555503 0.555503i
\(587\) −73.8136 275.476i −0.125747 0.469295i 0.874118 0.485713i \(-0.161440\pi\)
−0.999865 + 0.0164188i \(0.994773\pi\)
\(588\) −80.9809 + 140.263i −0.137723 + 0.238543i
\(589\) −474.545 + 821.935i −0.805678 + 1.39548i
\(590\) −4.95605 + 18.4962i −0.00840008 + 0.0313495i
\(591\) 234.413i 0.396637i
\(592\) 111.309 97.5408i 0.188023 0.164765i
\(593\) 906.533 1.52872 0.764362 0.644788i \(-0.223054\pi\)
0.764362 + 0.644788i \(0.223054\pi\)
\(594\) −99.1463 26.5662i −0.166913 0.0447242i
\(595\) −37.0880 21.4128i −0.0623328 0.0359879i
\(596\) 259.104 + 149.593i 0.434737 + 0.250996i
\(597\) −200.304 + 53.6712i −0.335517 + 0.0899015i
\(598\) 16.9873 + 16.9873i 0.0284069 + 0.0284069i
\(599\) 106.739 184.877i 0.178195 0.308644i −0.763067 0.646319i \(-0.776307\pi\)
0.941262 + 0.337676i \(0.109641\pi\)
\(600\) −80.0889 80.0889i −0.133482 0.133482i
\(601\) 28.0498 + 48.5838i 0.0466720 + 0.0808382i 0.888418 0.459036i \(-0.151805\pi\)
−0.841746 + 0.539874i \(0.818472\pi\)
\(602\) −177.656 −0.295109
\(603\) 198.089i 0.328506i
\(604\) 133.051 + 230.451i 0.220283 + 0.381541i
\(605\) −98.1558 + 26.3008i −0.162241 + 0.0434723i
\(606\) −202.433 + 202.433i −0.334048 + 0.334048i
\(607\) 247.641 + 66.3553i 0.407976 + 0.109317i 0.456970 0.889482i \(-0.348935\pi\)
−0.0489939 + 0.998799i \(0.515601\pi\)
\(608\) −64.9737 112.538i −0.106865 0.185095i
\(609\) −17.5473 + 65.4872i −0.0288132 + 0.107532i
\(610\) −27.3280 101.990i −0.0448001 0.167196i
\(611\) −67.1641 + 17.9966i −0.109925 + 0.0294543i
\(612\) 120.784 + 32.3641i 0.197360 + 0.0528825i
\(613\) −408.760 + 235.998i −0.666818 + 0.384988i −0.794870 0.606780i \(-0.792461\pi\)
0.128052 + 0.991768i \(0.459128\pi\)
\(614\) 100.483 375.006i 0.163652 0.610759i
\(615\) 23.7785 + 23.7785i 0.0386642 + 0.0386642i
\(616\) 15.3232 + 57.1868i 0.0248753 + 0.0928358i
\(617\) −878.806 + 507.379i −1.42432 + 0.822332i −0.996664 0.0816086i \(-0.973994\pi\)
−0.427657 + 0.903941i \(0.640661\pi\)
\(618\) 64.7698 0.104805
\(619\) 732.033i 1.18261i 0.806450 + 0.591303i \(0.201386\pi\)
−0.806450 + 0.591303i \(0.798614\pi\)
\(620\) 98.1275 56.6540i 0.158270 0.0913773i
\(621\) −3.31745 + 3.31745i −0.00534211 + 0.00534211i
\(622\) 302.299 + 174.532i 0.486011 + 0.280599i
\(623\) −9.75464 + 9.75464i −0.0156575 + 0.0156575i
\(624\) 33.7368 + 125.908i 0.0540654 + 0.201775i
\(625\) 243.756 422.198i 0.390009 0.675516i
\(626\) −15.9282 + 27.5884i −0.0254443 + 0.0440709i
\(627\) 143.842 536.825i 0.229413 0.856180i
\(628\) 163.499i 0.260349i
\(629\) −769.442 50.7262i −1.22328 0.0806459i
\(630\) 8.71813 0.0138383
\(631\) 563.240 + 150.920i 0.892615 + 0.239176i 0.675842 0.737046i \(-0.263780\pi\)
0.216773 + 0.976222i \(0.430447\pi\)
\(632\) −29.6561 17.1220i −0.0469243 0.0270917i
\(633\) 110.572 + 63.8387i 0.174679 + 0.100851i
\(634\) −841.689 + 225.530i −1.32759 + 0.355725i
\(635\) 220.648 + 220.648i 0.347477 + 0.347477i
