Properties

Label 222.2.j.b.85.3
Level $222$
Weight $2$
Character 222.85
Analytic conductor $1.773$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [222,2,Mod(85,222)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("222.85"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(222, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 222 = 2 \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 222.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.77267892487\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 85.3
Root \(-1.26217 + 1.18614i\) of defining polynomial
Character \(\chi\) \(=\) 222.85
Dual form 222.2.j.b.175.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.05446 - 1.18614i) q^{5} -1.00000i q^{6} +(0.762169 - 1.32012i) q^{7} -1.00000i q^{8} +(-0.500000 - 0.866025i) q^{9} -2.37228 q^{10} -0.152056 q^{11} +(-0.500000 - 0.866025i) q^{12} +(2.41819 + 1.39614i) q^{13} -1.52434i q^{14} +(-2.05446 + 1.18614i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.454090 - 0.262169i) q^{17} +(-0.866025 - 0.500000i) q^{18} +(4.24060 + 2.44831i) q^{19} +(-2.05446 + 1.18614i) q^{20} +(-0.762169 - 1.32012i) q^{21} +(-0.131685 + 0.0760282i) q^{22} +4.63325i q^{23} +(-0.866025 - 0.500000i) q^{24} +(0.313859 + 0.543620i) q^{25} +2.79229 q^{26} -1.00000 q^{27} +(-0.762169 - 1.32012i) q^{28} +2.90818i q^{29} +(-1.18614 + 2.05446i) q^{30} +1.35977i q^{31} +(-0.866025 - 0.500000i) q^{32} +(-0.0760282 + 0.131685i) q^{33} +(0.262169 - 0.454090i) q^{34} +(-3.13168 + 1.80808i) q^{35} -1.00000 q^{36} +(1.62194 + 5.86253i) q^{37} +4.89662 q^{38} +(2.41819 - 1.39614i) q^{39} +(-1.18614 + 2.05446i) q^{40} +(2.91819 - 5.05446i) q^{41} +(-1.32012 - 0.762169i) q^{42} -6.73758i q^{43} +(-0.0760282 + 0.131685i) q^{44} +2.37228i q^{45} +(2.31662 + 4.01251i) q^{46} -5.72747 q^{47} -1.00000 q^{48} +(2.33820 + 4.04988i) q^{49} +(0.543620 + 0.313859i) q^{50} -0.524338i q^{51} +(2.41819 - 1.39614i) q^{52} +(-1.57999 - 2.73663i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(0.312393 + 0.180360i) q^{55} +(-1.32012 - 0.762169i) q^{56} +(4.24060 - 2.44831i) q^{57} +(1.45409 + 2.51856i) q^{58} +(-7.21324 + 4.16457i) q^{59} +2.37228i q^{60} +(7.35494 + 4.24638i) q^{61} +(0.679885 + 1.17759i) q^{62} -1.52434 q^{63} -1.00000 q^{64} +(-3.31205 - 5.73663i) q^{65} +0.152056i q^{66} +(-5.92674 + 10.2654i) q^{67} -0.524338i q^{68} +(4.01251 + 2.31662i) q^{69} +(-1.80808 + 3.13168i) q^{70} +(-2.29625 + 3.97723i) q^{71} +(-0.866025 + 0.500000i) q^{72} +7.25181 q^{73} +(4.33591 + 4.26613i) q^{74} +0.627719 q^{75} +(4.24060 - 2.44831i) q^{76} +(-0.115893 + 0.200732i) q^{77} +(1.39614 - 2.41819i) q^{78} +(-11.2944 - 6.52085i) q^{79} +2.37228i q^{80} +(-0.500000 + 0.866025i) q^{81} -5.83638i q^{82} +(-6.31662 - 10.9407i) q^{83} -1.52434 q^{84} -1.24388 q^{85} +(-3.36879 - 5.83492i) q^{86} +(2.51856 + 1.45409i) q^{87} +0.152056i q^{88} +(11.2358 - 6.48697i) q^{89} +(1.18614 + 2.05446i) q^{90} +(3.68614 - 2.12819i) q^{91} +(4.01251 + 2.31662i) q^{92} +(1.17759 + 0.679885i) q^{93} +(-4.96014 + 2.86374i) q^{94} +(-5.80808 - 10.0599i) q^{95} +(-0.866025 + 0.500000i) q^{96} -13.9407i q^{97} +(4.04988 + 2.33820i) q^{98} +(0.0760282 + 0.131685i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 4 q^{4} - 4 q^{7} - 4 q^{9} + 4 q^{10} - 4 q^{11} - 4 q^{12} - 6 q^{13} - 4 q^{16} + 6 q^{17} + 6 q^{19} + 4 q^{21} - 6 q^{22} + 14 q^{25} + 16 q^{26} - 8 q^{27} + 4 q^{28} + 2 q^{30} - 2 q^{33}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/222\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(187\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.05446 1.18614i −0.918781 0.530458i −0.0355348 0.999368i \(-0.511313\pi\)
−0.883246 + 0.468910i \(0.844647\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 0.762169 1.32012i 0.288073 0.498957i −0.685277 0.728283i \(-0.740319\pi\)
0.973350 + 0.229326i \(0.0736522\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −2.37228 −0.750181
\(11\) −0.152056 −0.0458468 −0.0229234 0.999737i \(-0.507297\pi\)
−0.0229234 + 0.999737i \(0.507297\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 2.41819 + 1.39614i 0.670686 + 0.387221i 0.796336 0.604854i \(-0.206769\pi\)
−0.125651 + 0.992075i \(0.540102\pi\)
\(14\) 1.52434i 0.407396i
\(15\) −2.05446 + 1.18614i −0.530458 + 0.306260i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.454090 0.262169i 0.110133 0.0635853i −0.443922 0.896066i \(-0.646413\pi\)
0.554055 + 0.832480i \(0.313080\pi\)
\(18\) −0.866025 0.500000i −0.204124 0.117851i
\(19\) 4.24060 + 2.44831i 0.972860 + 0.561681i 0.900107 0.435669i \(-0.143488\pi\)
0.0727528 + 0.997350i \(0.476822\pi\)
\(20\) −2.05446 + 1.18614i −0.459390 + 0.265229i
\(21\) −0.762169 1.32012i −0.166319 0.288073i
\(22\) −0.131685 + 0.0760282i −0.0280753 + 0.0162093i
\(23\) 4.63325i 0.966099i 0.875593 + 0.483050i \(0.160471\pi\)
−0.875593 + 0.483050i \(0.839529\pi\)
\(24\) −0.866025 0.500000i −0.176777 0.102062i
\(25\) 0.313859 + 0.543620i 0.0627719 + 0.108724i
\(26\) 2.79229 0.547613
\(27\) −1.00000 −0.192450
\(28\) −0.762169 1.32012i −0.144036 0.249478i
\(29\) 2.90818i 0.540035i 0.962855 + 0.270018i \(0.0870296\pi\)
−0.962855 + 0.270018i \(0.912970\pi\)
\(30\) −1.18614 + 2.05446i −0.216559 + 0.375091i
\(31\) 1.35977i 0.244222i 0.992516 + 0.122111i \(0.0389664\pi\)
−0.992516 + 0.122111i \(0.961034\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −0.0760282 + 0.131685i −0.0132348 + 0.0229234i
\(34\) 0.262169 0.454090i 0.0449616 0.0778758i
\(35\) −3.13168 + 1.80808i −0.529351 + 0.305621i
\(36\) −1.00000 −0.166667
\(37\) 1.62194 + 5.86253i 0.266645 + 0.963795i
\(38\) 4.89662 0.794337
\(39\) 2.41819 1.39614i 0.387221 0.223562i
\(40\) −1.18614 + 2.05446i −0.187545 + 0.324838i
\(41\) 2.91819 5.05446i 0.455745 0.789373i −0.542986 0.839742i \(-0.682706\pi\)
0.998731 + 0.0503685i \(0.0160396\pi\)
\(42\) −1.32012 0.762169i −0.203698 0.117605i
\(43\) 6.73758i 1.02747i −0.857948 0.513736i \(-0.828261\pi\)
0.857948 0.513736i \(-0.171739\pi\)
\(44\) −0.0760282 + 0.131685i −0.0114617 + 0.0198522i
\(45\) 2.37228i 0.353639i
\(46\) 2.31662 + 4.01251i 0.341568 + 0.591613i
\(47\) −5.72747 −0.835438 −0.417719 0.908576i \(-0.637170\pi\)
−0.417719 + 0.908576i \(0.637170\pi\)
\(48\) −1.00000 −0.144338
\(49\) 2.33820 + 4.04988i 0.334028 + 0.578554i
\(50\) 0.543620 + 0.313859i 0.0768795 + 0.0443864i
\(51\) 0.524338i 0.0734220i
\(52\) 2.41819 1.39614i 0.335343 0.193610i
\(53\) −1.57999 2.73663i −0.217029 0.375905i 0.736869 0.676035i \(-0.236303\pi\)
−0.953898 + 0.300130i \(0.902970\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) 0.312393 + 0.180360i 0.0421231 + 0.0243198i
\(56\) −1.32012 0.762169i −0.176408 0.101849i
\(57\) 4.24060 2.44831i 0.561681 0.324287i
\(58\) 1.45409 + 2.51856i 0.190931 + 0.330703i
\(59\) −7.21324 + 4.16457i −0.939084 + 0.542181i −0.889673 0.456598i \(-0.849068\pi\)
−0.0494112 + 0.998779i \(0.515734\pi\)
\(60\) 2.37228i 0.306260i
\(61\) 7.35494 + 4.24638i 0.941704 + 0.543693i 0.890494 0.454995i \(-0.150359\pi\)
0.0512097 + 0.998688i \(0.483692\pi\)
\(62\) 0.679885 + 1.17759i 0.0863454 + 0.149555i
\(63\) −1.52434 −0.192049
\(64\) −1.00000 −0.125000
\(65\) −3.31205 5.73663i −0.410809 0.711541i
\(66\) 0.152056i 0.0187169i
