Properties

Label 2214.2.i.b.901.6
Level $2214$
Weight $2$
Character 2214.901
Analytic conductor $17.679$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2214,2,Mod(901,2214)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2214, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2214.901"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2214 = 2 \cdot 3^{3} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2214.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.6788790075\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 738)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.6
Character \(\chi\) \(=\) 2214.901
Dual form 2214.2.i.b.1639.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.13494 + 1.96578i) q^{5} +(4.05054 - 2.33858i) q^{7} -1.00000 q^{8} -2.26989 q^{10} +(1.57221 - 0.907717i) q^{11} +(0.198711 + 0.114726i) q^{13} +(4.05054 + 2.33858i) q^{14} +(-0.500000 - 0.866025i) q^{16} +4.87362i q^{17} -2.36579i q^{19} +(-1.13494 - 1.96578i) q^{20} +(1.57221 + 0.907717i) q^{22} +(0.946744 - 1.63981i) q^{23} +(-0.0761995 - 0.131981i) q^{25} +0.229452i q^{26} +4.67716i q^{28} +(6.44774 - 3.72261i) q^{29} +(-0.460392 + 0.797423i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-4.22067 + 2.43681i) q^{34} +10.6166i q^{35} +3.19279 q^{37} +(2.04884 - 1.18290i) q^{38} +(1.13494 - 1.96578i) q^{40} +(5.11672 - 3.84956i) q^{41} +(0.638021 + 1.10508i) q^{43} +1.81543i q^{44} +1.89349 q^{46} +(-2.19645 + 1.26812i) q^{47} +(7.43793 - 12.8829i) q^{49} +(0.0761995 - 0.131981i) q^{50} +(-0.198711 + 0.114726i) q^{52} -2.66180i q^{53} +4.12083i q^{55} +(-4.05054 + 2.33858i) q^{56} +(6.44774 + 3.72261i) q^{58} +(-3.32786 + 5.76402i) q^{59} +(2.29239 + 3.97053i) q^{61} -0.920785 q^{62} +1.00000 q^{64} +(-0.451052 + 0.260415i) q^{65} +(-0.268210 - 0.154851i) q^{67} +(-4.22067 - 2.43681i) q^{68} +(-9.19428 + 5.30832i) q^{70} +11.0540i q^{71} +14.4770 q^{73} +(1.59640 + 2.76504i) q^{74} +(2.04884 + 1.18290i) q^{76} +(4.24554 - 7.35349i) q^{77} +(-8.28272 + 4.78203i) q^{79} +2.26989 q^{80} +(5.89218 + 2.50643i) q^{82} +(-0.426481 - 0.738686i) q^{83} +(-9.58047 - 5.53128i) q^{85} +(-0.638021 + 1.10508i) q^{86} +(-1.57221 + 0.907717i) q^{88} +11.1698i q^{89} +1.07318 q^{91} +(0.946744 + 1.63981i) q^{92} +(-2.19645 - 1.26812i) q^{94} +(4.65063 + 2.68504i) q^{95} +(7.13300 - 4.11824i) q^{97} +14.8759 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{2} - 18 q^{4} - 4 q^{5} - 36 q^{8} - 8 q^{10} - 18 q^{16} - 4 q^{20} + 4 q^{23} - 26 q^{25} + 8 q^{31} + 18 q^{32} - 60 q^{37} + 4 q^{40} + 6 q^{41} + 6 q^{43} + 8 q^{46} + 38 q^{49} + 26 q^{50}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2214\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.13494 + 1.96578i −0.507563 + 0.879124i 0.492399 + 0.870370i \(0.336120\pi\)
−0.999962 + 0.00875484i \(0.997213\pi\)
\(6\) 0 0
\(7\) 4.05054 2.33858i 1.53096 0.883901i 0.531643 0.846968i \(-0.321575\pi\)
0.999318 0.0369322i \(-0.0117586\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.26989 −0.717802
\(11\) 1.57221 0.907717i 0.474040 0.273687i −0.243890 0.969803i \(-0.578423\pi\)
0.717929 + 0.696116i \(0.245090\pi\)
\(12\) 0 0
\(13\) 0.198711 + 0.114726i 0.0551125 + 0.0318192i 0.527303 0.849677i \(-0.323203\pi\)
−0.472191 + 0.881497i \(0.656537\pi\)
\(14\) 4.05054 + 2.33858i 1.08255 + 0.625012i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.87362i 1.18203i 0.806662 + 0.591013i \(0.201272\pi\)
−0.806662 + 0.591013i \(0.798728\pi\)
\(18\) 0 0
\(19\) 2.36579i 0.542750i −0.962474 0.271375i \(-0.912522\pi\)
0.962474 0.271375i \(-0.0874783\pi\)
\(20\) −1.13494 1.96578i −0.253781 0.439562i
\(21\) 0 0
\(22\) 1.57221 + 0.907717i 0.335197 + 0.193526i
\(23\) 0.946744 1.63981i 0.197410 0.341924i −0.750278 0.661122i \(-0.770080\pi\)
0.947688 + 0.319199i \(0.103414\pi\)
\(24\) 0 0
\(25\) −0.0761995 0.131981i −0.0152399 0.0263963i
\(26\) 0.229452i 0.0449992i
\(27\) 0 0
\(28\) 4.67716i 0.883901i
\(29\) 6.44774 3.72261i 1.19732 0.691271i 0.237360 0.971422i \(-0.423718\pi\)
0.959956 + 0.280151i \(0.0903846\pi\)
\(30\) 0 0
\(31\) −0.460392 + 0.797423i −0.0826889 + 0.143221i −0.904404 0.426677i \(-0.859684\pi\)
0.821715 + 0.569898i \(0.193017\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −4.22067 + 2.43681i −0.723840 + 0.417909i
\(35\) 10.6166i 1.79454i
\(36\) 0 0
\(37\) 3.19279 0.524892 0.262446 0.964947i \(-0.415471\pi\)
0.262446 + 0.964947i \(0.415471\pi\)