\(636\) 91.0655 157.730i 0.143185 0.248003i
\(637\) 622.006 + 622.006i 0.976461 + 0.976461i
\(638\) −257.989 446.851i −0.404372 0.700393i
\(639\) −338.878 −0.530325
\(640\) 15.5139i 0.0242404i
\(641\) −193.846 335.751i −0.302411 0.523792i 0.674270 0.738485i \(-0.264458\pi\)
−0.976682 + 0.214693i \(0.931125\pi\)
\(642\) 168.207 45.0709i 0.262005 0.0702040i
\(643\) 819.425 819.425i 1.27438 1.27438i 0.330610 0.943767i \(-0.392746\pi\)
0.943767 0.330610i \(-0.107254\pi\)
\(644\) 2.61386 + 0.700382i 0.00405879 + 0.00108755i
\(645\) −99.5494 172.425i −0.154340 0.267325i
\(646\) −175.235 + 653.984i −0.271261 + 1.01236i
\(647\) −64.2870 239.923i −0.0993617 0.370823i 0.898283 0.439418i \(-0.144815\pi\)
−0.997645 + 0.0685946i \(0.978149\pi\)
\(648\) −24.5885 + 6.58846i −0.0379452 + 0.0101674i
\(649\) −133.226 35.6977i −0.205278 0.0550042i
\(650\) −532.739 + 307.577i −0.819599 + 0.473196i
\(651\) 27.7551 103.583i 0.0426346 0.159114i
\(652\) 207.421 + 207.421i 0.318131 + 0.318131i
\(653\) 48.4545 + 180.835i 0.0742029 + 0.276929i 0.993051 0.117681i \(-0.0375462\pi\)
−0.918848 + 0.394611i \(0.870880\pi\)
\(654\) 98.6414 56.9506i 0.150828 0.0870804i
\(655\) 238.888 0.364715
\(656\) 56.6347i 0.0863334i
\(657\) 324.537 187.371i 0.493967 0.285192i
\(658\) −5.53832 + 5.53832i −0.00841689 + 0.00841689i
\(659\) −81.8758 47.2710i −0.124242 0.0717314i 0.436591 0.899660i \(-0.356186\pi\)
−0.560833 + 0.827929i \(0.689519\pi\)
\(660\) −46.9167 + 46.9167i −0.0710859 + 0.0710859i
\(661\) 256.821 + 958.469i 0.388534 + 1.45003i 0.832520 + 0.553995i \(0.186897\pi\)
−0.443986 + 0.896033i \(0.646436\pi\)
\(662\) 223.064 386.358i 0.336954 0.583622i
\(663\) 339.574 588.159i 0.512177 0.887117i
\(664\) −87.0278 + 324.792i −0.131066 + 0.489145i
\(665\) 47.2041i 0.0709836i
\(666\) 140.815 69.3758i 0.211435 0.104168i
\(667\) −23.5840 −0.0353584
\(668\) −233.760 62.6357i −0.349939 0.0937660i
\(669\) 271.062 + 156.497i 0.405174 + 0.233927i
\(670\) −110.892 64.0236i −0.165511 0.0955576i
\(671\) 734.617 196.840i 1.09481 0.293353i
\(672\) 10.3823 + 10.3823i 0.0154498 + 0.0154498i
\(673\) 17.1498 29.7044i 0.0254827 0.0441373i −0.853003 0.521906i \(-0.825221\pi\)
0.878486 + 0.477769i \(0.158554\pi\)
\(674\) 502.399 + 502.399i 0.745399 + 0.745399i
\(675\) −60.0667 104.039i −0.0889877 0.154131i
\(676\) 369.953 0.547268
\(677\) 394.492i 0.582705i −0.956616 0.291353i \(-0.905895\pi\)
0.956616 0.291353i \(-0.0941053\pi\)
\(678\) 25.7206 + 44.5494i 0.0379360 + 0.0657070i
\(679\) −100.547 + 26.9415i −0.148081 + 0.0396783i
\(680\) 57.1560 57.1560i 0.0840529 0.0840529i
\(681\) −356.624 95.5570i −0.523677 0.140319i
\(682\) 408.071 + 706.799i 0.598344 + 1.03636i
\(683\) −149.381 + 557.497i −0.218713 + 0.816247i 0.766114 + 0.642705i \(0.222188\pi\)
−0.984826 + 0.173542i \(0.944479\pi\)
\(684\) −35.6730 133.134i −0.0521535 0.194640i
\(685\) 71.9820 19.2875i 0.105083 0.0281570i
\(686\) 196.015 + 52.5220i 0.285736 + 0.0765627i