\(67\) −5.92674 + 10.2654i −0.724066 + 1.25412i 0.235291 + 0.971925i \(0.424396\pi\)
−0.959357 + 0.282194i \(0.908938\pi\)
\(68\) 0.524338i 0.0635853i
\(69\) 4.01251 + 2.31662i 0.483050 + 0.278889i
\(70\) −1.80808 + 3.13168i −0.216107 + 0.374308i
\(71\) −2.29625 + 3.97723i −0.272515 + 0.472010i −0.969505 0.245071i \(-0.921189\pi\)
0.696990 + 0.717081i \(0.254522\pi\)
\(72\) −0.866025 + 0.500000i −0.102062 + 0.0589256i
\(73\) 7.25181 0.848760 0.424380 0.905484i \(-0.360492\pi\)
0.424380 + 0.905484i \(0.360492\pi\)
\(74\) 4.33591 + 4.26613i 0.504039 + 0.495928i
\(75\) 0.627719 0.0724827
\(76\) 4.24060 2.44831i 0.486430 0.280840i
\(77\) −0.115893 + 0.200732i −0.0132072 + 0.0228755i
\(78\) 1.39614 2.41819i 0.158082 0.273806i
\(79\) −11.2944 6.52085i −1.27072 0.733653i −0.295599 0.955312i \(-0.595519\pi\)
−0.975124 + 0.221659i \(0.928853\pi\)
\(80\) 2.37228i 0.265229i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 5.83638i 0.644521i
\(83\) −6.31662 10.9407i −0.693340 1.20090i −0.970737 0.240144i \(-0.922805\pi\)
0.277398 0.960755i \(-0.410528\pi\)
\(84\) −1.52434 −0.166319
\(85\) −1.24388 −0.134917
\(86\) −3.36879 5.83492i −0.363266 0.629195i
\(87\) 2.51856 + 1.45409i 0.270018 + 0.155895i
\(88\) 0.152056i 0.0162093i
\(89\) 11.2358 6.48697i 1.19099 0.687618i 0.232458 0.972606i \(-0.425323\pi\)
0.958531 + 0.284989i \(0.0919898\pi\)
\(90\) 1.18614 + 2.05446i 0.125030 + 0.216559i
\(91\) 3.68614 2.12819i 0.386413 0.223095i
\(92\) 4.01251 + 2.31662i 0.418333 + 0.241525i
\(93\) 1.17759 + 0.679885i 0.122111 + 0.0705008i
\(94\) −4.96014 + 2.86374i −0.511599 + 0.295372i
\(95\) −5.80808 10.0599i −0.595896 1.03212i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) 13.9407i 1.41547i −0.706480 0.707733i \(-0.749718\pi\)
0.706480 0.707733i \(-0.250282\pi\)
\(98\) 4.04988 + 2.33820i 0.409099 + 0.236194i
\(99\) 0.0760282 + 0.131685i 0.00764113 + 0.0132348i
\(100\) 0.627719 0.0627719
\(101\) −2.85347 −0.283931 −0.141966 0.989872i \(-0.545342\pi\)
−0.141966 + 0.989872i \(0.545342\pi\)
\(102\) −0.262169 0.454090i −0.0259586 0.0449616i
\(103\) 2.77615i 0.273542i −0.990603 0.136771i \(-0.956328\pi\)
0.990603 0.136771i \(-0.0436724\pi\)
\(104\) 1.39614 2.41819i 0.136903 0.237123i
\(105\) 3.61616i 0.352901i
\(106\) −2.73663 1.57999i −0.265805 0.153463i
\(107\) −9.49241 + 16.4413i −0.917665 + 1.58944i −0.114714 + 0.993399i \(0.536595\pi\)
−0.802951 + 0.596045i \(0.796738\pi\)
\(108\) −0.500000 + 0.866025i −0.0481125 + 0.0833333i
\(109\) −12.3011 + 7.10204i −1.17823 + 0.680252i −0.955605 0.294651i \(-0.904796\pi\)
−0.222627 + 0.974904i \(0.571463\pi\)
\(110\) 0.360721 0.0343934
\(111\) 5.88807 + 1.52663i 0.558871 + 0.144901i
\(112\) −1.52434 −0.144036
\(113\) 17.1962 9.92820i 1.61768 0.933967i 0.630159 0.776466i \(-0.282990\pi\)
0.987519 0.157501i \(-0.0503437\pi\)
\(114\) 2.44831 4.24060i 0.229305 0.397168i
\(115\) 5.49569 9.51881i 0.512475 0.887633i
\(116\) 2.51856 + 1.45409i 0.233842 + 0.135009i
\(117\) 2.79229i 0.258147i
\(118\) −4.16457 + 7.21324i −0.383380 + 0.664033i
\(119\) 0.799268i 0.0732688i
\(120\) 1.18614 + 2.05446i 0.108279 + 0.187545i
\(121\) −10.9769 −0.997898
\(122\) 8.49275 0.768898
\(123\) −2.91819 5.05446i −0.263124 0.455745i
\(124\) 1.17759 + 0.679885i 0.105751 + 0.0610555i
\(125\) 10.3723i 0.927725i
\(126\) −1.32012 + 0.762169i −0.117605 + 0.0678994i
\(127\) −9.52710 16.5014i −0.845394 1.46426i −0.885279 0.465061i \(-0.846033\pi\)
0.0398851 0.999204i \(-0.487301\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −5.83492 3.36879i −0.513736 0.296605i
\(130\) −5.73663 3.31205i −0.503136 0.290486i
\(131\) 12.3894 7.15301i 1.08246 0.624961i 0.150904 0.988548i \(-0.451781\pi\)
0.931560 + 0.363587i \(0.118448\pi\)
\(132\) 0.0760282 + 0.131685i 0.00661741 + 0.0114617i
\(133\) 6.46410 3.73205i 0.560509 0.323610i
\(134\) 11.8535i 1.02398i
\(135\) 2.05446 + 1.18614i 0.176819 + 0.102087i
\(136\) −0.262169 0.454090i −0.0224808 0.0389379i
\(137\) −6.34916 −0.542445 −0.271223 0.962517i \(-0.587428\pi\)
−0.271223 + 0.962517i \(0.587428\pi\)
\(138\) 4.63325 0.394408
\(139\) −1.77796 3.07952i −0.150805 0.261201i 0.780719 0.624882i \(-0.214853\pi\)
−0.931524 + 0.363681i \(0.881520\pi\)
\(140\) 3.61616i 0.305621i
\(141\) −2.86374 + 4.96014i −0.241170 + 0.417719i
\(142\) 4.59251i 0.385395i
\(143\) −0.367702 0.212293i −0.0307488 0.0177528i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 3.44951 5.97473i 0.286466 0.496174i
\(146\) 6.28025 3.62590i 0.519757 0.300082i
\(147\) 4.67639 0.385702
\(148\) 5.88807 + 1.52663i 0.483997 + 0.125488i
\(149\) 0.964787 0.0790385 0.0395192 0.999219i \(-0.487417\pi\)
0.0395192 + 0.999219i \(0.487417\pi\)
\(150\) 0.543620 0.313859i 0.0443864 0.0256265i
\(151\) −4.21506 + 7.30069i −0.343017 + 0.594122i −0.984991 0.172604i \(-0.944782\pi\)
0.641975 + 0.766726i \(0.278115\pi\)
\(152\) 2.44831 4.24060i 0.198584 0.343958i
\(153\) −0.454090 0.262169i −0.0367110 0.0211951i
\(154\) 0.231785i 0.0186778i
\(155\) 1.61288 2.79359i 0.129549 0.224386i
\(156\) 2.79229i 0.223562i
\(157\) −3.25242 5.63336i −0.259572 0.449591i 0.706556 0.707658i \(-0.250248\pi\)
−0.966127 + 0.258066i \(0.916915\pi\)
\(158\) −13.0417 −1.03754
\(159\) −3.15999 −0.250603
\(160\) 1.18614 + 2.05446i 0.0937727 + 0.162419i
\(161\) 6.11642 + 3.53132i 0.482042 + 0.278307i
\(162\) 1.00000i 0.0785674i
\(163\) 5.88834 3.39963i 0.461210 0.266280i −0.251343 0.967898i \(-0.580872\pi\)
0.712553 + 0.701618i \(0.247539\pi\)
\(164\) −2.91819 5.05446i −0.227872 0.394687i
\(165\) 0.312393 0.180360i 0.0243198 0.0140410i
\(166\) −10.9407 6.31662i −0.849164 0.490265i
\(167\) −0.339746 0.196152i −0.0262903 0.0151787i 0.486797 0.873515i \(-0.338165\pi\)
−0.513088 + 0.858336i \(0.671498\pi\)
\(168\) −1.32012 + 0.762169i −0.101849 + 0.0588026i
\(169\) −2.60157 4.50605i −0.200121 0.346619i
\(170\) −1.07723 + 0.621938i −0.0826197 + 0.0477005i
\(171\) 4.89662i 0.374454i
\(172\) −5.83492 3.36879i −0.444908 0.256868i
\(173\) 6.66603 + 11.5459i 0.506809 + 0.877819i 0.999969 + 0.00788052i \(0.00250847\pi\)
−0.493160 + 0.869939i \(0.664158\pi\)
\(174\) 2.90818 0.220469
\(175\) 0.956855 0.0723315
\(176\) 0.0760282 + 0.131685i 0.00573084 + 0.00992611i
\(177\) 8.32914i 0.626056i
\(178\) 6.48697 11.2358i 0.486219 0.842156i
\(179\) 20.4173i 1.52606i 0.646361 + 0.763031i \(0.276290\pi\)
−0.646361 + 0.763031i \(0.723710\pi\)
\(180\) 2.05446 + 1.18614i 0.153130 + 0.0884097i
\(181\) −0.931218 + 1.61292i −0.0692169 + 0.119887i −0.898557 0.438857i \(-0.855383\pi\)
0.829340 + 0.558744i \(0.188717\pi\)
\(182\) 2.12819 3.68614i 0.157752 0.273235i
\(183\) 7.35494 4.24638i 0.543693 0.313901i
\(184\) 4.63325 0.341568
\(185\) 3.62159 13.9682i 0.266265 1.02696i
\(186\) 1.35977 0.0997031
\(187\) −0.0690473 + 0.0398645i −0.00504924 + 0.00291518i
\(188\) −2.86374 + 4.96014i −0.208859 + 0.361755i
\(189\) −0.762169 + 1.32012i −0.0554396 + 0.0960243i
\(190\) −10.0599 5.80808i −0.729821 0.421362i
\(191\) 14.6101i 1.05715i 0.848886 + 0.528576i \(0.177274\pi\)
−0.848886 + 0.528576i \(0.822726\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) 3.61158i 0.259967i 0.991516 + 0.129984i \(0.0414925\pi\)
−0.991516 + 0.129984i \(0.958508\pi\)
\(194\) −6.97036 12.0730i −0.500443 0.866792i