\(38\) 2.04884 1.18290i 0.332365 0.191891i
\(39\) 0 0
\(40\) 1.13494 1.96578i 0.179451 0.310817i
\(41\) 5.11672 3.84956i 0.799098 0.601201i
\(42\) 0 0
\(43\) 0.638021 + 1.10508i 0.0972973 + 0.168524i 0.910565 0.413366i \(-0.135647\pi\)
−0.813268 + 0.581890i \(0.802314\pi\)
\(44\) 1.81543i 0.273687i
\(45\) 0 0
\(46\) 1.89349 0.279180
\(47\) −2.19645 + 1.26812i −0.320385 + 0.184975i −0.651564 0.758593i \(-0.725887\pi\)
0.331179 + 0.943568i \(0.392554\pi\)
\(48\) 0 0
\(49\) 7.43793 12.8829i 1.06256 1.84041i
\(50\) 0.0761995 0.131981i 0.0107762 0.0186650i
\(51\) 0 0
\(52\) −0.198711 + 0.114726i −0.0275563 + 0.0159096i
\(53\) 2.66180i 0.365626i −0.983148 0.182813i \(-0.941480\pi\)
0.983148 0.182813i \(-0.0585203\pi\)
\(54\) 0 0
\(55\) 4.12083i 0.555653i
\(56\) −4.05054 + 2.33858i −0.541276 + 0.312506i
\(57\) 0 0
\(58\) 6.44774 + 3.72261i 0.846630 + 0.488802i
\(59\) −3.32786 + 5.76402i −0.433251 + 0.750412i −0.997151 0.0754307i \(-0.975967\pi\)
0.563900 + 0.825843i \(0.309300\pi\)
\(60\) 0 0
\(61\) 2.29239 + 3.97053i 0.293510 + 0.508375i 0.974637 0.223791i \(-0.0718432\pi\)
−0.681127 + 0.732165i \(0.738510\pi\)
\(62\) −0.920785 −0.116940
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.451052 + 0.260415i −0.0559462 + 0.0323005i
\(66\) 0 0
\(67\) −0.268210 0.154851i −0.0327671 0.0189181i 0.483527 0.875329i \(-0.339356\pi\)
−0.516294 + 0.856411i \(0.672689\pi\)
\(68\) −4.22067 2.43681i −0.511832 0.295506i
\(69\) 0 0
\(70\) −9.19428 + 5.30832i −1.09893 + 0.634466i
\(71\) 11.0540i 1.31187i 0.754818 + 0.655935i \(0.227725\pi\)
−0.754818 + 0.655935i \(0.772275\pi\)
\(72\) 0 0
\(73\) 14.4770 1.69440 0.847200 0.531274i \(-0.178287\pi\)
0.847200 + 0.531274i \(0.178287\pi\)
\(74\) 1.59640 + 2.76504i 0.185577 + 0.321429i
\(75\) 0 0
\(76\) 2.04884 + 1.18290i 0.235018 + 0.135687i
\(77\) 4.24554 7.35349i 0.483824 0.838008i
\(78\) 0 0
\(79\) −8.28272 + 4.78203i −0.931879 + 0.538021i −0.887405 0.460990i \(-0.847494\pi\)
−0.0444736 + 0.999011i \(0.514161\pi\)
\(80\) 2.26989 0.253781
\(81\) 0 0
\(82\) 5.89218 + 2.50643i 0.650683 + 0.276789i
\(83\) −0.426481 0.738686i −0.0468124 0.0810814i 0.841670 0.539993i \(-0.181573\pi\)
−0.888482 + 0.458911i \(0.848240\pi\)
\(84\) 0 0
\(85\) −9.58047 5.53128i −1.03915 0.599952i
\(86\) −0.638021 + 1.10508i −0.0687996 + 0.119164i
\(87\) 0 0
\(88\) −1.57221 + 0.907717i −0.167598 + 0.0967629i
\(89\) 11.1698i 1.18399i 0.805941 + 0.591996i \(0.201660\pi\)
−0.805941 + 0.591996i \(0.798340\pi\)
\(90\) 0 0
\(91\) 1.07318 0.112500
\(92\) 0.946744 + 1.63981i 0.0987049 + 0.170962i
\(93\) 0 0
\(94\) −2.19645 1.26812i −0.226547 0.130797i
\(95\) 4.65063 + 2.68504i 0.477145 + 0.275480i
\(96\) 0 0
\(97\) 7.13300 4.11824i 0.724247 0.418144i −0.0920670 0.995753i \(-0.529347\pi\)
0.816314 + 0.577609i \(0.196014\pi\)
\(98\) 14.8759 1.50269
\(99\) 0 0
\(100\) 0.152399 0.0152399
\(101\) 10.8456 6.26169i 1.07917 0.623062i 0.148501 0.988912i \(-0.452555\pi\)
0.930674 + 0.365850i \(0.119222\pi\)
\(102\) 0 0
\(103\) −5.50767 + 9.53956i −0.542687 + 0.939961i 0.456062 + 0.889948i \(0.349260\pi\)
−0.998749 + 0.0500128i \(0.984074\pi\)
\(104\) −0.198711 0.114726i −0.0194852 0.0112498i
\(105\) 0 0
\(106\) 2.30518 1.33090i 0.223899 0.129268i
\(107\) −14.8306 −1.43373 −0.716864 0.697213i \(-0.754423\pi\)
−0.716864 + 0.697213i \(0.754423\pi\)
\(108\) 0 0
\(109\) 12.9298i 1.23845i 0.785212 + 0.619227i \(0.212554\pi\)
−0.785212 + 0.619227i \(0.787446\pi\)
\(110\) −3.56875 + 2.06042i −0.340267 + 0.196453i
\(111\) 0 0
\(112\) −4.05054 2.33858i −0.382740 0.220975i
\(113\) 6.85832 11.8790i 0.645177 1.11748i −0.339084 0.940756i \(-0.610117\pi\)
0.984261 0.176722i \(-0.0565495\pi\)
\(114\) 0 0
\(115\) 2.14900 + 3.72219i 0.200396 + 0.347096i
\(116\) 7.44521i 0.691271i
\(117\) 0 0
\(118\) −6.65572 −0.612709
\(119\) 11.3973 + 19.7408i 1.04479 + 1.80963i
\(120\) 0 0
\(121\) −3.85210 + 6.67203i −0.350191 + 0.606549i
\(122\) −2.29239 + 3.97053i −0.207543 + 0.359475i
\(123\) 0 0
\(124\) −0.460392 0.797423i −0.0413444 0.0716107i
\(125\) −11.0035 −0.984185
\(126\) 0 0
\(127\) −19.9207 −1.76768 −0.883838 0.467793i \(-0.845049\pi\)
−0.883838 + 0.467793i \(0.845049\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −0.451052 0.260415i −0.0395599 0.0228399i
\(131\) 11.0328 19.1093i 0.963937 1.66959i 0.251494 0.967859i \(-0.419078\pi\)
0.712443 0.701730i \(-0.247589\pi\)
\(132\) 0 0
\(133\) −5.53260 9.58274i −0.479737 0.830929i
\(134\) 0.309702i 0.0267542i