\(687\) −375.824 + 216.982i −0.547051 + 0.315840i
\(688\) 86.7858 323.889i 0.126142 0.470769i
\(689\) −699.465 699.465i −1.01519 1.01519i
\(690\) 0.784919 + 2.92936i 0.00113756 + 0.00424544i
\(691\) −181.521 + 104.801i −0.262693 + 0.151666i −0.625562 0.780174i \(-0.715130\pi\)
0.362869 + 0.931840i \(0.381797\pi\)
\(692\) −91.8282 −0.132700
\(693\) 62.7955i 0.0906140i
\(694\) −165.096 + 95.3180i −0.237890 + 0.137346i
\(695\) −135.879 + 135.879i −0.195509 + 0.195509i
\(696\) −110.820 63.9818i −0.159224 0.0919279i
\(697\) 208.653 208.653i 0.299358 0.299358i
\(698\) −104.980 391.792i −0.150402 0.561306i
\(699\) 205.728 356.331i 0.294317 0.509772i
\(700\) −34.6460 + 60.0087i −0.0494943 + 0.0857267i
\(701\) −178.464 + 666.038i −0.254586 + 0.950126i 0.713735 + 0.700416i \(0.247002\pi\)
−0.968321 + 0.249710i \(0.919665\pi\)
\(702\) 138.256i 0.196946i
\(703\) 375.634 + 762.441i 0.534329 + 1.08455i
\(704\) −111.744 −0.158728
\(705\) −8.47864 2.27185i −0.0120264 0.00322248i
\(706\) 106.880 + 61.7072i 0.151388 + 0.0874039i
\(707\) 151.678 + 87.5714i 0.214538 + 0.123863i
\(708\) −33.0402 + 8.85310i −0.0466670 + 0.0125044i
\(709\) 1.60724 + 1.60724i 0.00226692 + 0.00226692i 0.708239 0.705972i \(-0.249490\pi\)
−0.705972 + 0.708239i \(0.749490\pi\)
\(710\) −109.527 + 189.707i −0.154264 + 0.267193i
\(711\) −25.6830 25.6830i −0.0361223 0.0361223i
\(712\) −13.0188 22.5492i −0.0182848 0.0316702i
\(713\) 37.3037 0.0523193
\(714\) 76.5003i 0.107143i
\(715\) 180.181 + 312.083i 0.252001 + 0.436479i
\(716\) −297.308 + 79.6634i −0.415235 + 0.111262i
\(717\) −116.353 + 116.353i −0.162278 + 0.162278i
\(718\) −16.9443 4.54021i −0.0235993 0.00632341i
\(719\) −485.769 841.376i −0.675617 1.17020i −0.976288 0.216475i \(-0.930544\pi\)
0.300671 0.953728i \(-0.402789\pi\)
\(720\) −4.25886 + 15.8943i −0.00591508 + 0.0220754i
\(721\) −10.2557 38.2747i −0.0142242 0.0530856i
\(722\) 227.713 61.0154i 0.315392 0.0845089i
\(723\) −26.2910 7.04466i −0.0363638 0.00974366i
\(724\) −260.741 + 150.539i −0.360140 + 0.207927i
\(725\) 156.300 583.319i 0.215586 0.804578i
\(726\) −128.356 128.356i −0.176799 0.176799i
\(727\) −31.9264 119.151i −0.0439152 0.163894i 0.940486 0.339833i \(-0.110371\pi\)
−0.984401 + 0.175939i \(0.943704\pi\)
\(728\) 69.0612 39.8725i 0.0948643 0.0547700i
\(729\) −27.0000 −0.0370370
\(730\) 242.238i 0.331833i
\(731\) −1513.00 + 873.531i −2.06977 + 1.19498i
\(732\) 133.370 133.370i 0.182199 0.182199i
\(733\) −576.430 332.802i −0.786398 0.454027i 0.0522951 0.998632i \(-0.483346\pi\)
−0.838693 + 0.544605i \(0.816680\pi\)
\(734\) 258.127 258.127i 0.351672 0.351672i
\(735\) 28.7405 + 107.261i 0.0391027 + 0.145933i
\(736\) −2.55377 + 4.42326i −0.00346980 + 0.00600987i
\(737\) 461.153 798.741i 0.625717 1.08377i
\(738\) −15.5473 + 58.0233i −0.0210668 + 0.0786224i
\(739\) 77.7912i 0.105265i −0.998614 0.0526327i \(-0.983239\pi\)
0.998614 0.0526327i \(-0.0167613\pi\)
\(740\) 6.67517 101.252i 0.00902050 0.136828i