\(195\) −6.62409 −0.474361
\(196\) 4.67639 0.334028
\(197\) 9.07155 + 15.7124i 0.646321 + 1.11946i 0.983995 + 0.178198i \(0.0570266\pi\)
−0.337674 + 0.941263i \(0.609640\pi\)
\(198\) 0.131685 + 0.0760282i 0.00935843 + 0.00540309i
\(199\) 13.0557i 0.925491i 0.886491 + 0.462745i \(0.153136\pi\)
−0.886491 + 0.462745i \(0.846864\pi\)
\(200\) 0.543620 0.313859i 0.0384398 0.0221932i
\(201\) 5.92674 + 10.2654i 0.418040 + 0.724066i
\(202\) −2.47118 + 1.42674i −0.173872 + 0.100385i
\(203\) 3.83913 + 2.21652i 0.269454 + 0.155569i
\(204\) −0.454090 0.262169i −0.0317926 0.0183555i
\(205\) −11.9906 + 6.92277i −0.837459 + 0.483507i
\(206\) −1.38807 2.40421i −0.0967117 0.167509i
\(207\) 4.01251 2.31662i 0.278889 0.161017i
\(208\) 2.79229i 0.193610i
\(209\) −0.644810 0.372281i −0.0446025 0.0257512i
\(210\) 1.80808 + 3.13168i 0.124769 + 0.216107i
\(211\) 0.157587 0.0108488 0.00542438 0.999985i \(-0.498273\pi\)
0.00542438 + 0.999985i \(0.498273\pi\)
\(212\) −3.15999 −0.217029
\(213\) 2.29625 + 3.97723i 0.157337 + 0.272515i
\(214\) 18.9848i 1.29777i
\(215\) −7.99172 + 13.8421i −0.545031 + 0.944021i
\(216\) 1.00000i 0.0680414i
\(217\) 1.79505 + 1.03637i 0.121856 + 0.0703537i
\(218\) −7.10204 + 12.3011i −0.481011 + 0.833135i
\(219\) 3.62590 6.28025i 0.245016 0.424380i
\(220\) 0.312393 0.180360i 0.0210616 0.0121599i
\(221\) 1.46410 0.0984861
\(222\) 5.86253 1.62194i 0.393468 0.108857i
\(223\) −13.5578 −0.907899 −0.453950 0.891027i \(-0.649985\pi\)
−0.453950 + 0.891027i \(0.649985\pi\)
\(224\) −1.32012 + 0.762169i −0.0882039 + 0.0509246i
\(225\) 0.313859 0.543620i 0.0209240 0.0362414i
\(226\) 9.92820 17.1962i 0.660414 1.14387i
\(227\) 15.7297 + 9.08156i 1.04402 + 0.602764i 0.920969 0.389636i \(-0.127399\pi\)
0.123049 + 0.992401i \(0.460733\pi\)
\(228\) 4.89662i 0.324287i
\(229\) −11.3206 + 19.6078i −0.748086 + 1.29572i 0.200653 + 0.979662i \(0.435693\pi\)
−0.948739 + 0.316060i \(0.897640\pi\)
\(230\) 10.9914i 0.724750i
\(231\) 0.115893 + 0.200732i 0.00762518 + 0.0132072i
\(232\) 2.90818 0.190931
\(233\) 2.26097 0.148121 0.0740605 0.997254i \(-0.476404\pi\)
0.0740605 + 0.997254i \(0.476404\pi\)
\(234\) −1.39614 2.41819i −0.0912688 0.158082i
\(235\) 11.7668 + 6.79359i 0.767584 + 0.443165i
\(236\) 8.32914i 0.542181i
\(237\) −11.2944 + 6.52085i −0.733653 + 0.423575i
\(238\) −0.399634 0.692186i −0.0259044 0.0448678i
\(239\) −6.90085 + 3.98421i −0.446379 + 0.257717i −0.706300 0.707913i \(-0.749637\pi\)
0.259921 + 0.965630i \(0.416304\pi\)
\(240\) 2.05446 + 1.18614i 0.132615 + 0.0765651i
\(241\) 8.51459 + 4.91590i 0.548473 + 0.316661i 0.748506 0.663128i \(-0.230772\pi\)
−0.200033 + 0.979789i \(0.564105\pi\)
\(242\) −9.50626 + 5.48844i −0.611085 + 0.352810i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 7.35494 4.24638i 0.470852 0.271846i
\(245\) 11.0937i 0.708752i
\(246\) −5.05446 2.91819i −0.322260 0.186057i
\(247\) 6.83638 + 11.8410i 0.434989 + 0.753422i
\(248\) 1.35977 0.0863454
\(249\) −12.6332 −0.800600
\(250\) 5.18614 + 8.98266i 0.328000 + 0.568113i
\(251\) 9.34623i 0.589929i −0.955508 0.294964i \(-0.904692\pi\)
0.955508 0.294964i \(-0.0953078\pi\)
\(252\) −0.762169 + 1.32012i −0.0480121 + 0.0831594i
\(253\) 0.704516i 0.0442925i
\(254\) −16.5014 9.52710i −1.03539 0.597784i
\(255\) −0.621938 + 1.07723i −0.0389473 + 0.0674587i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −11.7762 + 6.79902i −0.734582 + 0.424111i −0.820096 0.572226i \(-0.806080\pi\)
0.0855141 + 0.996337i \(0.472747\pi\)
\(258\) −6.73758 −0.419464
\(259\) 8.97541 + 2.32710i 0.557705 + 0.144599i
\(260\) −6.62409 −0.410809
\(261\) 2.51856 1.45409i 0.155895 0.0900059i
\(262\) 7.15301 12.3894i 0.441914 0.765418i
\(263\) 6.83638 11.8410i 0.421549 0.730145i −0.574542 0.818475i \(-0.694820\pi\)
0.996091 + 0.0883302i \(0.0281531\pi\)
\(264\) 0.131685 + 0.0760282i 0.00810464 + 0.00467921i
\(265\) 7.49638i 0.460499i
\(266\) 3.73205 6.46410i 0.228827 0.396339i
\(267\) 12.9739i 0.793993i
\(268\) 5.92674 + 10.2654i 0.362033 + 0.627060i
\(269\) 1.21729 0.0742197 0.0371098 0.999311i \(-0.488185\pi\)
0.0371098 + 0.999311i \(0.488185\pi\)
\(270\) 2.37228 0.144372
\(271\) −2.08337 3.60851i −0.126556 0.219201i 0.795784 0.605580i \(-0.207059\pi\)
−0.922340 + 0.386379i \(0.873726\pi\)
\(272\) −0.454090 0.262169i −0.0275332 0.0158963i
\(273\) 4.25639i 0.257608i
\(274\) −5.49853 + 3.17458i −0.332179 + 0.191783i
\(275\) −0.0477243 0.0826610i −0.00287789 0.00498465i
\(276\) 4.01251 2.31662i 0.241525 0.139444i
\(277\) −23.7472 13.7105i −1.42683 0.823783i −0.429964 0.902846i \(-0.641474\pi\)
−0.996870 + 0.0790632i \(0.974807\pi\)
\(278\) −3.07952 1.77796i −0.184697 0.106635i
\(279\) 1.17759 0.679885i 0.0705008 0.0407036i
\(280\) 1.80808 + 3.13168i 0.108053 + 0.187154i
\(281\) 13.3823 7.72627i 0.798321 0.460911i −0.0445629 0.999007i \(-0.514190\pi\)
0.842884 + 0.538096i \(0.180856\pi\)
\(282\) 5.72747i 0.341066i
\(283\) 16.2940 + 9.40736i 0.968579 + 0.559209i 0.898803 0.438353i \(-0.144438\pi\)
0.0697762 + 0.997563i \(0.477771\pi\)
\(284\) 2.29625 + 3.97723i 0.136258 + 0.236005i
\(285\) −11.6162 −0.688082
\(286\) −0.424585 −0.0251063
\(287\) −4.44831 7.70470i −0.262575 0.454794i
\(288\) 1.00000i 0.0589256i
\(289\) −8.36253 + 14.4843i −0.491914 + 0.852020i
\(290\) 6.89902i 0.405124i
\(291\) −12.0730 6.97036i −0.707733 0.408610i
\(292\) 3.62590 6.28025i 0.212190 0.367524i
\(293\) 13.4468 23.2905i 0.785568 1.36064i −0.143091 0.989710i \(-0.545704\pi\)
0.928659 0.370934i \(-0.120963\pi\)
\(294\) 4.04988 2.33820i 0.236194 0.136366i
\(295\) 19.7591 1.15042
\(296\) 5.86253 1.62194i 0.340753 0.0942733i
\(297\) 0.152056 0.00882321
\(298\) 0.835530 0.482394i 0.0484010 0.0279443i
\(299\) −6.46868 + 11.2041i −0.374093 + 0.647949i
\(300\) 0.313859 0.543620i 0.0181207 0.0313859i
\(301\) −8.89438 5.13518i −0.512664 0.295987i
\(302\) 8.43012i 0.485099i
\(303\) −1.42674 + 2.47118i −0.0819639 + 0.141966i
\(304\) 4.89662i 0.280840i
\(305\) −10.0736 17.4480i −0.576813 0.999069i
\(306\) −0.524338 −0.0299744
\(307\) −16.6954 −0.952856 −0.476428 0.879213i \(-0.658069\pi\)
−0.476428 + 0.879213i \(0.658069\pi\)
\(308\) 0.115893 + 0.200732i 0.00660360 + 0.0114378i
\(309\) −2.40421 1.38807i −0.136771 0.0789647i
\(310\) 3.22576i 0.183211i
\(311\) 17.0507 9.84424i 0.966858 0.558216i 0.0685812 0.997646i \(-0.478153\pi\)
0.898277 + 0.439430i \(0.144819\pi\)
\(312\) −1.39614 2.41819i −0.0790411 0.136903i
\(313\) 15.0851 8.70939i 0.852661 0.492284i −0.00888711 0.999961i \(-0.502829\pi\)
0.861548 + 0.507677i \(0.169496\pi\)
\(314\) −5.63336 3.25242i −0.317909 0.183545i
\(315\) 3.13168 + 1.80808i 0.176450 + 0.101874i
\(316\) −11.2944 + 6.52085i −0.635362 + 0.366826i
\(317\) −11.1703 19.3476i −0.627389 1.08667i −0.988074 0.153982i \(-0.950790\pi\)
0.360684 0.932688i \(-0.382543\pi\)
\(318\) −2.73663 + 1.57999i −0.153463 + 0.0886017i
\(319\) 0.442208i 0.0247589i
\(320\) 2.05446 + 1.18614i 0.114848 + 0.0663073i
\(321\) 9.49241 + 16.4413i 0.529814 + 0.917665i
\(322\) 7.06264 0.393585
\(323\) 2.56748 0.142859
\(324\) 0.500000 + 0.866025i 0.0277778 + 0.0481125i
\(325\) 1.75277i 0.0972262i
\(326\) 3.39963 5.88834i 0.188288 0.326125i
\(327\) 14.2041i 0.785488i
\(328\) −5.05446 2.91819i −0.279086 0.161130i
\(329\) −4.36530 + 7.56092i −0.240667 + 0.416847i