\(135\) 0 0
\(136\) 4.87362i 0.417909i
\(137\) −17.9752 + 10.3780i −1.53572 + 0.886651i −0.536642 + 0.843810i \(0.680308\pi\)
−0.999082 + 0.0428410i \(0.986359\pi\)
\(138\) 0 0
\(139\) −8.74795 + 15.1519i −0.741992 + 1.28517i 0.209596 + 0.977788i \(0.432785\pi\)
−0.951587 + 0.307379i \(0.900548\pi\)
\(140\) −9.19428 5.30832i −0.777059 0.448635i
\(141\) 0 0
\(142\) −9.57305 + 5.52700i −0.803353 + 0.463816i
\(143\) 0.416554 0.0348340
\(144\) 0 0
\(145\) 16.8998i 1.40345i
\(146\) 7.23848 + 12.5374i 0.599061 + 1.03760i
\(147\) 0 0
\(148\) −1.59640 + 2.76504i −0.131223 + 0.227285i
\(149\) 7.52980 + 4.34733i 0.616866 + 0.356148i 0.775648 0.631166i \(-0.217423\pi\)
−0.158782 + 0.987314i \(0.550757\pi\)
\(150\) 0 0
\(151\) −2.51055 + 1.44947i −0.204306 + 0.117956i −0.598662 0.801002i \(-0.704301\pi\)
0.394357 + 0.918957i \(0.370967\pi\)
\(152\) 2.36579i 0.191891i
\(153\) 0 0
\(154\) 8.49108 0.684230
\(155\) −1.04504 1.81006i −0.0839396 0.145388i
\(156\) 0 0
\(157\) 12.0274 + 6.94403i 0.959892 + 0.554194i 0.896140 0.443772i \(-0.146360\pi\)
0.0637520 + 0.997966i \(0.479693\pi\)
\(158\) −8.28272 4.78203i −0.658938 0.380438i
\(159\) 0 0
\(160\) 1.13494 + 1.96578i 0.0897253 + 0.155409i
\(161\) 8.85615i 0.697963i
\(162\) 0 0
\(163\) −12.3060 −0.963881 −0.481940 0.876204i \(-0.660068\pi\)
−0.481940 + 0.876204i \(0.660068\pi\)
\(164\) 0.775456 + 6.35599i 0.0605529 + 0.496320i
\(165\) 0 0
\(166\) 0.426481 0.738686i 0.0331013 0.0573332i
\(167\) 11.9934 + 6.92439i 0.928076 + 0.535825i 0.886203 0.463298i \(-0.153334\pi\)
0.0418736 + 0.999123i \(0.486667\pi\)
\(168\) 0 0
\(169\) −6.47368 11.2127i −0.497975 0.862518i
\(170\) 11.0626i 0.848460i
\(171\) 0 0
\(172\) −1.27604 −0.0972973
\(173\) −3.53125 6.11630i −0.268476 0.465013i 0.699993 0.714150i \(-0.253187\pi\)
−0.968468 + 0.249137i \(0.919853\pi\)
\(174\) 0 0
\(175\) −0.617298 0.356397i −0.0466634 0.0269411i
\(176\) −1.57221 0.907717i −0.118510 0.0684217i
\(177\) 0 0
\(178\) −9.67329 + 5.58488i −0.725044 + 0.418604i
\(179\) 0.495257i 0.0370172i 0.999829 + 0.0185086i \(0.00589181\pi\)
−0.999829 + 0.0185086i \(0.994108\pi\)
\(180\) 0 0
\(181\) 12.1145i 0.900466i −0.892911 0.450233i \(-0.851341\pi\)
0.892911 0.450233i \(-0.148659\pi\)
\(182\) 0.536592 + 0.929404i 0.0397748 + 0.0688920i
\(183\) 0 0
\(184\) −0.946744 + 1.63981i −0.0697949 + 0.120888i
\(185\) −3.62364 + 6.27633i −0.266416 + 0.461445i
\(186\) 0 0
\(187\) 4.42386 + 7.66235i 0.323505 + 0.560327i
\(188\) 2.53624i 0.184975i
\(189\) 0 0
\(190\) 5.37008i 0.389587i
\(191\) 20.2474 11.6898i 1.46505 0.845847i 0.465813 0.884883i \(-0.345762\pi\)
0.999238 + 0.0390358i \(0.0124286\pi\)
\(192\) 0 0
\(193\) −5.47675 3.16200i −0.394225 0.227606i 0.289764 0.957098i \(-0.406423\pi\)
−0.683989 + 0.729492i \(0.739756\pi\)
\(194\) 7.13300 + 4.11824i 0.512120 + 0.295672i
\(195\) 0 0
\(196\) 7.43793 + 12.8829i 0.531280 + 0.920205i
\(197\) 10.3632 0.738351 0.369175 0.929360i \(-0.379640\pi\)
0.369175 + 0.929360i \(0.379640\pi\)
\(198\) 0 0
\(199\) 13.3331i 0.945160i −0.881288 0.472580i \(-0.843323\pi\)
0.881288 0.472580i \(-0.156677\pi\)
\(200\) 0.0761995 + 0.131981i 0.00538812 + 0.00933249i
\(201\) 0 0
\(202\) 10.8456 + 6.26169i 0.763092 + 0.440571i
\(203\) 17.4112 30.1571i 1.22203 2.11662i
\(204\) 0 0
\(205\) 1.76020 + 14.4274i 0.122938 + 1.00765i
\(206\) −11.0153 −0.767475
\(207\) 0 0
\(208\) 0.229452i 0.0159096i
\(209\) −2.14747 3.71952i −0.148543 0.257285i
\(210\) 0 0
\(211\) −3.05349 1.76293i −0.210211 0.121365i 0.391198 0.920306i \(-0.372061\pi\)
−0.601409 + 0.798941i \(0.705394\pi\)
\(212\) 2.30518 + 1.33090i 0.158321 + 0.0914065i
\(213\) 0 0
\(214\) −7.41530 12.8437i −0.506900 0.877976i
\(215\) −2.89647 −0.197538
\(216\) 0 0
\(217\) 4.30666i 0.292355i
\(218\) −11.1976 + 6.46492i −0.758395 + 0.437859i
\(219\) 0 0
\(220\) −3.56875 2.06042i −0.240605 0.138913i
\(221\) −0.559130 + 0.968442i −0.0376112 + 0.0651444i
\(222\) 0 0
\(223\) 10.8103 + 18.7239i 0.723909 + 1.25385i 0.959421 + 0.281976i \(0.0909898\pi\)
−0.235512 + 0.971871i \(0.575677\pi\)
\(224\) 4.67716i 0.312506i
\(225\) 0 0
\(226\) 13.7166 0.912417
\(227\) 4.54274 2.62275i 0.301513 0.174078i −0.341610 0.939842i \(-0.610972\pi\)
0.643122 + 0.765764i \(0.277639\pi\)
\(228\) 0 0
\(229\) 6.66016 + 3.84524i 0.440116 + 0.254101i 0.703647 0.710550i \(-0.251554\pi\)
−0.263531 + 0.964651i \(0.584887\pi\)
\(230\) −2.14900 + 3.72219i −0.141701 + 0.245434i
\(231\) 0 0