\(741\) −748.584 −1.01023
\(742\) −107.628 28.8387i −0.145051 0.0388662i
\(743\) 423.232 + 244.353i 0.569625 + 0.328873i 0.757000 0.653415i \(-0.226664\pi\)
−0.187374 + 0.982289i \(0.559998\pi\)
\(744\) 175.287 + 101.202i 0.235601 + 0.136025i
\(745\) 198.140 53.0915i 0.265960 0.0712637i
\(746\) 584.221 + 584.221i 0.783137 + 0.783137i
\(747\) −178.323 + 308.865i −0.238719 + 0.413474i
\(748\) 411.687 + 411.687i 0.550383 + 0.550383i
\(749\) −53.2680 92.2628i −0.0711188 0.123181i
\(750\) −161.627 −0.215503
\(751\) 596.769i 0.794632i −0.917682 0.397316i \(-0.869942\pi\)
0.917682 0.397316i \(-0.130058\pi\)
\(752\) −7.39156 12.8026i −0.00982921 0.0170247i
\(753\) −272.685 + 73.0657i −0.362131 + 0.0970328i
\(754\) −491.437 + 491.437i −0.651774 + 0.651774i
\(755\) 176.229 + 47.2203i 0.233415 + 0.0625435i
\(756\) 7.78670 + 13.4870i 0.0102999 + 0.0178399i
\(757\) −243.026 + 906.986i −0.321039 + 1.19813i 0.597196 + 0.802095i \(0.296281\pi\)
−0.918235 + 0.396037i \(0.870385\pi\)
\(758\) −55.5942 207.481i −0.0733433 0.273721i
\(759\) −21.0998 + 5.65366i −0.0277994 + 0.00744883i
\(760\) −86.0591 23.0595i −0.113236 0.0303414i
\(761\) 1168.67 674.732i 1.53570 0.886639i 0.536621 0.843823i \(-0.319700\pi\)
0.999083 0.0428159i \(-0.0136329\pi\)
\(762\) −144.268 + 538.417i −0.189329 + 0.706584i
\(763\) −49.2730 49.2730i −0.0645780 0.0645780i
\(764\) 171.691 + 640.760i 0.224727 + 0.838691i
\(765\) 74.2478 42.8670i 0.0970559 0.0560353i
\(766\) 730.103 0.953137
\(767\) 185.779i 0.242215i
\(768\) −24.0000 + 13.8564i −0.0312500 + 0.0180422i
\(769\) −45.9299 + 45.9299i −0.0597268 + 0.0597268i −0.736339 0.676612i \(-0.763447\pi\)
0.676612 + 0.736339i \(0.263447\pi\)
\(770\) 35.1535 + 20.2959i 0.0456539 + 0.0263583i
\(771\) 131.964 131.964i 0.171159 0.171159i
\(772\) 161.728 + 603.576i 0.209492 + 0.781834i
\(773\) −399.245 + 691.512i −0.516487 + 0.894582i 0.483329 + 0.875439i \(0.339427\pi\)
−0.999817 + 0.0191438i \(0.993906\pi\)
\(774\) 177.827 308.006i 0.229751 0.397941i
\(775\) −247.225 + 922.657i −0.319000 + 1.19052i
\(776\) 196.472i 0.253185i
\(777\) −63.2934 72.2278i −0.0814587 0.0929572i
\(778\) 746.056 0.958941
\(779\) −314.166 84.1804i −0.403294 0.108062i
\(780\) 77.3970 + 44.6852i 0.0992270 + 0.0572887i
\(781\) −1366.43 788.911i −1.74959 1.01013i
\(782\) 25.7047 6.88754i 0.0328704 0.00880760i
\(783\) −95.9727 95.9727i −0.122570 0.122570i
\(784\) −93.5087 + 161.962i −0.119271 + 0.206584i
\(785\) −79.2660 79.2660i −0.100976 0.100976i
\(786\) 213.366 + 369.560i 0.271458 + 0.470179i
\(787\) 1258.44 1.59903 0.799514 0.600647i \(-0.205090\pi\)
0.799514 + 0.600647i \(0.205090\pi\)
\(788\) 270.676i 0.343498i
\(789\) −436.840 756.629i −0.553662 0.958972i
\(790\) −22.6785 + 6.07668i −0.0287069 + 0.00769199i
\(791\) 22.2532 22.2532i 0.0281330 0.0281330i
\(792\) −114.484 30.6760i −0.144551 0.0387323i
\(793\) −512.199 887.155i −0.645901 1.11873i