\(330\) 0.180360 0.312393i 0.00992851 0.0171967i
\(331\) −10.0322 + 5.79208i −0.551418 + 0.318361i −0.749694 0.661785i \(-0.769799\pi\)
0.198276 + 0.980146i \(0.436466\pi\)
\(332\) −12.6332 −0.693340
\(333\) 4.26613 4.33591i 0.233783 0.237606i
\(334\) −0.392305 −0.0214660
\(335\) 24.3524 14.0599i 1.33052 0.768174i
\(336\) −0.762169 + 1.32012i −0.0415797 + 0.0720182i
\(337\) 16.9410 29.3426i 0.922834 1.59840i 0.127826 0.991797i \(-0.459200\pi\)
0.795008 0.606599i \(-0.207467\pi\)
\(338\) −4.50605 2.60157i −0.245097 0.141507i
\(339\) 19.8564i 1.07845i
\(340\) −0.621938 + 1.07723i −0.0337293 + 0.0584209i
\(341\) 0.206762i 0.0111968i
\(342\) −2.44831 4.24060i −0.132389 0.229305i
\(343\) 17.7988 0.961043
\(344\) −6.73758 −0.363266
\(345\) −5.49569 9.51881i −0.295878 0.512475i
\(346\) 11.5459 + 6.66603i 0.620712 + 0.358368i
\(347\) 11.3278i 0.608106i 0.952655 + 0.304053i \(0.0983400\pi\)
−0.952655 + 0.304053i \(0.901660\pi\)
\(348\) 2.51856 1.45409i 0.135009 0.0779474i
\(349\) 7.39515 + 12.8088i 0.395853 + 0.685638i 0.993210 0.116338i \(-0.0371155\pi\)
−0.597356 + 0.801976i \(0.703782\pi\)
\(350\) 0.828661 0.478428i 0.0442938 0.0255730i
\(351\) −2.41819 1.39614i −0.129074 0.0745206i
\(352\) 0.131685 + 0.0760282i 0.00701882 + 0.00405232i
\(353\) 3.88859 2.24508i 0.206969 0.119493i −0.392933 0.919567i \(-0.628540\pi\)
0.599902 + 0.800074i \(0.295206\pi\)
\(354\) 4.16457 + 7.21324i 0.221344 + 0.383380i
\(355\) 9.43510 5.44736i 0.500763 0.289116i
\(356\) 12.9739i 0.687618i
\(357\) −0.692186 0.399634i −0.0366344 0.0211509i
\(358\) 10.2087 + 17.6819i 0.539545 + 0.934519i
\(359\) −18.2810 −0.964834 −0.482417 0.875942i \(-0.660241\pi\)
−0.482417 + 0.875942i \(0.660241\pi\)
\(360\) 2.37228 0.125030
\(361\) 2.48844 + 4.31010i 0.130970 + 0.226848i
\(362\) 1.86244i 0.0978875i
\(363\) −5.48844 + 9.50626i −0.288068 + 0.498949i
\(364\) 4.25639i 0.223095i
\(365\) −14.8985 8.60167i −0.779824 0.450232i
\(366\) 4.24638 7.35494i 0.221962 0.384449i
\(367\) 14.1001 24.4221i 0.736020 1.27482i −0.218254 0.975892i \(-0.570036\pi\)
0.954274 0.298932i \(-0.0966305\pi\)
\(368\) 4.01251 2.31662i 0.209167 0.120762i
\(369\) −5.83638 −0.303830
\(370\) −3.84769 13.9076i −0.200032 0.723021i
\(371\) −4.81689 −0.250080
\(372\) 1.17759 0.679885i 0.0610555 0.0352504i
\(373\) 15.0743 26.1095i 0.780518 1.35190i −0.151122 0.988515i \(-0.548289\pi\)
0.931640 0.363382i \(-0.118378\pi\)
\(374\) −0.0398645 + 0.0690473i −0.00206134 + 0.00357035i
\(375\) 8.98266 + 5.18614i 0.463863 + 0.267811i
\(376\) 5.72747i 0.295372i
\(377\) −4.06024 + 7.03254i −0.209113 + 0.362194i
\(378\) 1.52434i 0.0784035i
\(379\) −9.46082 16.3866i −0.485970 0.841724i 0.513900 0.857850i \(-0.328200\pi\)
−0.999870 + 0.0161257i \(0.994867\pi\)
\(380\) −11.6162 −0.595896
\(381\) −19.0542 −0.976177
\(382\) 7.30506 + 12.6527i 0.373760 + 0.647371i
\(383\) −19.7343 11.3936i −1.00838 0.582186i −0.0976600 0.995220i \(-0.531136\pi\)
−0.910716 + 0.413034i \(0.864469\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 0.476193 0.274930i 0.0242690 0.0140117i
\(386\) 1.80579 + 3.12772i 0.0919123 + 0.159197i
\(387\) −5.83492 + 3.36879i −0.296605 + 0.171245i
\(388\) −12.0730 6.97036i −0.612914 0.353866i
\(389\) −13.2506 7.65024i −0.671833 0.387883i 0.124938 0.992165i \(-0.460127\pi\)
−0.796771 + 0.604282i \(0.793460\pi\)
\(390\) −5.73663 + 3.31205i −0.290486 + 0.167712i
\(391\) 1.21469 + 2.10391i 0.0614297 + 0.106399i
\(392\) 4.04988 2.33820i 0.204550 0.118097i
\(393\) 14.3060i 0.721643i
\(394\) 15.7124 + 9.07155i 0.791578 + 0.457018i
\(395\) 15.4693 + 26.7936i 0.778344 + 1.34813i
\(396\) 0.152056 0.00764113
\(397\) 22.5549 1.13200 0.565999 0.824406i \(-0.308491\pi\)
0.565999 + 0.824406i \(0.308491\pi\)
\(398\) 6.52783 + 11.3065i 0.327210 + 0.566745i
\(399\) 7.46410i 0.373672i
\(400\) 0.313859 0.543620i 0.0156930 0.0271810i
\(401\) 25.1619i 1.25652i −0.778001 0.628262i \(-0.783766\pi\)
0.778001 0.628262i \(-0.216234\pi\)
\(402\) 10.2654 + 5.92674i 0.511992 + 0.295599i
\(403\) −1.89843 + 3.28818i −0.0945677 + 0.163796i
\(404\) −1.42674 + 2.47118i −0.0709828 + 0.122946i
\(405\) 2.05446 1.18614i 0.102087 0.0589398i
\(406\) 4.43305 0.220008
\(407\) −0.246626 0.891436i −0.0122248 0.0441869i
\(408\) −0.524338 −0.0259586
\(409\) −19.4532 + 11.2313i −0.961900 + 0.555353i −0.896757 0.442523i \(-0.854084\pi\)
−0.0651428 + 0.997876i \(0.520750\pi\)
\(410\) −6.92277 + 11.9906i −0.341891 + 0.592173i
\(411\) −3.17458 + 5.49853i −0.156590 + 0.271223i
\(412\) −2.40421 1.38807i −0.118447 0.0683855i
\(413\) 12.6964i 0.624750i
\(414\) 2.31662 4.01251i 0.113856 0.197204i
\(415\) 29.9696i 1.47115i
\(416\) −1.39614 2.41819i −0.0684516 0.118562i
\(417\) −3.55592 −0.174134
\(418\) −0.744563 −0.0364177
\(419\) −11.1688 19.3449i −0.545632 0.945062i −0.998567 0.0535182i \(-0.982956\pi\)
0.452935 0.891543i \(-0.350377\pi\)
\(420\) 3.13168 + 1.80808i 0.152811 + 0.0882252i
\(421\) 24.3202i 1.18529i 0.805463 + 0.592646i \(0.201917\pi\)
−0.805463 + 0.592646i \(0.798083\pi\)
\(422\) 0.136475 0.0787937i 0.00664348 0.00383562i
\(423\) 2.86374 + 4.96014i 0.139240 + 0.241170i
\(424\) −2.73663 + 1.57999i −0.132903 + 0.0767313i
\(425\) 0.285041 + 0.164568i 0.0138265 + 0.00798274i
\(426\) 3.97723 + 2.29625i 0.192697 + 0.111254i
\(427\) 11.2114 6.47291i 0.542558 0.313246i
\(428\) 9.49241 + 16.4413i 0.458833 + 0.794722i
\(429\) −0.367702 + 0.212293i −0.0177528 + 0.0102496i
\(430\) 15.9834i 0.770790i
\(431\) 6.55482 + 3.78443i 0.315735 + 0.182289i 0.649490 0.760370i \(-0.274983\pi\)
−0.333755 + 0.942660i \(0.608316\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −8.13134 −0.390767 −0.195384 0.980727i \(-0.562595\pi\)
−0.195384 + 0.980727i \(0.562595\pi\)
\(434\) 2.07275 0.0994951
\(435\) −3.44951 5.97473i −0.165391 0.286466i
\(436\) 14.2041i 0.680252i
\(437\) −11.3436 + 19.6477i −0.542639 + 0.939879i
\(438\) 7.25181i 0.346505i
\(439\) −13.7934 7.96363i −0.658323 0.380083i 0.133315 0.991074i \(-0.457438\pi\)
−0.791638 + 0.610991i \(0.790771\pi\)
\(440\) 0.180360 0.312393i 0.00859834 0.0148928i
\(441\) 2.33820 4.04988i 0.111343 0.192851i
\(442\) 1.26795 0.732051i 0.0603102 0.0348201i
\(443\) 24.9624 1.18600 0.592999 0.805203i \(-0.297944\pi\)
0.592999 + 0.805203i \(0.297944\pi\)
\(444\) 4.26613 4.33591i 0.202462 0.205773i
\(445\) −30.7779 −1.45901
\(446\) −11.7414 + 6.77891i −0.555972 + 0.320991i
\(447\) 0.482394 0.835530i 0.0228164 0.0395192i
\(448\) −0.762169 + 1.32012i −0.0360091 + 0.0623696i
\(449\) 6.72747 + 3.88411i 0.317489 + 0.183302i 0.650273 0.759701i \(-0.274655\pi\)
−0.332784 + 0.943003i \(0.607988\pi\)
\(450\) 0.627719i 0.0295909i
\(451\) −0.443730 + 0.768563i −0.0208944 + 0.0361902i
\(452\) 19.8564i 0.933967i
\(453\) 4.21506 + 7.30069i 0.198041 + 0.343017i
\(454\) 18.1631 0.852437
\(455\) −10.0974 −0.473371
\(456\) −2.44831 4.24060i −0.114653 0.198584i
\(457\) −31.5579 18.2200i −1.47622 0.852295i −0.476578 0.879132i \(-0.658123\pi\)
−0.999640 + 0.0268379i \(0.991456\pi\)
\(458\) 22.6412i 1.05795i
\(459\) −0.454090 + 0.262169i −0.0211951 + 0.0122370i
\(460\) −5.49569 9.51881i −0.256238 0.443817i
\(461\) −24.3130 + 14.0371i −1.13237 + 0.653774i −0.944530 0.328426i \(-0.893482\pi\)
−0.187839 + 0.982200i \(0.560148\pi\)