\(232\) −6.44774 + 3.72261i −0.423315 + 0.244401i
\(233\) 11.2106i 0.734433i −0.930136 0.367216i \(-0.880311\pi\)
0.930136 0.367216i \(-0.119689\pi\)
\(234\) 0 0
\(235\) 5.75699i 0.375545i
\(236\) −3.32786 5.76402i −0.216625 0.375206i
\(237\) 0 0
\(238\) −11.3973 + 19.7408i −0.738780 + 1.27960i
\(239\) −7.06868 4.08110i −0.457235 0.263985i 0.253646 0.967297i \(-0.418370\pi\)
−0.710881 + 0.703313i \(0.751703\pi\)
\(240\) 0 0
\(241\) −8.85183 15.3318i −0.570196 0.987609i −0.996545 0.0830502i \(-0.973534\pi\)
0.426349 0.904559i \(-0.359800\pi\)
\(242\) −7.70420 −0.495245
\(243\) 0 0
\(244\) −4.58478 −0.293510
\(245\) 16.8833 + 29.2427i 1.07863 + 1.86825i
\(246\) 0 0
\(247\) 0.271418 0.470109i 0.0172699 0.0299123i
\(248\) 0.460392 0.797423i 0.0292349 0.0506364i
\(249\) 0 0
\(250\) −5.50176 9.52933i −0.347962 0.602688i
\(251\) −11.8754 −0.749570 −0.374785 0.927112i \(-0.622283\pi\)
−0.374785 + 0.927112i \(0.622283\pi\)
\(252\) 0 0
\(253\) 3.43750i 0.216114i
\(254\) −9.96035 17.2518i −0.624968 1.08248i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 26.4839 + 15.2905i 1.65202 + 0.953793i 0.976241 + 0.216685i \(0.0695246\pi\)
0.675776 + 0.737107i \(0.263809\pi\)
\(258\) 0 0
\(259\) 12.9325 7.46661i 0.803589 0.463952i
\(260\) 0.520830i 0.0323005i
\(261\) 0 0
\(262\) 22.0655 1.36321
\(263\) 7.67620 4.43186i 0.473335 0.273280i −0.244300 0.969700i \(-0.578558\pi\)
0.717635 + 0.696420i \(0.245225\pi\)
\(264\) 0 0
\(265\) 5.23251 + 3.02099i 0.321431 + 0.185578i
\(266\) 5.53260 9.58274i 0.339225 0.587555i
\(267\) 0 0
\(268\) 0.268210 0.154851i 0.0163835 0.00945903i
\(269\) −9.90420 −0.603870 −0.301935 0.953329i \(-0.597633\pi\)
−0.301935 + 0.953329i \(0.597633\pi\)
\(270\) 0 0
\(271\) 23.5691 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(272\) 4.22067 2.43681i 0.255916 0.147753i
\(273\) 0 0
\(274\) −17.9752 10.3780i −1.08592 0.626957i
\(275\) −0.239603 0.138335i −0.0144486 0.00834192i
\(276\) 0 0
\(277\) −6.55204 11.3485i −0.393674 0.681864i 0.599257 0.800557i \(-0.295463\pi\)
−0.992931 + 0.118693i \(0.962129\pi\)
\(278\) −17.4959 −1.04933
\(279\) 0 0
\(280\) 10.6166i 0.634466i
\(281\) 5.76890 3.33068i 0.344144 0.198691i −0.317959 0.948104i \(-0.602998\pi\)
0.662103 + 0.749413i \(0.269664\pi\)
\(282\) 0 0
\(283\) 8.23872 14.2699i 0.489741 0.848256i −0.510189 0.860062i \(-0.670425\pi\)
0.999930 + 0.0118060i \(0.00375806\pi\)
\(284\) −9.57305 5.52700i −0.568056 0.327967i
\(285\) 0 0
\(286\) 0.208277 + 0.360747i 0.0123157 + 0.0213314i
\(287\) 11.7230 27.5587i 0.691986 1.62674i
\(288\) 0 0
\(289\) −6.75213 −0.397184
\(290\) −14.6357 + 8.44990i −0.859436 + 0.496195i
\(291\) 0 0
\(292\) −7.23848 + 12.5374i −0.423600 + 0.733697i
\(293\) −17.3990 10.0453i −1.01646 0.586855i −0.103385 0.994641i \(-0.532967\pi\)
−0.913077 + 0.407787i \(0.866301\pi\)
\(294\) 0 0
\(295\) −7.55388 13.0837i −0.439804 0.761762i
\(296\) −3.19279 −0.185577
\(297\) 0 0
\(298\) 8.69467i 0.503669i
\(299\) 0.376257 0.217232i 0.0217595 0.0125629i
\(300\) 0 0
\(301\) 5.16866 + 2.98413i 0.297917 + 0.172002i
\(302\) −2.51055 1.44947i −0.144466 0.0834074i
\(303\) 0 0
\(304\) −2.04884 + 1.18290i −0.117509 + 0.0678437i
\(305\) −10.4069 −0.595900
\(306\) 0 0
\(307\) −3.85257 −0.219878 −0.109939 0.993938i \(-0.535065\pi\)
−0.109939 + 0.993938i \(0.535065\pi\)
\(308\) 4.24554 + 7.35349i 0.241912 + 0.419004i
\(309\) 0 0
\(310\) 1.04504 1.81006i 0.0593543 0.102805i
\(311\) −12.8184 7.40068i −0.726862 0.419654i 0.0904109 0.995905i \(-0.471182\pi\)
−0.817273 + 0.576250i \(0.804515\pi\)
\(312\) 0 0
\(313\) 17.7169 10.2288i 1.00142 0.578168i 0.0927496 0.995689i \(-0.470434\pi\)
0.908667 + 0.417521i \(0.137101\pi\)
\(314\) 13.8881i 0.783748i
\(315\) 0 0
\(316\) 9.56406i 0.538021i
\(317\) −4.00247 + 2.31083i −0.224801 + 0.129789i −0.608171 0.793806i \(-0.708097\pi\)
0.383370 + 0.923595i \(0.374763\pi\)
\(318\) 0 0
\(319\) 6.75814 11.7054i 0.378383 0.655379i
\(320\) −1.13494 + 1.96578i −0.0634453 + 0.109891i
\(321\) 0 0
\(322\) 7.66965 4.42808i 0.427413 0.246767i
\(323\) 11.5300 0.641544
\(324\) 0 0
\(325\) 0.0349682i 0.00193969i
\(326\) −6.15300 10.6573i −0.340783 0.590254i
\(327\) 0 0
\(328\) −5.11672 + 3.84956i −0.282524 + 0.212556i
\(329\) −5.93121 + 10.2732i −0.326998 + 0.566378i
\(330\) 0 0
\(331\) −12.4712 + 7.20025i −0.685479 + 0.395761i −0.801916 0.597437i \(-0.796186\pi\)
0.116437 + 0.993198i \(0.462853\pi\)
\(332\) 0.852962 0.0468124
\(333\) 0 0
\(334\) 13.8488i 0.757771i