\(794\) −243.082 + 907.194i −0.306149 + 1.14256i
\(795\) −32.3196 120.618i −0.0406536 0.151721i
\(796\) −231.291 + 61.9741i −0.290566 + 0.0778569i
\(797\) 408.382 + 109.426i 0.512399 + 0.137297i 0.505749 0.862681i \(-0.331216\pi\)
0.00665070 + 0.999978i \(0.497883\pi\)
\(798\) −73.0248 + 42.1609i −0.0915097 + 0.0528332i
\(799\) −19.9351 + 74.3988i −0.0249501 + 0.0931149i
\(800\) −92.4787 92.4787i −0.115598 0.115598i
\(801\) −7.14780 26.6759i −0.00892359 0.0333033i
\(802\) 841.735 485.976i 1.04955 0.605955i
\(803\) 1744.81 2.17286
\(804\) 228.734i 0.284495i
\(805\) 1.60677 0.927672i 0.00199599 0.00115239i
\(806\) 777.324 777.324i 0.964421 0.964421i
\(807\) −112.843 65.1499i −0.139830 0.0807309i
\(808\) −233.749 + 233.749i −0.289294 + 0.289294i
\(809\) 311.751 + 1163.47i 0.385353 + 1.43816i 0.837610 + 0.546269i \(0.183952\pi\)
−0.452257 + 0.891888i \(0.649381\pi\)
\(810\) −8.72656 + 15.1148i −0.0107735 + 0.0186603i
\(811\) −393.816 + 682.109i −0.485593 + 0.841071i −0.999863 0.0165570i \(-0.994729\pi\)
0.514270 + 0.857628i \(0.328063\pi\)
\(812\) −20.2618 + 75.6181i −0.0249530 + 0.0931258i
\(813\) 689.883i 0.848565i
\(814\) 729.308 + 48.0803i 0.895956 + 0.0590668i
\(815\) 201.119 0.246772
\(816\) 139.470 + 37.3708i 0.170919 + 0.0457976i
\(817\) 1667.69 + 962.841i 2.04124 + 1.17851i
\(818\) −424.510 245.091i −0.518961 0.299622i
\(819\) 81.7003 21.8915i 0.0997562 0.0267296i
\(820\) 27.4570 + 27.4570i 0.0334842 + 0.0334842i
\(821\) −578.734 + 1002.40i −0.704914 + 1.22095i 0.261809 + 0.965120i \(0.415681\pi\)
−0.966723 + 0.255827i \(0.917652\pi\)
\(822\) 94.1294 + 94.1294i 0.114513 + 0.114513i
\(823\) −408.823 708.102i −0.496747 0.860391i 0.503246 0.864143i \(-0.332139\pi\)
−0.999993 + 0.00375214i \(0.998806\pi\)
\(824\) 74.7897 0.0907642
\(825\) 559.343i 0.677992i
\(826\) 10.4632 + 18.1228i 0.0126673 + 0.0219404i
\(827\) −679.357 + 182.033i −0.821471 + 0.220113i −0.644990 0.764191i \(-0.723138\pi\)
−0.176482 + 0.984304i \(0.556472\pi\)
\(828\) −3.83066 + 3.83066i −0.00462640 + 0.00462640i
\(829\) 240.750 + 64.5088i 0.290410 + 0.0778152i 0.401083 0.916042i \(-0.368634\pi\)
−0.110673 + 0.993857i \(0.535301\pi\)
\(830\) 115.270 + 199.654i 0.138880 + 0.240547i
\(831\) 148.240 553.239i 0.178387 0.665751i
\(832\) 38.9559 + 145.385i 0.0468220 + 0.174742i
\(833\) 941.200 252.194i 1.12989 0.302754i
\(834\) −331.566 88.8429i −0.397562 0.106526i
\(835\) −143.695 + 82.9624i −0.172090 + 0.0993561i
\(836\) 166.094 619.872i 0.198677 0.741474i
\(837\) 151.803 + 151.803i 0.181366 + 0.181366i
\(838\) 60.5894 + 226.123i 0.0723024 + 0.269836i
\(839\) −469.749 + 271.210i −0.559892 + 0.323254i −0.753102 0.657904i \(-0.771443\pi\)
0.193210 + 0.981157i \(0.438110\pi\)
\(840\) 10.0668 0.0119843
\(841\) 158.722i 0.188730i
\(842\) −137.235 + 79.2329i −0.162987 + 0.0941008i
\(843\) 616.956 616.956i 0.731858 0.731858i
\(844\) 127.677 + 73.7146i 0.151277 + 0.0873396i
\(845\) 179.357 179.357i 0.212256 0.212256i