\(462\) 0.200732 + 0.115893i 0.00933890 + 0.00539182i
\(463\) 14.7427 + 8.51169i 0.685150 + 0.395572i 0.801793 0.597602i \(-0.203880\pi\)
−0.116642 + 0.993174i \(0.537213\pi\)
\(464\) 2.51856 1.45409i 0.116921 0.0675044i
\(465\) −1.61288 2.79359i −0.0747954 0.129549i
\(466\) 1.95806 1.13048i 0.0907052 0.0523687i
\(467\) 39.1619i 1.81220i 0.423068 + 0.906098i \(0.360953\pi\)
−0.423068 + 0.906098i \(0.639047\pi\)
\(468\) −2.41819 1.39614i −0.111781 0.0645368i
\(469\) 9.03435 + 15.6480i 0.417168 + 0.722555i
\(470\) 13.5872 0.626730
\(471\) −6.50485 −0.299727
\(472\) 4.16457 + 7.21324i 0.191690 + 0.332016i
\(473\) 1.02449i 0.0471062i
\(474\) −6.52085 + 11.2944i −0.299512 + 0.518771i
\(475\) 3.07370i 0.141031i
\(476\) −0.692186 0.399634i −0.0317263 0.0183172i
\(477\) −1.57999 + 2.73663i −0.0723430 + 0.125302i
\(478\) −3.98421 + 6.90085i −0.182233 + 0.315638i
\(479\) 5.29255 3.05566i 0.241823 0.139617i −0.374191 0.927352i \(-0.622080\pi\)
0.616014 + 0.787735i \(0.288746\pi\)
\(480\) 2.37228 0.108279
\(481\) −4.26278 + 16.4412i −0.194366 + 0.749654i
\(482\) 9.83180 0.447826
\(483\) 6.11642 3.53132i 0.278307 0.160681i
\(484\) −5.48844 + 9.50626i −0.249475 + 0.432103i
\(485\) −16.5356 + 28.6406i −0.750845 + 1.30050i
\(486\) 0.866025 + 0.500000i 0.0392837 + 0.0226805i
\(487\) 27.0737i 1.22683i 0.789762 + 0.613413i \(0.210204\pi\)
−0.789762 + 0.613413i \(0.789796\pi\)
\(488\) 4.24638 7.35494i 0.192224 0.332943i
\(489\) 6.79927i 0.307474i
\(490\) −5.54686 9.60745i −0.250582 0.434020i
\(491\) 5.55299 0.250603 0.125301 0.992119i \(-0.460010\pi\)
0.125301 + 0.992119i \(0.460010\pi\)
\(492\) −5.83638 −0.263124
\(493\) 0.762434 + 1.32057i 0.0343383 + 0.0594757i
\(494\) 11.8410 + 6.83638i 0.532750 + 0.307583i
\(495\) 0.360721i 0.0162132i
\(496\) 1.17759 0.679885i 0.0528756 0.0305277i
\(497\) 3.50027 + 6.06264i 0.157008 + 0.271946i
\(498\) −10.9407 + 6.31662i −0.490265 + 0.283055i
\(499\) −10.1425 5.85580i −0.454043 0.262142i 0.255493 0.966811i \(-0.417762\pi\)
−0.709536 + 0.704669i \(0.751095\pi\)
\(500\) 8.98266 + 5.18614i 0.401717 + 0.231931i
\(501\) −0.339746 + 0.196152i −0.0151787 + 0.00876344i
\(502\) −4.67311 8.09407i −0.208571 0.361256i
\(503\) 17.4955 10.1011i 0.780087 0.450384i −0.0563739 0.998410i \(-0.517954\pi\)
0.836461 + 0.548026i \(0.184621\pi\)
\(504\) 1.52434i 0.0678994i
\(505\) 5.86234 + 3.38462i 0.260871 + 0.150614i
\(506\) −0.352258 0.610128i −0.0156598 0.0271235i
\(507\) −5.20313 −0.231079
\(508\) −19.0542 −0.845394
\(509\) −2.03496 3.52466i −0.0901982 0.156228i 0.817396 0.576076i \(-0.195417\pi\)
−0.907594 + 0.419848i \(0.862083\pi\)
\(510\) 1.24388i 0.0550798i
\(511\) 5.52710 9.57322i 0.244505 0.423494i
\(512\) 1.00000i 0.0441942i
\(513\) −4.24060 2.44831i −0.187227 0.108096i
\(514\) −6.79902 + 11.7762i −0.299892 + 0.519428i
\(515\) −3.29290 + 5.70347i −0.145103 + 0.251325i
\(516\) −5.83492 + 3.36879i −0.256868 + 0.148303i
\(517\) 0.870899 0.0383021
\(518\) 8.93648 2.47238i 0.392647 0.108630i
\(519\) 13.3321 0.585213
\(520\) −5.73663 + 3.31205i −0.251568 + 0.145243i
\(521\) 10.4812 18.1540i 0.459189 0.795339i −0.539729 0.841839i \(-0.681473\pi\)
0.998918 + 0.0464995i \(0.0148066\pi\)
\(522\) 1.45409 2.51856i 0.0636438 0.110234i
\(523\) −28.7804 16.6164i −1.25848 0.726583i −0.285700 0.958319i \(-0.592226\pi\)
−0.972779 + 0.231736i \(0.925559\pi\)
\(524\) 14.3060i 0.624961i
\(525\) 0.478428 0.828661i 0.0208803 0.0361657i
\(526\) 13.6728i 0.596161i
\(527\) 0.356489 + 0.617458i 0.0155289 + 0.0268969i
\(528\) 0.152056 0.00661741
\(529\) 1.53300 0.0666521
\(530\) 3.74819 + 6.49206i 0.162811 + 0.281997i
\(531\) 7.21324 + 4.16457i 0.313028 + 0.180727i
\(532\) 7.46410i 0.323610i
\(533\) 14.1135 8.14843i 0.611323 0.352948i
\(534\) −6.48697 11.2358i −0.280719 0.486219i
\(535\) 39.0035 22.5187i 1.68627 0.973566i
\(536\) 10.2654 + 5.92674i 0.443398 + 0.255996i
\(537\) 17.6819 + 10.2087i 0.763031 + 0.440536i
\(538\) 1.05421 0.608646i 0.0454501 0.0262406i
\(539\) −0.355538 0.615810i −0.0153141 0.0265248i
\(540\) 2.05446 1.18614i 0.0884097 0.0510434i
\(541\) 10.0546i 0.432282i 0.976362 + 0.216141i \(0.0693471\pi\)
−0.976362 + 0.216141i \(0.930653\pi\)
\(542\) −3.60851 2.08337i −0.154999 0.0894885i
\(543\) 0.931218 + 1.61292i 0.0399624 + 0.0692169i
\(544\) −0.524338 −0.0224808
\(545\) 33.6961 1.44338
\(546\) −2.12819 3.68614i −0.0910783 0.157752i
\(547\) 32.4214i 1.38624i −0.720823 0.693120i \(-0.756236\pi\)
0.720823 0.693120i \(-0.243764\pi\)
\(548\) −3.17458 + 5.49853i −0.135611 + 0.234886i
\(549\) 8.49275i 0.362462i
\(550\) −0.0826610 0.0477243i −0.00352468 0.00203497i
\(551\) −7.12012 + 12.3324i −0.303327 + 0.525379i
\(552\) 2.31662 4.01251i 0.0986021 0.170784i
\(553\) −17.2165 + 9.93997i −0.732122 + 0.422691i
\(554\) −27.4210 −1.16500
\(555\) −10.2860 10.1205i −0.436616 0.429590i
\(556\) −3.55592 −0.150805
\(557\) 29.8236 17.2187i 1.26367 0.729579i 0.289885 0.957061i \(-0.406383\pi\)
0.973782 + 0.227483i \(0.0730495\pi\)
\(558\) 0.679885 1.17759i 0.0287818 0.0498516i
\(559\) 9.40663 16.2928i 0.397858 0.689110i
\(560\) 3.13168 + 1.80808i 0.132338 + 0.0764053i
\(561\) 0.0797290i 0.00336616i
\(562\) 7.72627 13.3823i 0.325913 0.564498i
\(563\) 34.2679i 1.44422i −0.691779 0.722109i \(-0.743173\pi\)
0.691779 0.722109i \(-0.256827\pi\)
\(564\) 2.86374 + 4.96014i 0.120585 + 0.208859i
\(565\) −47.1050 −1.98172
\(566\) 18.8147 0.790841
\(567\) 0.762169 + 1.32012i 0.0320081 + 0.0554396i
\(568\) 3.97723 + 2.29625i 0.166881 + 0.0963486i
\(569\) 27.3089i 1.14485i 0.819957 + 0.572425i \(0.193997\pi\)
−0.819957 + 0.572425i \(0.806003\pi\)
\(570\) −10.0599 + 5.80808i −0.421362 + 0.243274i
\(571\) −3.98663 6.90504i −0.166835 0.288967i 0.770470 0.637476i \(-0.220021\pi\)
−0.937305 + 0.348509i \(0.886688\pi\)
\(572\) −0.367702 + 0.212293i −0.0153744 + 0.00887640i
\(573\) 12.6527 + 7.30506i 0.528576 + 0.305173i
\(574\) −7.70470 4.44831i −0.321588 0.185669i
\(575\) −2.51873 + 1.45419i −0.105038 + 0.0606439i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 23.7725 13.7251i 0.989663 0.571382i 0.0844894 0.996424i \(-0.473074\pi\)
0.905174 + 0.425042i \(0.139741\pi\)
\(578\) 16.7251i 0.695671i
\(579\) 3.12772 + 1.80579i 0.129984 + 0.0750460i
\(580\) −3.44951 5.97473i −0.143233 0.248087i
\(581\) −19.2573 −0.798929
\(582\) −13.9407 −0.577861
\(583\) 0.240248 + 0.416122i 0.00995007 + 0.0172340i
\(584\) 7.25181i 0.300082i
\(585\) −3.31205 + 5.73663i −0.136936 + 0.237180i
\(586\) 26.8935i 1.11096i
\(587\) 11.9115 + 6.87713i 0.491642 + 0.283849i 0.725255 0.688480i \(-0.241722\pi\)
−0.233614 + 0.972329i \(0.575055\pi\)
\(588\) 2.33820 4.04988i 0.0964256 0.167014i
\(589\) −3.32914 + 5.76623i −0.137175 + 0.237594i
\(590\) 17.1118 9.87953i 0.704483 0.406734i
\(591\) 18.1431 0.746307
\(592\) 4.26613 4.33591i 0.175337 0.178205i
\(593\) −24.2749 −0.996852 −0.498426 0.866932i \(-0.666088\pi\)
−0.498426 + 0.866932i \(0.666088\pi\)
\(594\) 0.131685 0.0760282i 0.00540309 0.00311948i
\(595\) −0.948044 + 1.64206i −0.0388660 + 0.0673179i
\(596\) 0.482394 0.835530i 0.0197596 0.0342247i
\(597\) 11.3065 + 6.52783i 0.462745 + 0.267166i
\(598\) 12.9374i 0.529048i
\(599\) 2.92397 5.06447i 0.119470 0.206929i −0.800088 0.599883i \(-0.795214\pi\)
0.919558 + 0.392955i \(0.128547\pi\)