\(335\) 0.608807 0.351495i 0.0332627 0.0192042i
\(336\) 0 0
\(337\) 15.4958 26.8395i 0.844111 1.46204i −0.0422807 0.999106i \(-0.513462\pi\)
0.886391 0.462937i \(-0.153204\pi\)
\(338\) 6.47368 11.2127i 0.352122 0.609892i
\(339\) 0 0
\(340\) 9.58047 5.53128i 0.519574 0.299976i
\(341\) 1.67162i 0.0905235i
\(342\) 0 0
\(343\) 36.8366i 1.98899i
\(344\) −0.638021 1.10508i −0.0343998 0.0595822i
\(345\) 0 0
\(346\) 3.53125 6.11630i 0.189841 0.328814i
\(347\) −27.0689 15.6283i −1.45314 0.838969i −0.454478 0.890758i \(-0.650174\pi\)
−0.998658 + 0.0517890i \(0.983508\pi\)
\(348\) 0 0
\(349\) −15.9676 27.6567i −0.854725 1.48043i −0.876900 0.480673i \(-0.840392\pi\)
0.0221745 0.999754i \(-0.492941\pi\)
\(350\) 0.712795i 0.0381005i
\(351\) 0 0
\(352\) 1.81543i 0.0967629i
\(353\) 0.174178 + 0.301685i 0.00927056 + 0.0160571i 0.870623 0.491950i \(-0.163716\pi\)
−0.861353 + 0.508007i \(0.830382\pi\)
\(354\) 0 0
\(355\) −21.7298 12.5457i −1.15330 0.665856i
\(356\) −9.67329 5.58488i −0.512684 0.295998i
\(357\) 0 0
\(358\) −0.428905 + 0.247629i −0.0226683 + 0.0130876i
\(359\) −16.4128 −0.866236 −0.433118 0.901337i \(-0.642587\pi\)
−0.433118 + 0.901337i \(0.642587\pi\)
\(360\) 0 0
\(361\) 13.4030 0.705423
\(362\) 10.4915 6.05727i 0.551421 0.318363i
\(363\) 0 0
\(364\) −0.536592 + 0.929404i −0.0281251 + 0.0487140i
\(365\) −16.4305 + 28.4585i −0.860014 + 1.48959i
\(366\) 0 0
\(367\) −0.716065 1.24026i −0.0373783 0.0647411i 0.846731 0.532021i \(-0.178567\pi\)
−0.884109 + 0.467280i \(0.845234\pi\)
\(368\) −1.89349 −0.0987049
\(369\) 0 0
\(370\) −7.24729 −0.376769
\(371\) −6.22483 10.7817i −0.323177 0.559759i
\(372\) 0 0
\(373\) −1.38459 + 2.39818i −0.0716915 + 0.124173i −0.899643 0.436627i \(-0.856173\pi\)
0.827951 + 0.560800i \(0.189506\pi\)
\(374\) −4.42386 + 7.66235i −0.228752 + 0.396211i
\(375\) 0 0
\(376\) 2.19645 1.26812i 0.113273 0.0653984i
\(377\) 1.70832 0.0879828
\(378\) 0 0
\(379\) −31.8314 −1.63507 −0.817535 0.575879i \(-0.804660\pi\)
−0.817535 + 0.575879i \(0.804660\pi\)
\(380\) −4.65063 + 2.68504i −0.238572 + 0.137740i
\(381\) 0 0
\(382\) 20.2474 + 11.6898i 1.03595 + 0.598104i
\(383\) 8.07725 + 4.66340i 0.412728 + 0.238289i 0.691961 0.721935i \(-0.256747\pi\)
−0.279233 + 0.960223i \(0.590080\pi\)
\(384\) 0 0
\(385\) 9.63690 + 16.6916i 0.491142 + 0.850683i
\(386\) 6.32401i 0.321883i
\(387\) 0 0
\(388\) 8.23648i 0.418144i
\(389\) 3.56411 + 6.17321i 0.180707 + 0.312994i 0.942122 0.335271i \(-0.108828\pi\)
−0.761414 + 0.648266i \(0.775495\pi\)
\(390\) 0 0
\(391\) 7.99180 + 4.61407i 0.404163 + 0.233343i
\(392\) −7.43793 + 12.8829i −0.375672 + 0.650683i
\(393\) 0 0
\(394\) 5.18162 + 8.97484i 0.261046 + 0.452146i
\(395\) 21.7094i 1.09232i
\(396\) 0 0
\(397\) 31.2555i 1.56867i −0.620339 0.784334i \(-0.713005\pi\)
0.620339 0.784334i \(-0.286995\pi\)
\(398\) 11.5468 6.66656i 0.578790 0.334164i
\(399\) 0 0
\(400\) −0.0761995 + 0.131981i −0.00380997 + 0.00659907i
\(401\) −7.03829 + 12.1907i −0.351475 + 0.608773i −0.986508 0.163712i \(-0.947653\pi\)
0.635033 + 0.772485i \(0.280987\pi\)
\(402\) 0 0
\(403\) −0.182970 + 0.105638i −0.00911439 + 0.00526220i
\(404\) 12.5234i 0.623062i
\(405\) 0 0
\(406\) 34.8225 1.72821
\(407\) 5.01974 2.89815i 0.248820 0.143656i
\(408\) 0 0
\(409\) −6.18056 + 10.7050i −0.305609 + 0.529330i −0.977397 0.211413i \(-0.932193\pi\)
0.671788 + 0.740744i \(0.265527\pi\)
\(410\) −11.6144 + 8.73808i −0.573594 + 0.431543i
\(411\) 0 0
\(412\) −5.50767 9.53956i −0.271343 0.469980i
\(413\) 31.1299i 1.53180i
\(414\) 0 0
\(415\) 1.93613 0.0950408
\(416\) 0.198711 0.114726i 0.00974261 0.00562490i
\(417\) 0 0
\(418\) 2.14747 3.71952i 0.105036 0.181928i
\(419\) 2.41507 4.18302i 0.117984 0.204354i −0.800985 0.598685i \(-0.795690\pi\)
0.918969 + 0.394331i \(0.129024\pi\)
\(420\) 0 0
\(421\) 6.14525 3.54796i 0.299501 0.172917i −0.342718 0.939438i \(-0.611347\pi\)
0.642219 + 0.766521i \(0.278014\pi\)
\(422\) 3.52587i 0.171637i
\(423\) 0 0
\(424\) 2.66180i 0.129268i
\(425\) 0.643226 0.371367i 0.0312011 0.0180139i
\(426\) 0 0
\(427\) 18.5708 + 10.7219i 0.898705 + 0.518868i
\(428\) 7.41530 12.8437i 0.358432 0.620823i
\(429\) 0 0
\(430\) −1.44824 2.50842i −0.0698402 0.120967i
\(431\) 4.65150 0.224055 0.112027 0.993705i \(-0.464266\pi\)
0.112027 + 0.993705i \(0.464266\pi\)
\(432\) 0 0
\(433\) 19.0392 0.914967 0.457483 0.889218i \(-0.348751\pi\)
0.457483 + 0.889218i \(0.348751\pi\)
\(434\) −3.72968 + 2.15333i −0.179030 + 0.103363i