\(846\) −4.05825 15.1456i −0.00479699 0.0179026i
\(847\) −55.5262 + 96.1742i −0.0655563 + 0.113547i
\(848\) 105.153 182.131i 0.124002 0.214777i
\(849\) −134.988 + 503.783i −0.158997 + 0.593384i
\(850\) 681.417i 0.801667i
\(851\) 18.5706 27.7699i 0.0218221 0.0326321i
\(852\) −391.303 −0.459275
\(853\) 546.268 + 146.372i 0.640408 + 0.171597i 0.564388 0.825510i \(-0.309112\pi\)
0.0760196 + 0.997106i \(0.475779\pi\)
\(854\) −99.9306 57.6950i −0.117015 0.0675585i
\(855\) −81.8389 47.2497i −0.0957181 0.0552628i
\(856\) 194.229 52.0434i 0.226903 0.0607984i
\(857\) 58.7016 + 58.7016i 0.0684966 + 0.0684966i 0.740525 0.672029i \(-0.234577\pi\)
−0.672029 + 0.740525i \(0.734577\pi\)
\(858\) −321.861 + 557.480i −0.375130 + 0.649744i
\(859\) 151.639 + 151.639i 0.176530 + 0.176530i 0.789841 0.613311i \(-0.210163\pi\)
−0.613311 + 0.789841i \(0.710163\pi\)
\(860\) −114.950 199.099i −0.133662 0.231510i
\(861\) 36.7498 0.0426827
\(862\) 803.292i 0.931893i
\(863\) −652.876 1130.81i −0.756520 1.31033i −0.944615 0.328180i \(-0.893565\pi\)
0.188096 0.982151i \(-0.439768\pi\)
\(864\) −28.3923 + 7.60770i −0.0328615 + 0.00880520i
\(865\) −44.5192 + 44.5192i −0.0514672 + 0.0514672i
\(866\) 510.876 + 136.889i 0.589927 + 0.158070i
\(867\) −125.870 218.013i −0.145179 0.251457i
\(868\) 32.0488 119.608i 0.0369226 0.137797i
\(869\) −43.7695 163.350i −0.0503676 0.187975i
\(870\) −84.7453 + 22.7074i −0.0974084 + 0.0261005i
\(871\) −1199.97 321.531i −1.37769 0.369152i
\(872\) 113.901 65.7609i 0.130621 0.0754139i
\(873\) 53.9352 201.289i 0.0617814 0.230571i
\(874\) −20.7410 20.7410i −0.0237311 0.0237311i
\(875\) 25.5921 + 95.5111i 0.0292481 + 0.109155i
\(876\) 374.743 216.358i 0.427788 0.246984i
\(877\) 1496.69 1.70660 0.853301 0.521418i \(-0.174597\pi\)
0.853301 + 0.521418i \(0.174597\pi\)
\(878\) 472.298i 0.537924i
\(879\) 488.287 281.913i 0.555503 0.320720i
\(880\) −54.1747 + 54.1747i −0.0615622 + 0.0615622i
\(881\) −116.677 67.3633i −0.132437 0.0764623i 0.432318 0.901721i \(-0.357696\pi\)
−0.564755 + 0.825259i \(0.691029\pi\)
\(882\) −140.263 + 140.263i −0.159028 + 0.159028i
\(883\) −386.464 1442.30i −0.437671 1.63341i −0.734591 0.678510i \(-0.762626\pi\)
0.296920 0.954902i \(-0.404041\pi\)
\(884\) 392.106 679.147i 0.443559 0.768266i
\(885\) −11.7261 + 20.3103i −0.0132499 + 0.0229494i
\(886\) 77.4226 288.945i 0.0873845 0.326123i
\(887\) 417.497i 0.470684i −0.971913 0.235342i \(-0.924379\pi\)
0.971913 0.235342i \(-0.0756210\pi\)
\(888\) 162.600 80.1083i 0.183108 0.0902121i
\(889\) 341.013 0.383592
\(890\) −17.2436 4.62042i −0.0193749 0.00519148i
\(891\) −108.870 62.8562i −0.122189 0.0705457i
\(892\) 312.995 + 180.708i 0.350891 + 0.202587i
\(893\) 82.0054 21.9733i 0.0918314 0.0246061i
\(894\) 259.104 + 259.104i 0.289825 + 0.289825i
\(895\) −105.516 + 182.759i −0.117895 + 0.204200i
\(896\) 11.9884 + 11.9884i 0.0133799 + 0.0133799i
\(897\) 14.7114 + 25.4810i 0.0164007 + 0.0284069i