\(600\) 0.627719i 0.0256265i
\(601\) 1.45926 + 2.52751i 0.0595243 + 0.103099i 0.894252 0.447564i \(-0.147708\pi\)
−0.834728 + 0.550663i \(0.814375\pi\)
\(602\) −10.2704 −0.418588
\(603\) 11.8535 0.482711
\(604\) 4.21506 + 7.30069i 0.171508 + 0.297061i
\(605\) 22.5515 + 13.0201i 0.916849 + 0.529343i
\(606\) 2.85347i 0.115914i
\(607\) 16.3859 9.46040i 0.665083 0.383986i −0.129128 0.991628i \(-0.541218\pi\)
0.794211 + 0.607642i \(0.207884\pi\)
\(608\) −2.44831 4.24060i −0.0992921 0.171979i
\(609\) 3.83913 2.21652i 0.155569 0.0898181i
\(610\) −17.4480 10.0736i −0.706448 0.407868i
\(611\) −13.8501 7.99637i −0.560316 0.323499i
\(612\) −0.454090 + 0.262169i −0.0183555 + 0.0105975i
\(613\) 14.3118 + 24.7888i 0.578048 + 1.00121i 0.995703 + 0.0926029i \(0.0295187\pi\)
−0.417655 + 0.908606i \(0.637148\pi\)
\(614\) −14.4586 + 8.34769i −0.583503 + 0.336886i
\(615\) 13.8455i 0.558306i
\(616\) 0.200732 + 0.115893i 0.00808773 + 0.00466945i
\(617\) 3.21229 + 5.56385i 0.129322 + 0.223992i 0.923414 0.383805i \(-0.125387\pi\)
−0.794092 + 0.607797i \(0.792053\pi\)
\(618\) −2.77615 −0.111673
\(619\) −4.19657 −0.168675 −0.0843373 0.996437i \(-0.526877\pi\)
−0.0843373 + 0.996437i \(0.526877\pi\)
\(620\) −1.61288 2.79359i −0.0647747 0.112193i
\(621\) 4.63325i 0.185926i
\(622\) 9.84424 17.0507i 0.394718 0.683672i
\(623\) 19.7767i 0.792336i
\(624\) −2.41819 1.39614i −0.0968051 0.0558905i
\(625\) 13.8723 24.0275i 0.554891 0.961100i
\(626\) 8.70939 15.0851i 0.348097 0.602922i
\(627\) −0.644810 + 0.372281i −0.0257512 + 0.0148675i
\(628\) −6.50485 −0.259572
\(629\) 2.27348 + 2.23690i 0.0906496 + 0.0891909i
\(630\) 3.61616 0.144071
\(631\) −27.0283 + 15.6048i −1.07598 + 0.621218i −0.929809 0.368042i \(-0.880028\pi\)
−0.146171 + 0.989259i \(0.546695\pi\)
\(632\) −6.52085 + 11.2944i −0.259385 + 0.449269i
\(633\) 0.0787937 0.136475i 0.00313177 0.00542438i
\(634\) −19.3476 11.1703i −0.768392 0.443631i
\(635\) 45.2019i 1.79378i
\(636\) −1.57999 + 2.73663i −0.0626509 + 0.108514i
\(637\) 13.0578i 0.517370i
\(638\) −0.221104 0.382963i −0.00875358 0.0151616i
\(639\) 4.59251 0.181677
\(640\) 2.37228 0.0937727
\(641\) −19.2278 33.3036i −0.759454 1.31541i −0.943129 0.332426i \(-0.892133\pi\)
0.183676 0.982987i \(-0.441200\pi\)
\(642\) 16.4413 + 9.49241i 0.648887 + 0.374635i
\(643\) 5.45712i 0.215208i −0.994194 0.107604i \(-0.965682\pi\)
0.994194 0.107604i \(-0.0343178\pi\)
\(644\) 6.11642 3.53132i 0.241021 0.139153i
\(645\) 7.99172 + 13.8421i 0.314674 + 0.545031i
\(646\) 2.22351 1.28374i 0.0874826 0.0505081i
\(647\) 0.158434 + 0.0914721i 0.00622870 + 0.00359614i 0.503111 0.864222i \(-0.332189\pi\)
−0.496882 + 0.867818i \(0.665522\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) 1.09682 0.633250i 0.0430540 0.0248572i
\(650\) 0.876385 + 1.51794i 0.0343747 + 0.0595387i
\(651\) 1.79505 1.03637i 0.0703537 0.0406187i
\(652\) 6.79927i 0.266280i
\(653\) −19.7364 11.3948i −0.772344 0.445913i 0.0613660 0.998115i \(-0.480454\pi\)
−0.833710 + 0.552202i \(0.813788\pi\)
\(654\) 7.10204 + 12.3011i 0.277712 + 0.481011i
\(655\) −33.9379 −1.32606
\(656\) −5.83638 −0.227872
\(657\) −3.62590 6.28025i −0.141460 0.245016i
\(658\) 8.73060i 0.340354i
\(659\) −2.75154 + 4.76581i −0.107185 + 0.185650i −0.914629 0.404295i \(-0.867517\pi\)
0.807444 + 0.589944i \(0.200850\pi\)
\(660\) 0.360721i 0.0140410i
\(661\) −2.60158 1.50202i −0.101190 0.0584220i 0.448551 0.893757i \(-0.351940\pi\)
−0.549741 + 0.835335i \(0.685274\pi\)
\(662\) −5.79208 + 10.0322i −0.225115 + 0.389911i
\(663\) 0.732051 1.26795i 0.0284305 0.0492431i
\(664\) −10.9407 + 6.31662i −0.424582 + 0.245133i
\(665\) −17.7069 −0.686646
\(666\) 1.52663 5.88807i 0.0591556 0.228158i
\(667\) −13.4743 −0.521728
\(668\) −0.339746 + 0.196152i −0.0131452 + 0.00758937i
\(669\) −6.77891 + 11.7414i −0.262088 + 0.453950i
\(670\) 14.0599 24.3524i 0.543181 0.940817i
\(671\) −1.11837 0.645689i −0.0431741 0.0249266i
\(672\) 1.52434i 0.0588026i
\(673\) 13.1248 22.7328i 0.505923 0.876284i −0.494054 0.869431i \(-0.664485\pi\)
0.999977 0.00685278i \(-0.00218132\pi\)
\(674\) 33.8820i 1.30508i
\(675\) −0.313859 0.543620i −0.0120805 0.0209240i
\(676\) −5.20313 −0.200121
\(677\) −11.4415 −0.439732 −0.219866 0.975530i \(-0.570562\pi\)
−0.219866 + 0.975530i \(0.570562\pi\)
\(678\) −9.92820 17.1962i −0.381290 0.660414i
\(679\) −18.4034 10.6252i −0.706256 0.407757i
\(680\) 1.24388i 0.0477005i
\(681\) 15.7297 9.08156i 0.602764 0.348006i
\(682\) −0.103381 0.179061i −0.00395866 0.00685660i
\(683\) −29.6345 + 17.1095i −1.13393 + 0.654677i −0.944921 0.327297i \(-0.893862\pi\)
−0.189013 + 0.981975i \(0.560529\pi\)
\(684\) −4.24060 2.44831i −0.162143 0.0936135i
\(685\) 13.0441 + 7.53100i 0.498388 + 0.287745i
\(686\) 15.4142 8.89938i 0.588516 0.339780i
\(687\) 11.3206 + 19.6078i 0.431907 + 0.748086i
\(688\) −5.83492 + 3.36879i −0.222454 + 0.128434i
\(689\) 8.82360i 0.336152i
\(690\) −9.51881 5.49569i −0.362375 0.209217i
\(691\) −22.1159 38.3059i −0.841329 1.45722i −0.888772 0.458350i \(-0.848441\pi\)
0.0474428 0.998874i \(-0.484893\pi\)
\(692\) 13.3321 0.506809
\(693\) 0.231785 0.00880480
\(694\) 5.66388 + 9.81013i 0.214998 + 0.372388i
\(695\) 8.43565i 0.319982i
\(696\) 1.45409 2.51856i 0.0551171 0.0954657i
\(697\) 3.06024i 0.115915i
\(698\) 12.8088 + 7.39515i 0.484820 + 0.279911i
\(699\) 1.13048 1.95806i 0.0427588 0.0740605i
\(700\) 0.478428 0.828661i 0.0180829 0.0313204i
\(701\) 13.9703 8.06577i 0.527652 0.304640i −0.212408 0.977181i \(-0.568131\pi\)
0.740060 + 0.672541i \(0.234797\pi\)
\(702\) −2.79229 −0.105388
\(703\) −7.47531 + 28.8317i −0.281937 + 1.08741i
\(704\) 0.152056 0.00573084
\(705\) 11.7668 6.79359i 0.443165 0.255861i
\(706\) 2.24508 3.88859i 0.0844946 0.146349i
\(707\) −2.17483 + 3.76692i −0.0817929 + 0.141669i
\(708\) 7.21324 + 4.16457i 0.271090 + 0.156514i
\(709\) 8.49924i 0.319196i −0.987182 0.159598i \(-0.948980\pi\)
0.987182 0.159598i \(-0.0510197\pi\)
\(710\) 5.44736 9.43510i 0.204436 0.354093i
\(711\) 13.0417i 0.489102i
\(712\) −6.48697 11.2358i −0.243110 0.421078i
\(713\) −6.30015 −0.235943
\(714\) −0.799268 −0.0299119
\(715\) 0.503618 + 0.872292i 0.0188342 + 0.0326219i
\(716\) 17.6819 + 10.2087i 0.660805 + 0.381516i
\(717\) 7.96842i 0.297586i
\(718\) −15.8318 + 9.14050i −0.590838 + 0.341120i
\(719\) −18.3222 31.7349i −0.683301 1.18351i −0.973967 0.226688i \(-0.927210\pi\)
0.290666 0.956824i \(-0.406123\pi\)
\(720\) 2.05446 1.18614i 0.0765651 0.0442049i
\(721\) −3.66483 2.11589i −0.136486 0.0788000i
\(722\) 4.31010 + 2.48844i 0.160405 + 0.0926101i
\(723\) 8.51459 4.91590i 0.316661 0.182824i
\(724\) 0.931218 + 1.61292i 0.0346084 + 0.0599436i
\(725\) −1.58095 + 0.912759i −0.0587148 + 0.0338990i
\(726\) 10.9769i 0.407390i
\(727\) 40.6251 + 23.4549i 1.50670 + 0.869895i 0.999970 + 0.00779216i \(0.00248035\pi\)
0.506733 + 0.862103i \(0.330853\pi\)
\(728\) −2.12819 3.68614i −0.0788761 0.136617i
\(729\) 1.00000 0.0370370
\(730\) −17.2033 −0.636724
\(731\) −1.76638 3.05947i −0.0653321 0.113158i
\(732\) 8.49275i 0.313901i
\(733\) −1.39577 + 2.41754i −0.0515538 + 0.0892938i −0.890651 0.454688i \(-0.849751\pi\)
0.839097 + 0.543982i \(0.183084\pi\)
\(734\) 28.2002i 1.04089i
\(735\) −9.60745 5.54686i −0.354376 0.204599i