\(435\) 0 0
\(436\) −11.1976 6.46492i −0.536266 0.309613i
\(437\) −3.87945 2.23980i −0.185579 0.107144i
\(438\) 0 0
\(439\) −30.9160 + 17.8493i −1.47554 + 0.851902i −0.999619 0.0275867i \(-0.991218\pi\)
−0.475919 + 0.879489i \(0.657884\pi\)
\(440\) 4.12083i 0.196453i
\(441\) 0 0
\(442\) −1.11826 −0.0531902
\(443\) 16.1081 + 27.9000i 0.765318 + 1.32557i 0.940078 + 0.340959i \(0.110752\pi\)
−0.174760 + 0.984611i \(0.555915\pi\)
\(444\) 0 0
\(445\) −21.9573 12.6771i −1.04088 0.600950i
\(446\) −10.8103 + 18.7239i −0.511881 + 0.886604i
\(447\) 0 0
\(448\) 4.05054 2.33858i 0.191370 0.110488i
\(449\) 5.88404 0.277685 0.138843 0.990314i \(-0.455662\pi\)
0.138843 + 0.990314i \(0.455662\pi\)
\(450\) 0 0
\(451\) 4.55026 10.6969i 0.214263 0.503695i
\(452\) 6.85832 + 11.8790i 0.322588 + 0.558739i
\(453\) 0 0
\(454\) 4.54274 + 2.62275i 0.213202 + 0.123092i
\(455\) −1.21800 + 2.10964i −0.0571009 + 0.0989017i
\(456\) 0 0
\(457\) 11.2356 6.48687i 0.525579 0.303443i −0.213635 0.976913i \(-0.568530\pi\)
0.739214 + 0.673470i \(0.235197\pi\)
\(458\) 7.69049i 0.359353i
\(459\) 0 0
\(460\) −4.29801 −0.200396
\(461\) −16.9376 29.3368i −0.788863 1.36635i −0.926664 0.375891i \(-0.877337\pi\)
0.137800 0.990460i \(-0.455997\pi\)
\(462\) 0 0
\(463\) −25.9941 15.0077i −1.20805 0.697468i −0.245717 0.969342i \(-0.579023\pi\)
−0.962333 + 0.271874i \(0.912357\pi\)
\(464\) −6.44774 3.72261i −0.299329 0.172818i
\(465\) 0 0
\(466\) 9.70869 5.60531i 0.449746 0.259661i
\(467\) −13.0504 −0.603900 −0.301950 0.953324i \(-0.597638\pi\)
−0.301950 + 0.953324i \(0.597638\pi\)
\(468\) 0 0
\(469\) −1.44853 −0.0668868
\(470\) 4.98570 2.87850i 0.229973 0.132775i
\(471\) 0 0
\(472\) 3.32786 5.76402i 0.153177 0.265311i
\(473\) 2.00621 + 1.15828i 0.0922455 + 0.0532580i
\(474\) 0 0
\(475\) −0.312240 + 0.180272i −0.0143266 + 0.00827145i
\(476\) −22.7947 −1.04479
\(477\) 0 0
\(478\) 8.16220i 0.373331i
\(479\) −2.68307 + 1.54907i −0.122593 + 0.0707790i −0.560042 0.828464i \(-0.689215\pi\)
0.437450 + 0.899243i \(0.355882\pi\)
\(480\) 0 0
\(481\) 0.634443 + 0.366296i 0.0289281 + 0.0167017i
\(482\) 8.85183 15.3318i 0.403190 0.698345i
\(483\) 0 0
\(484\) −3.85210 6.67203i −0.175096 0.303274i
\(485\) 18.6959i 0.848937i
\(486\) 0 0
\(487\) −25.3738 −1.14980 −0.574898 0.818225i \(-0.694958\pi\)
−0.574898 + 0.818225i \(0.694958\pi\)
\(488\) −2.29239 3.97053i −0.103772 0.179738i
\(489\) 0 0
\(490\) −16.8833 + 29.2427i −0.762708 + 1.32105i
\(491\) −6.22441 + 10.7810i −0.280904 + 0.486539i −0.971608 0.236598i \(-0.923967\pi\)
0.690704 + 0.723138i \(0.257301\pi\)
\(492\) 0 0
\(493\) 18.1425 + 31.4238i 0.817099 + 1.41526i
\(494\) 0.542835 0.0244233
\(495\) 0 0
\(496\) 0.920785 0.0413444
\(497\) 25.8507 + 44.7747i 1.15956 + 2.00842i
\(498\) 0 0
\(499\) 30.8418 + 17.8065i 1.38067 + 0.797130i 0.992239 0.124347i \(-0.0396837\pi\)
0.388431 + 0.921478i \(0.373017\pi\)
\(500\) 5.50176 9.52933i 0.246046 0.426164i
\(501\) 0 0
\(502\) −5.93771 10.2844i −0.265013 0.459016i
\(503\) 7.82992i 0.349119i −0.984647 0.174559i \(-0.944150\pi\)
0.984647 0.174559i \(-0.0558501\pi\)
\(504\) 0 0
\(505\) 28.4267i 1.26497i
\(506\) 2.97696 1.71875i 0.132342 0.0764078i
\(507\) 0 0
\(508\) 9.96035 17.2518i 0.441919 0.765426i
\(509\) −13.0841 7.55408i −0.579941 0.334829i 0.181169 0.983452i \(-0.442012\pi\)
−0.761110 + 0.648623i \(0.775345\pi\)
\(510\) 0 0
\(511\) 58.6395 33.8555i 2.59406 1.49768i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 30.5809i 1.34887i
\(515\) −12.5018 21.6538i −0.550895 0.954178i
\(516\) 0 0
\(517\) −2.30219 + 3.98751i −0.101250 + 0.175370i
\(518\) 12.9325 + 7.46661i 0.568223 + 0.328064i
\(519\) 0 0
\(520\) 0.451052 0.260415i 0.0197800 0.0114200i
\(521\) 23.1947i 1.01618i 0.861305 + 0.508089i \(0.169648\pi\)
−0.861305 + 0.508089i \(0.830352\pi\)
\(522\) 0 0
\(523\) −41.0169 −1.79354 −0.896771 0.442495i \(-0.854093\pi\)
−0.896771 + 0.442495i \(0.854093\pi\)
\(524\) 11.0328 + 19.1093i 0.481969 + 0.834794i
\(525\) 0 0
\(526\) 7.67620 + 4.43186i 0.334698 + 0.193238i
\(527\) −3.88633 2.24377i −0.169291 0.0977404i
\(528\) 0 0
\(529\) 9.70735 + 16.8136i 0.422059 + 0.731027i
\(530\) 6.04199i 0.262447i
\(531\) 0 0
\(532\) 11.0652 0.479737
\(533\) 1.45839 0.177930i 0.0631701 0.00770699i
\(534\) 0 0
\(535\) 16.8319 29.1537i 0.727707 1.26043i
\(536\) 0.268210 + 0.154851i 0.0115849 + 0.00668855i
\(537\) 0 0
\(538\) −4.95210 8.57729i −0.213500 0.369793i
\(539\) 27.0061i 1.16324i
\(540\) 0 0