\(898\) −1084.52 −1.20771
\(899\) 1079.18i 1.20043i
\(900\) −69.3590 120.133i −0.0770656 0.133482i
\(901\) −1058.41 + 283.600i −1.17470 + 0.314761i
\(902\) −197.769 + 197.769i −0.219256 + 0.219256i
\(903\) −210.169 56.3145i −0.232745 0.0623638i
\(904\) 29.6996 + 51.4412i 0.0328535 + 0.0569040i
\(905\) −53.4270 + 199.392i −0.0590354 + 0.220323i
\(906\) 84.3508 + 314.801i 0.0931024 + 0.347463i
\(907\) −327.735 + 87.8163i −0.361340 + 0.0968206i −0.434921 0.900469i \(-0.643224\pi\)
0.0735816 + 0.997289i \(0.476557\pi\)
\(908\) −411.794 110.340i −0.453517 0.121520i
\(909\) −303.649 + 175.312i −0.334048 + 0.192863i
\(910\) 14.1510 52.8121i 0.0155505 0.0580352i
\(911\) 778.915 + 778.915i 0.855011 + 0.855011i 0.990745 0.135734i \(-0.0433393\pi\)
−0.135734 + 0.990745i \(0.543339\pi\)
\(912\) −41.1917 153.729i −0.0451663 0.168563i
\(913\) −1438.08 + 830.276i −1.57512 + 0.909394i
\(914\) −945.017 −1.03394
\(915\) 129.318i 0.141331i
\(916\) −433.964 + 250.549i −0.473760 + 0.273525i
\(917\) 184.602 184.602i 0.201310 0.201310i
\(918\) 132.631 + 76.5743i 0.144478 + 0.0834142i
\(919\) 631.174 631.174i 0.686805 0.686805i −0.274719 0.961525i \(-0.588585\pi\)
0.961525 + 0.274719i \(0.0885849\pi\)
\(920\) 0.906346 + 3.38253i 0.000985159 + 0.00367666i
\(921\) 237.744 411.785i 0.258137 0.447107i
\(922\) −92.3197 + 159.902i −0.100130 + 0.173430i
\(923\) −550.054 + 2052.83i −0.595942 + 2.22409i
\(924\) 72.5100i 0.0784740i
\(925\) 563.778 + 643.360i 0.609490 + 0.695524i
\(926\) −405.761 −0.438187
\(927\) 76.6235 + 20.5312i 0.0826575 + 0.0221480i
\(928\) −127.964 73.8798i −0.137892 0.0796119i
\(929\) −1517.59 876.182i −1.63358 0.943146i −0.982978 0.183723i \(-0.941185\pi\)
−0.650598 0.759422i \(-0.725482\pi\)
\(930\) 134.045 35.9172i 0.144134 0.0386206i
\(931\) −759.450 759.450i −0.815736 0.815736i
\(932\) 237.554 411.455i 0.254886 0.441475i
\(933\) 302.299 + 302.299i 0.324008 + 0.324008i
\(934\) −501.603 868.802i −0.537048 0.930195i
\(935\) 399.179 0.426929
\(936\) 159.644i 0.170560i
\(937\) 425.437 + 736.878i 0.454041 + 0.786423i 0.998633 0.0522788i \(-0.0166484\pi\)
−0.544591 + 0.838702i \(0.683315\pi\)
\(938\) −135.167 + 36.2178i −0.144101 + 0.0386117i
\(939\) −27.5884 + 27.5884i −0.0293806 + 0.0293806i
\(940\) −9.79030 2.62330i −0.0104152 0.00279075i
\(941\) 438.511 + 759.523i 0.466005 + 0.807145i 0.999246 0.0388187i \(-0.0123595\pi\)
−0.533241 + 0.845963i \(0.679026\pi\)
\(942\) 51.8272 193.422i 0.0550183 0.205331i
\(943\) 3.30869 + 12.3482i 0.00350868 + 0.0130946i
\(944\) −38.1516 + 10.2227i −0.0404148 + 0.0108291i
\(945\) 10.3137 + 2.76354i 0.0109139 + 0.00292438i
\(946\) 1434.08 827.967i 1.51594 0.875230i
\(947\) 261.898 977.418i 0.276556 1.03212i −0.678236 0.734844i \(-0.737255\pi\)
0.954792 0.297276i \(-0.0960781\pi\)
\(948\) −29.6561 29.6561i −0.0312829 0.0312829i
\(949\) −608.269 2270.09i −0.640957 2.39209i
\(950\) 650.459 375.543i 0.684694 0.395308i