\(736\) 2.31662 4.01251i 0.0853919 0.147903i
\(737\) 0.901199 1.56092i 0.0331961 0.0574973i
\(738\) −5.05446 + 2.91819i −0.186057 + 0.107420i
\(739\) 22.7056 0.835238 0.417619 0.908622i \(-0.362865\pi\)
0.417619 + 0.908622i \(0.362865\pi\)
\(740\) −10.2860 10.1205i −0.378121 0.372036i
\(741\) 13.6728 0.502282
\(742\) −4.17155 + 2.40845i −0.153142 + 0.0884168i
\(743\) −15.9018 + 27.5427i −0.583381 + 1.01044i 0.411695 + 0.911322i \(0.364937\pi\)
−0.995075 + 0.0991229i \(0.968396\pi\)
\(744\) 0.679885 1.17759i 0.0249258 0.0431727i
\(745\) −1.98211 1.14437i −0.0726190 0.0419266i
\(746\) 30.1486i 1.10382i
\(747\) −6.31662 + 10.9407i −0.231113 + 0.400300i
\(748\) 0.0797290i 0.00291518i
\(749\) 14.4696 + 25.0621i 0.528709 + 0.915751i
\(750\) 10.3723 0.378742
\(751\) 9.70072 0.353984 0.176992 0.984212i \(-0.443363\pi\)
0.176992 + 0.984212i \(0.443363\pi\)
\(752\) 2.86374 + 4.96014i 0.104430 + 0.180878i
\(753\) −8.09407 4.67311i −0.294964 0.170298i
\(754\) 8.12047i 0.295730i
\(755\) 17.3193 9.99930i 0.630314 0.363912i
\(756\) 0.762169 + 1.32012i 0.0277198 + 0.0480121i
\(757\) 34.7640 20.0710i 1.26352 0.729493i 0.289765 0.957098i \(-0.406423\pi\)
0.973753 + 0.227605i \(0.0730896\pi\)
\(758\) −16.3866 9.46082i −0.595189 0.343633i
\(759\) −0.610128 0.352258i −0.0221463 0.0127861i
\(760\) −10.0599 + 5.80808i −0.364910 + 0.210681i
\(761\) 6.32370 + 10.9530i 0.229234 + 0.397045i 0.957581 0.288163i \(-0.0930445\pi\)
−0.728347 + 0.685208i \(0.759711\pi\)
\(762\) −16.5014 + 9.52710i −0.597784 + 0.345131i
\(763\) 21.6518i 0.783849i
\(764\) 12.6527 + 7.30506i 0.457760 + 0.264288i
\(765\) 0.621938 + 1.07723i 0.0224862 + 0.0389473i
\(766\) −22.7872 −0.823335
\(767\) −23.2573 −0.839774
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 24.5374i 0.884841i 0.896808 + 0.442420i \(0.145880\pi\)
−0.896808 + 0.442420i \(0.854120\pi\)
\(770\) 0.274930 0.476193i 0.00990779 0.0171608i
\(771\) 13.5980i 0.489721i
\(772\) 3.12772 + 1.80579i 0.112569 + 0.0649918i
\(773\) 19.9882 34.6206i 0.718925 1.24522i −0.242501 0.970151i \(-0.577968\pi\)
0.961426 0.275064i \(-0.0886990\pi\)
\(774\) −3.36879 + 5.83492i −0.121089 + 0.209732i
\(775\) −0.739198 + 0.426776i −0.0265528 + 0.0153303i
\(776\) −13.9407 −0.500443
\(777\) 6.50303 6.60939i 0.233295 0.237110i
\(778\) −15.3005 −0.548549
\(779\) 24.7497 14.2893i 0.886752 0.511966i
\(780\) −3.31205 + 5.73663i −0.118590 + 0.205404i
\(781\) 0.349160 0.604763i 0.0124939 0.0216401i
\(782\) 2.10391 + 1.21469i 0.0752357 + 0.0434374i
\(783\) 2.90818i 0.103930i
\(784\) 2.33820 4.04988i 0.0835070 0.144638i
\(785\) 15.4313i 0.550768i
\(786\) −7.15301 12.3894i −0.255139 0.441914i
\(787\) −2.64358 −0.0942336 −0.0471168 0.998889i \(-0.515003\pi\)
−0.0471168 + 0.998889i \(0.515003\pi\)
\(788\) 18.1431 0.646321
\(789\) −6.83638 11.8410i −0.243382 0.421549i
\(790\) 26.7936 + 15.4693i 0.953273 + 0.550372i
\(791\) 30.2679i 1.07620i
\(792\) 0.131685 0.0760282i 0.00467921 0.00270155i
\(793\) 11.8571 + 20.5371i 0.421058 + 0.729294i
\(794\) 19.5331 11.2774i 0.693204 0.400222i
\(795\) 6.49206 + 3.74819i 0.230250 + 0.132935i
\(796\) 11.3065 + 6.52783i 0.400749 + 0.231373i
\(797\) 12.0375 6.94987i 0.426391 0.246177i −0.271417 0.962462i \(-0.587492\pi\)
0.697808 + 0.716285i \(0.254159\pi\)
\(798\) −3.73205 6.46410i −0.132113 0.228827i
\(799\) −2.60079 + 1.50156i −0.0920092 + 0.0531215i
\(800\) 0.627719i 0.0221932i
\(801\) −11.2358 6.48697i −0.396996 0.229206i
\(802\) −12.5809 21.7908i −0.444249 0.769461i
\(803\) −1.10268 −0.0389129
\(804\) 11.8535 0.418040
\(805\) −8.37728 14.5099i −0.295260 0.511406i
\(806\) 3.79687i 0.133739i
\(807\) 0.608646 1.05421i 0.0214254 0.0371098i
\(808\) 2.85347i 0.100385i
\(809\) 40.2508 + 23.2388i 1.41514 + 0.817033i 0.995867 0.0908265i \(-0.0289509\pi\)
0.419275 + 0.907859i \(0.362284\pi\)
\(810\) 1.18614 2.05446i 0.0416767 0.0721862i
\(811\) −17.5523 + 30.4015i −0.616344 + 1.06754i 0.373803 + 0.927508i \(0.378054\pi\)
−0.990147 + 0.140032i \(0.955280\pi\)
\(812\) 3.83913 2.21652i 0.134727 0.0777847i
\(813\) −4.16675 −0.146134
\(814\) −0.659303 0.648693i −0.0231086 0.0227367i
\(815\) −16.1298 −0.565001
\(816\) −0.454090 + 0.262169i −0.0158963 + 0.00917775i
\(817\) 16.4957 28.5714i 0.577111 0.999586i
\(818\) −11.2313 + 19.4532i −0.392694 + 0.680166i
\(819\) −3.68614 2.12819i −0.128804 0.0743651i
\(820\) 13.8455i 0.483507i
\(821\) −26.8474 + 46.5011i −0.936982 + 1.62290i −0.165922 + 0.986139i \(0.553060\pi\)
−0.771060 + 0.636762i \(0.780273\pi\)
\(822\) 6.34916i 0.221452i
\(823\) 12.9401 + 22.4130i 0.451065 + 0.781267i 0.998452 0.0556124i \(-0.0177111\pi\)
−0.547388 + 0.836879i \(0.684378\pi\)
\(824\) −2.77615 −0.0967117
\(825\) −0.0954487 −0.00332310
\(826\) 6.34821 + 10.9954i 0.220882 + 0.382580i
\(827\) 16.1665 + 9.33372i 0.562163 + 0.324565i 0.754013 0.656859i \(-0.228115\pi\)
−0.191850 + 0.981424i \(0.561449\pi\)
\(828\) 4.63325i 0.161017i
\(829\) 45.3789 26.1995i 1.57607 0.909946i 0.580673 0.814137i \(-0.302790\pi\)
0.995400 0.0958090i \(-0.0305438\pi\)
\(830\) 14.9848 + 25.9545i 0.520130 + 0.900892i
\(831\) −23.7472 + 13.7105i −0.823783 + 0.475611i
\(832\) −2.41819 1.39614i −0.0838357 0.0484026i
\(833\) 2.12350 + 1.22601i 0.0735750 + 0.0424786i
\(834\) −3.07952 + 1.77796i −0.106635 + 0.0615658i
\(835\) 0.465329 + 0.805973i 0.0161034 + 0.0278918i
\(836\) −0.644810 + 0.372281i −0.0223012 + 0.0128756i
\(837\) 1.35977i 0.0470005i
\(838\) −19.3449 11.1688i −0.668259 0.385820i
\(839\) −10.7130 18.5554i −0.369853 0.640604i 0.619689 0.784847i \(-0.287259\pi\)
−0.989542 + 0.144243i \(0.953925\pi\)
\(840\) 3.61616 0.124769
\(841\) 20.5425 0.708362
\(842\) 12.1601 + 21.0619i 0.419064 + 0.725841i
\(843\) 15.4525i 0.532214i
\(844\) 0.0787937 0.136475i 0.00271219 0.00469765i
\(845\) 12.3433i 0.424622i
\(846\) 4.96014 + 2.86374i 0.170533 + 0.0984573i
\(847\) −8.36624 + 14.4907i −0.287467 + 0.497908i
\(848\) −1.57999 + 2.73663i −0.0542572 + 0.0939763i
\(849\) 16.2940 9.40736i 0.559209 0.322860i
\(850\) 0.329137 0.0112893
\(851\) −27.1626 + 7.51485i −0.931122 + 0.257606i
\(852\) 4.59251 0.157337
\(853\) −10.8579 + 6.26880i −0.371767 + 0.214640i −0.674230 0.738521i \(-0.735524\pi\)
0.302463 + 0.953161i \(0.402191\pi\)
\(854\) 6.47291 11.2114i 0.221499 0.383647i
\(855\) −5.80808 + 10.0599i −0.198632 + 0.344041i
\(856\) 16.4413 + 9.49241i 0.561953 + 0.324444i
\(857\) 9.15278i 0.312653i −0.987705 0.156327i \(-0.950035\pi\)
0.987705 0.156327i \(-0.0499652\pi\)
\(858\) −0.212293 + 0.367702i −0.00724755 + 0.0125531i
\(859\) 47.3135i 1.61432i 0.590335 + 0.807158i \(0.298996\pi\)
−0.590335 + 0.807158i \(0.701004\pi\)
\(860\) 7.99172 + 13.8421i 0.272515 + 0.472010i
\(861\) −8.89662 −0.303196
\(862\) 7.56885 0.257796
\(863\) −25.9200 44.8947i −0.882327 1.52824i −0.848747 0.528799i \(-0.822643\pi\)
−0.0335798 0.999436i \(-0.510691\pi\)
\(864\) 0.866025 + 0.500000i 0.0294628 + 0.0170103i
\(865\) 31.6274i 1.07536i
\(866\) −7.04194 + 4.06567i −0.239295 + 0.138157i
\(867\) 8.36253 + 14.4843i 0.284007 + 0.491914i
\(868\) 1.79505 1.03637i 0.0609280 0.0351768i
\(869\) 1.71739 + 0.991537i 0.0582586 + 0.0336356i
\(870\) −5.97473 3.44951i −0.202562 0.116949i
\(871\) −28.6640 + 16.5492i −0.971242 + 0.560747i
\(872\) 7.10204 + 12.3011i 0.240506 + 0.416568i