\(541\) −39.2083 −1.68570 −0.842849 0.538150i \(-0.819123\pi\)
−0.842849 + 0.538150i \(0.819123\pi\)
\(542\) 11.7845 + 20.4114i 0.506190 + 0.876746i
\(543\) 0 0
\(544\) 4.22067 + 2.43681i 0.180960 + 0.104477i
\(545\) −25.4172 14.6746i −1.08875 0.628593i
\(546\) 0 0
\(547\) −27.8247 + 16.0646i −1.18970 + 0.686872i −0.958238 0.285972i \(-0.907684\pi\)
−0.231460 + 0.972844i \(0.574350\pi\)
\(548\) 20.7560i 0.886651i
\(549\) 0 0
\(550\) 0.276670i 0.0117973i
\(551\) −8.80691 15.2540i −0.375187 0.649843i
\(552\) 0 0
\(553\) −22.3663 + 38.7396i −0.951113 + 1.64738i
\(554\) 6.55204 11.3485i 0.278370 0.482150i
\(555\) 0 0
\(556\) −8.74795 15.1519i −0.370996 0.642584i
\(557\) 21.6738i 0.918347i −0.888347 0.459174i \(-0.848146\pi\)
0.888347 0.459174i \(-0.151854\pi\)
\(558\) 0 0
\(559\) 0.292790i 0.0123837i
\(560\) 9.19428 5.30832i 0.388529 0.224318i
\(561\) 0 0
\(562\) 5.76890 + 3.33068i 0.243346 + 0.140496i
\(563\) −1.76970 1.02174i −0.0745840 0.0430611i 0.462244 0.886753i \(-0.347044\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(564\) 0 0
\(565\) 15.5676 + 26.9639i 0.654935 + 1.13438i
\(566\) 16.4774 0.692598
\(567\) 0 0
\(568\) 11.0540i 0.463816i
\(569\) −19.7330 34.1785i −0.827249 1.43284i −0.900188 0.435501i \(-0.856571\pi\)
0.0729396 0.997336i \(-0.476762\pi\)
\(570\) 0 0
\(571\) 17.6743 + 10.2043i 0.739647 + 0.427035i 0.821941 0.569573i \(-0.192891\pi\)
−0.0822941 + 0.996608i \(0.526225\pi\)
\(572\) −0.208277 + 0.360747i −0.00870851 + 0.0150836i
\(573\) 0 0
\(574\) 29.7280 3.62693i 1.24082 0.151385i
\(575\) −0.288566 −0.0120340
\(576\) 0 0
\(577\) 34.5880i 1.43992i 0.694018 + 0.719958i \(0.255839\pi\)
−0.694018 + 0.719958i \(0.744161\pi\)
\(578\) −3.37606 5.84751i −0.140426 0.243224i
\(579\) 0 0
\(580\) −14.6357 8.44990i −0.607713 0.350863i
\(581\) −3.45496 1.99472i −0.143336 0.0827549i
\(582\) 0 0
\(583\) −2.41616 4.18491i −0.100067 0.173321i
\(584\) −14.4770 −0.599061
\(585\) 0 0
\(586\) 20.0907i 0.829938i
\(587\) 13.3335 7.69810i 0.550332 0.317735i −0.198924 0.980015i \(-0.563745\pi\)
0.749256 + 0.662280i \(0.230411\pi\)
\(588\) 0 0
\(589\) 1.88654 + 1.08919i 0.0777334 + 0.0448794i
\(590\) 7.55388 13.0837i 0.310988 0.538647i
\(591\) 0 0
\(592\) −1.59640 2.76504i −0.0656115 0.113642i
\(593\) 29.4528i 1.20948i 0.796423 + 0.604740i \(0.206723\pi\)
−0.796423 + 0.604740i \(0.793277\pi\)
\(594\) 0 0
\(595\) −51.7414 −2.12119
\(596\) −7.52980 + 4.34733i −0.308433 + 0.178074i
\(597\) 0 0
\(598\) 0.376257 + 0.217232i 0.0153863 + 0.00888328i
\(599\) −9.85804 + 17.0746i −0.402789 + 0.697651i −0.994061 0.108821i \(-0.965292\pi\)
0.591273 + 0.806472i \(0.298626\pi\)
\(600\) 0 0
\(601\) 34.2325 19.7641i 1.39637 0.806196i 0.402362 0.915481i \(-0.368189\pi\)
0.994011 + 0.109284i \(0.0348559\pi\)
\(602\) 5.96826i 0.243248i
\(603\) 0 0
\(604\) 2.89893i 0.117956i
\(605\) −8.74384 15.1448i −0.355488 0.615723i
\(606\) 0 0
\(607\) 6.48249 11.2280i 0.263116 0.455730i −0.703952 0.710247i \(-0.748583\pi\)
0.967068 + 0.254517i \(0.0819165\pi\)
\(608\) −2.04884 1.18290i −0.0830912 0.0479728i
\(609\) 0 0
\(610\) −5.20347 9.01267i −0.210682 0.364912i
\(611\) −0.581946 −0.0235430
\(612\) 0 0
\(613\) 27.3903 1.10629 0.553143 0.833087i \(-0.313428\pi\)
0.553143 + 0.833087i \(0.313428\pi\)
\(614\) −1.92628 3.33642i −0.0777385 0.134647i
\(615\) 0 0
\(616\) −4.24554 + 7.35349i −0.171058 + 0.296280i
\(617\) 14.5863 25.2642i 0.587223 1.01710i −0.407371 0.913263i \(-0.633554\pi\)
0.994594 0.103838i \(-0.0331122\pi\)
\(618\) 0 0
\(619\) −24.6109 42.6274i −0.989197 1.71334i −0.621551 0.783374i \(-0.713497\pi\)
−0.367646 0.929966i \(-0.619836\pi\)
\(620\) 2.09008 0.0839396
\(621\) 0 0
\(622\) 14.8014i 0.593481i
\(623\) 26.1214 + 45.2436i 1.04653 + 1.81265i
\(624\) 0 0
\(625\) 12.8694 22.2904i 0.514775 0.891617i
\(626\) 17.7169 + 10.2288i 0.708109 + 0.408827i
\(627\) 0 0
\(628\) −12.0274 + 6.94403i −0.479946 + 0.277097i
\(629\) 15.5604i 0.620436i
\(630\) 0 0
\(631\) −1.02312 −0.0407298 −0.0203649 0.999793i \(-0.506483\pi\)
−0.0203649 + 0.999793i \(0.506483\pi\)
\(632\) 8.28272 4.78203i 0.329469 0.190219i
\(633\) 0 0
\(634\) −4.00247 2.31083i −0.158959 0.0917747i
\(635\) 22.6089 39.1597i 0.897206 1.55401i
\(636\) 0 0
\(637\) 2.95600 1.70665i 0.117121 0.0676198i
\(638\) 13.5163 0.535115
\(639\) 0 0
\(640\) −2.26989 −0.0897253
\(641\) −19.7641 + 11.4108i −0.780636 + 0.450700i −0.836656 0.547729i \(-0.815492\pi\)
0.0560197 + 0.998430i \(0.482159\pi\)