\(951\) −1067.22 −1.12221
\(952\) 88.3349i 0.0927888i
\(953\) 73.8173 42.6185i 0.0774579 0.0447203i −0.460771 0.887519i \(-0.652427\pi\)
0.538229 + 0.842799i \(0.319094\pi\)
\(954\) 157.730 157.730i 0.165336 0.165336i
\(955\) 393.884 + 227.409i 0.412444 + 0.238124i
\(956\) −134.353 + 134.353i −0.140537 + 0.140537i
\(957\) −163.559 610.409i −0.170908 0.637836i
\(958\) 242.096 419.323i 0.252710 0.437707i
\(959\) 40.7199 70.5289i 0.0424607 0.0735442i
\(960\) −4.91771 + 18.3531i −0.00512261 + 0.0191178i
\(961\) 745.983i 0.776257i
\(962\) −191.693 965.630i −0.199266 1.00377i
\(963\) 213.278 0.221472
\(964\) −30.3583 8.13448i −0.0314920 0.00843825i
\(965\) 371.026 + 214.212i 0.384483 + 0.221981i
\(966\) 2.87022 + 1.65712i 0.00297124 + 0.00171545i
\(967\) −1373.59 + 368.051i −1.42046 + 0.380612i −0.885648 0.464358i \(-0.846285\pi\)
−0.534814 + 0.844970i \(0.679618\pi\)
\(968\) −148.213 148.213i −0.153113 0.153113i
\(969\) −414.609 + 718.124i −0.427873 + 0.741098i
\(970\) −95.2512 95.2512i −0.0981971 0.0981971i
\(971\) −912.651 1580.76i −0.939908 1.62797i −0.765639 0.643271i \(-0.777577\pi\)
−0.174269 0.984698i \(-0.555756\pi\)
\(972\) −31.1769 −0.0320750
\(973\) 210.002i 0.215829i
\(974\) −100.998 174.934i −0.103694 0.179604i
\(975\) −727.736 + 194.996i −0.746395 + 0.199996i
\(976\) 154.002 154.002i 0.157789 0.157789i
\(977\) −1256.88 336.780i −1.28647 0.344709i −0.450151 0.892952i \(-0.648630\pi\)
−0.836319 + 0.548244i \(0.815297\pi\)
\(978\) 179.632 + 311.132i 0.183673 + 0.318131i
\(979\) 33.2803 124.204i 0.0339941 0.126868i
\(980\) 33.1867 + 123.854i 0.0338640 + 0.126382i
\(981\) 134.747 36.1052i 0.137356 0.0368045i
\(982\) −974.906 261.225i −0.992776 0.266014i
\(983\) −534.456 + 308.568i −0.543699 + 0.313905i −0.746577 0.665299i \(-0.768304\pi\)
0.202878 + 0.979204i \(0.434971\pi\)
\(984\) −17.9525 + 66.9996i −0.0182444 + 0.0680890i
\(985\) −131.226 131.226i −0.133225 0.133225i
\(986\) 199.254 + 743.628i 0.202084 + 0.754186i
\(987\) −8.30748 + 4.79632i −0.00841689 + 0.00485950i
\(988\) −864.390 −0.874889
\(989\) 75.6884i 0.0765302i
\(990\) −70.3750 + 40.6310i −0.0710859 + 0.0410414i
\(991\) 733.968 733.968i 0.740634 0.740634i −0.232066 0.972700i \(-0.574549\pi\)
0.972700 + 0.232066i \(0.0745485\pi\)
\(992\) 202.405 + 116.858i 0.204037 + 0.117801i
\(993\) 386.358 386.358i 0.389081 0.389081i
\(994\) 61.9590 + 231.234i 0.0623330 + 0.232630i
\(995\) −82.0861 + 142.177i −0.0824986 + 0.142892i
\(996\) −205.910 + 356.647i −0.206737 + 0.358079i
\(997\) 379.480 1416.24i 0.380622 1.42050i −0.464332 0.885661i \(-0.653706\pi\)
0.844954 0.534839i \(-0.179628\pi\)
\(998\) 665.270i 0.666604i
\(999\) 188.578 37.4358i 0.188767 0.0374733i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 222.3.l.d.193.2 16
37.14 odd 12 inner 222.3.l.d.199.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
222.3.l.d.193.2 16 1.1 even 1 trivial
222.3.l.d.199.2 yes 16 37.14 odd 12 inner