\(873\) −12.0730 + 6.97036i −0.408610 + 0.235911i
\(874\) 22.6873i 0.767408i
\(875\) 13.6926 + 7.90543i 0.462895 + 0.267252i
\(876\) −3.62590 6.28025i −0.122508 0.212190i
\(877\) −12.1192 −0.409238 −0.204619 0.978842i \(-0.565596\pi\)
−0.204619 + 0.978842i \(0.565596\pi\)
\(878\) −15.9273 −0.537519
\(879\) −13.4468 23.2905i −0.453548 0.785568i
\(880\) 0.360721i 0.0121599i
\(881\) −19.5794 + 33.9125i −0.659647 + 1.14254i 0.321060 + 0.947059i \(0.395961\pi\)
−0.980707 + 0.195483i \(0.937373\pi\)
\(882\) 4.67639i 0.157462i
\(883\) −36.4841 21.0641i −1.22779 0.708864i −0.261222 0.965279i \(-0.584125\pi\)
−0.966567 + 0.256415i \(0.917459\pi\)
\(884\) 0.732051 1.26795i 0.0246215 0.0426457i
\(885\) 9.87953 17.1118i 0.332097 0.575208i
\(886\) 21.6181 12.4812i 0.726273 0.419314i
\(887\) 25.2033 0.846245 0.423123 0.906072i \(-0.360934\pi\)
0.423123 + 0.906072i \(0.360934\pi\)
\(888\) 1.52663 5.88807i 0.0512303 0.197591i
\(889\) −29.0450 −0.974140
\(890\) −26.6544 + 15.3889i −0.893458 + 0.515838i
\(891\) 0.0760282 0.131685i 0.00254704 0.00441161i
\(892\) −6.77891 + 11.7414i −0.226975 + 0.393132i
\(893\) −24.2879 14.0226i −0.812763 0.469249i
\(894\) 0.964787i 0.0322673i
\(895\) 24.2178 41.9465i 0.809513 1.40212i
\(896\) 1.52434i 0.0509246i
\(897\) 6.46868 + 11.2041i 0.215983 + 0.374093i
\(898\) 7.76821 0.259229
\(899\) −3.95445 −0.131888
\(900\) −0.313859 0.543620i −0.0104620 0.0181207i
\(901\) −1.43492 0.828451i −0.0478041 0.0275997i
\(902\) 0.887460i 0.0295492i
\(903\) −8.89438 + 5.13518i −0.295987 + 0.170888i
\(904\) −9.92820 17.1962i −0.330207 0.571936i
\(905\) 3.82629 2.20911i 0.127190 0.0734333i
\(906\) 7.30069 + 4.21506i 0.242549 + 0.140036i
\(907\) 7.27399 + 4.19964i 0.241529 + 0.139447i 0.615879 0.787841i \(-0.288801\pi\)
−0.374350 + 0.927287i \(0.622134\pi\)
\(908\) 15.7297 9.08156i 0.522009 0.301382i
\(909\) 1.42674 + 2.47118i 0.0473219 + 0.0819639i
\(910\) −8.74456 + 5.04868i −0.289879 + 0.167362i
\(911\) 22.4588i 0.744092i −0.928214 0.372046i \(-0.878656\pi\)
0.928214 0.372046i \(-0.121344\pi\)
\(912\) −4.24060 2.44831i −0.140420 0.0810716i
\(913\) 0.960484 + 1.66361i 0.0317874 + 0.0550573i
\(914\) −36.4400 −1.20533
\(915\) −20.1472 −0.666046
\(916\) 11.3206 + 19.6078i 0.374043 + 0.647861i
\(917\) 21.8072i 0.720137i
\(918\) −0.262169 + 0.454090i −0.00865286 + 0.0149872i
\(919\) 18.5374i 0.611492i 0.952113 + 0.305746i \(0.0989058\pi\)
−0.952113 + 0.305746i \(0.901094\pi\)
\(920\) −9.51881 5.49569i −0.313826 0.181187i
\(921\) −8.34769 + 14.4586i −0.275066 + 0.476428i
\(922\) −14.0371 + 24.3130i −0.462288 + 0.800706i
\(923\) −11.1056 + 6.41180i −0.365544 + 0.211047i
\(924\) 0.231785 0.00762518
\(925\) −2.67793 + 2.72173i −0.0880499 + 0.0894899i
\(926\) 17.0234 0.559423
\(927\) −2.40421 + 1.38807i −0.0789647 + 0.0455903i
\(928\) 1.45409 2.51856i 0.0477328 0.0826757i
\(929\) −12.6898 + 21.9793i −0.416337 + 0.721118i −0.995568 0.0940462i \(-0.970020\pi\)
0.579230 + 0.815164i \(0.303353\pi\)
\(930\) −2.79359 1.61288i −0.0916053 0.0528883i
\(931\) 22.8985i 0.750469i
\(932\) 1.13048 1.95806i 0.0370302 0.0641383i
\(933\) 19.6885i 0.644572i
\(934\) 19.5809 + 33.9152i 0.640708 + 1.10974i
\(935\) 0.189140 0.00618552
\(936\) −2.79229 −0.0912688
\(937\) 1.35088 + 2.33979i 0.0441312 + 0.0764374i 0.887247 0.461294i \(-0.152615\pi\)
−0.843116 + 0.537732i \(0.819281\pi\)
\(938\) 15.6480 + 9.03435i 0.510924 + 0.294982i
\(939\) 17.4188i 0.568440i
\(940\) 11.7668 6.79359i 0.383792 0.221582i
\(941\) 21.6831 + 37.5563i 0.706850 + 1.22430i 0.966020 + 0.258468i \(0.0832176\pi\)
−0.259170 + 0.965832i \(0.583449\pi\)
\(942\) −5.63336 + 3.25242i −0.183545 + 0.105970i
\(943\) 23.4186 + 13.5207i 0.762613 + 0.440295i
\(944\) 7.21324 + 4.16457i 0.234771 + 0.135545i
\(945\) 3.13168 1.80808i 0.101874 0.0588168i
\(946\) 0.512246 + 0.887237i 0.0166546 + 0.0288466i
\(947\) −22.9311 + 13.2393i −0.745162 + 0.430219i −0.823943 0.566673i \(-0.808230\pi\)
0.0787813 + 0.996892i \(0.474897\pi\)
\(948\) 13.0417i 0.423575i
\(949\) 17.5363 + 10.1246i 0.569251 + 0.328657i
\(950\) 1.53685 + 2.66190i 0.0498620 + 0.0863635i
\(951\) −22.3407 −0.724447
\(952\) −0.799268 −0.0259044
\(953\) −19.5299 33.8267i −0.632635 1.09576i −0.987011 0.160652i \(-0.948640\pi\)
0.354377 0.935103i \(-0.384693\pi\)
\(954\) 3.15999i 0.102308i
\(955\) 17.3297 30.0159i 0.560775 0.971291i
\(956\) 7.96842i 0.257717i
\(957\) −0.382963 0.221104i −0.0123794 0.00714727i
\(958\) 3.05566 5.29255i 0.0987238 0.170995i
\(959\) −4.83913 + 8.38162i −0.156264 + 0.270657i
\(960\) 2.05446 1.18614i 0.0663073 0.0382825i
\(961\) 29.1510 0.940356
\(962\) 4.52892 + 16.3699i 0.146018 + 0.527786i
\(963\) 18.9848 0.611777
\(964\) 8.51459 4.91590i 0.274237 0.158331i
\(965\) 4.28384 7.41983i 0.137902 0.238853i
\(966\) 3.53132 6.11642i 0.113618 0.196793i
\(967\) −12.8538 7.42117i −0.413352 0.238649i 0.278877 0.960327i \(-0.410038\pi\)
−0.692229 + 0.721678i \(0.743371\pi\)
\(968\) 10.9769i 0.352810i
\(969\) 1.28374 2.22351i 0.0412397 0.0714293i
\(970\) 33.0713i 1.06186i
\(971\) 0.0922408 + 0.159766i 0.00296015 + 0.00512713i 0.867502 0.497434i \(-0.165724\pi\)
−0.864542 + 0.502561i \(0.832391\pi\)
\(972\) 1.00000 0.0320750
\(973\) −5.42043 −0.173771
\(974\) 13.5368 + 23.4465i 0.433749 + 0.751275i
\(975\) 1.51794 + 0.876385i 0.0486131 + 0.0280668i
\(976\) 8.49275i 0.271846i
\(977\) −48.9527 + 28.2629i −1.56614 + 0.904209i −0.569524 + 0.821975i \(0.692872\pi\)
−0.996613 + 0.0822343i \(0.973794\pi\)
\(978\) −3.39963 5.88834i −0.108708 0.188288i
\(979\) −1.70847 + 0.986386i −0.0546030 + 0.0315250i
\(980\) −9.60745 5.54686i −0.306899 0.177188i
\(981\) 12.3011 + 7.10204i 0.392744 + 0.226751i
\(982\) 4.80903 2.77649i 0.153462 0.0886015i
\(983\) −22.8146 39.5160i −0.727671 1.26036i −0.957865 0.287219i \(-0.907269\pi\)
0.230193 0.973145i \(-0.426064\pi\)
\(984\) −5.05446 + 2.91819i −0.161130 + 0.0930285i
\(985\) 43.0405i 1.37139i
\(986\) 1.32057 + 0.762434i 0.0420557 + 0.0242809i
\(987\) 4.36530 + 7.56092i 0.138949 + 0.240667i
\(988\) 13.6728 0.434989
\(989\) 31.2169 0.992640
\(990\) −0.180360 0.312393i −0.00573223 0.00992851i
\(991\) 54.7351i 1.73872i 0.494181 + 0.869359i \(0.335468\pi\)
−0.494181 + 0.869359i \(0.664532\pi\)
\(992\) 0.679885 1.17759i 0.0215864 0.0373887i
\(993\) 11.5842i 0.367612i
\(994\) 6.06264 + 3.50027i 0.192295 + 0.111022i
\(995\) 15.4858 26.8223i 0.490934 0.850323i
\(996\) −6.31662 + 10.9407i −0.200150 + 0.346670i
\(997\) −25.4594 + 14.6990i −0.806309 + 0.465523i −0.845672 0.533702i \(-0.820800\pi\)
0.0393637 + 0.999225i \(0.487467\pi\)
\(998\) −11.7116 −0.370724
\(999\) −1.62194 5.86253i −0.0513159 0.185482i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 222.2.j.b.85.3 8
3.2 odd 2 666.2.s.f.307.2 8
4.3 odd 2 1776.2.bz.i.529.2 8
37.8 odd 12 8214.2.a.ba.1.1 4
37.27 even 6 inner 222.2.j.b.175.3 yes 8
37.29 odd 12 8214.2.a.z.1.3 4
111.101 odd 6 666.2.s.f.397.2 8
148.27 odd 6 1776.2.bz.i.1729.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
222.2.j.b.85.3 8 1.1 even 1 trivial
222.2.j.b.175.3 yes 8 37.27 even 6 inner
666.2.s.f.307.2 8 3.2 odd 2
666.2.s.f.397.2 8 111.101 odd 6
1776.2.bz.i.529.2 8 4.3 odd 2
1776.2.bz.i.1729.2 8 148.27 odd 6
8214.2.a.z.1.3 4 37.29 odd 12
8214.2.a.ba.1.1 4 37.8 odd 12