\(642\) 0 0
\(643\) −34.3473 19.8304i −1.35453 0.782036i −0.365646 0.930754i \(-0.619152\pi\)
−0.988880 + 0.148718i \(0.952485\pi\)
\(644\) 7.66965 + 4.42808i 0.302227 + 0.174491i
\(645\) 0 0
\(646\) 5.76498 + 9.98523i 0.226820 + 0.392864i
\(647\) −15.9556 −0.627280 −0.313640 0.949542i \(-0.601549\pi\)
−0.313640 + 0.949542i \(0.601549\pi\)
\(648\) 0 0
\(649\) 12.0830i 0.474300i
\(650\) 0.0302834 0.0174841i 0.00118781 0.000685783i
\(651\) 0 0
\(652\) 6.15300 10.6573i 0.240970 0.417373i
\(653\) −26.9917 15.5837i −1.05627 0.609837i −0.131871 0.991267i \(-0.542098\pi\)
−0.924398 + 0.381430i \(0.875432\pi\)
\(654\) 0 0
\(655\) 25.0432 + 43.3760i 0.978517 + 1.69484i
\(656\) −5.89218 2.50643i −0.230051 0.0978598i
\(657\) 0 0
\(658\) −11.8624 −0.462445
\(659\) 28.2335 16.3006i 1.09982 0.634981i 0.163646 0.986519i \(-0.447675\pi\)
0.936174 + 0.351538i \(0.114341\pi\)
\(660\) 0 0
\(661\) 21.6447 37.4898i 0.841883 1.45818i −0.0464184 0.998922i \(-0.514781\pi\)
0.888301 0.459262i \(-0.151886\pi\)
\(662\) −12.4712 7.20025i −0.484707 0.279846i
\(663\) 0 0
\(664\) 0.426481 + 0.738686i 0.0165507 + 0.0286666i
\(665\) 25.1168 0.973986
\(666\) 0 0
\(667\) 14.0974i 0.545854i
\(668\) −11.9934 + 6.92439i −0.464038 + 0.267913i
\(669\) 0 0
\(670\) 0.608807 + 0.351495i 0.0235203 + 0.0135794i
\(671\) 7.20824 + 4.16168i 0.278271 + 0.160660i
\(672\) 0 0
\(673\) 12.3737 7.14393i 0.476969 0.275378i −0.242183 0.970231i \(-0.577864\pi\)
0.719153 + 0.694852i \(0.244530\pi\)
\(674\) 30.9916 1.19375
\(675\) 0 0
\(676\) 12.9474 0.497975
\(677\) −5.76736 9.98936i −0.221658 0.383922i 0.733654 0.679523i \(-0.237813\pi\)
−0.955311 + 0.295601i \(0.904480\pi\)
\(678\) 0 0
\(679\) 19.2617 33.3622i 0.739196 1.28032i
\(680\) 9.58047 + 5.53128i 0.367394 + 0.212115i
\(681\) 0 0
\(682\) −1.44767 + 0.835811i −0.0554341 + 0.0320049i
\(683\) 11.7999i 0.451512i −0.974184 0.225756i \(-0.927515\pi\)
0.974184 0.225756i \(-0.0724853\pi\)
\(684\) 0 0
\(685\) 47.1137i 1.80012i
\(686\) 31.9015 18.4183i 1.21800 0.703215i
\(687\) 0 0
\(688\) 0.638021 1.10508i 0.0243243 0.0421310i
\(689\) 0.305377 0.528929i 0.0116339 0.0201506i
\(690\) 0 0
\(691\) 37.5680 21.6899i 1.42915 0.825122i 0.432099 0.901826i \(-0.357773\pi\)
0.997054 + 0.0767041i \(0.0244397\pi\)
\(692\) 7.06249 0.268476
\(693\) 0 0
\(694\) 31.2565i 1.18648i
\(695\) −19.8569 34.3931i −0.753215 1.30461i
\(696\) 0 0
\(697\) 18.7613 + 24.9369i 0.710634 + 0.944554i
\(698\) 15.9676 27.6567i 0.604382 1.04682i
\(699\) 0 0
\(700\) 0.617298 0.356397i 0.0233317 0.0134706i
\(701\) −21.2267 −0.801721 −0.400861 0.916139i \(-0.631289\pi\)
−0.400861 + 0.916139i \(0.631289\pi\)
\(702\) 0 0
\(703\) 7.55348i 0.284885i
\(704\) 1.57221 0.907717i 0.0592549 0.0342109i
\(705\) 0 0
\(706\) −0.174178 + 0.301685i −0.00655528 + 0.0113541i
\(707\) 29.2870 50.7265i 1.10145 1.90777i
\(708\) 0 0
\(709\) 6.88888 3.97729i 0.258717 0.149370i −0.365032 0.930995i \(-0.618942\pi\)
0.623749 + 0.781625i \(0.285609\pi\)
\(710\) 25.0914i 0.941663i
\(711\) 0 0
\(712\) 11.1698i 0.418604i
\(713\) 0.871747 + 1.50991i 0.0326472 + 0.0565466i
\(714\) 0 0
\(715\) −0.472766 + 0.818855i −0.0176805 + 0.0306235i
\(716\) −0.428905 0.247629i −0.0160289 0.00925431i
\(717\) 0 0
\(718\) −8.20642 14.2139i −0.306261 0.530459i
\(719\) 20.2369i 0.754708i 0.926069 + 0.377354i \(0.123166\pi\)
−0.926069 + 0.377354i \(0.876834\pi\)
\(720\) 0 0
\(721\) 51.5205i 1.91872i
\(722\) 6.70152 + 11.6074i 0.249405 + 0.431981i
\(723\) 0 0
\(724\) 10.4915 + 6.05727i 0.389913 + 0.225117i
\(725\) −0.982629 0.567321i −0.0364939 0.0210698i
\(726\) 0 0
\(727\) 5.02800 2.90292i 0.186478 0.107663i −0.403855 0.914823i \(-0.632330\pi\)
0.590333 + 0.807160i \(0.298997\pi\)
\(728\) −1.07318 −0.0397748
\(729\) 0 0
\(730\) −32.8611 −1.21624
\(731\) −5.38576 + 3.10947i −0.199199 + 0.115008i
\(732\) 0 0
\(733\) −5.89862 + 10.2167i −0.217870 + 0.377363i −0.954157 0.299308i \(-0.903244\pi\)
0.736286 + 0.676670i \(0.236578\pi\)
\(734\) 0.716065 1.24026i 0.0264305 0.0457789i
\(735\) 0 0
\(736\) −0.946744 1.63981i −0.0348975 0.0604442i
\(737\) −0.562244 −0.0207105
\(738\) 0 0
\(739\) 21.3593 0.785715 0.392858 0.919599i \(-0.371487\pi\)
0.392858 + 0.919599i \(0.371487\pi\)
\(740\) −3.62364 6.27633i −0.133208 0.230723i
\(741\) 0 0
\(742\) 6.22483 10.7817i 0.228521 0.395810i
\(743\) −24.1170 + 41.7719i −0.884768 + 1.53246i −0.0387889 + 0.999247i \(0.512350\pi\)
−0.845979 + 0.533216i \(0.820983\pi\)
\(744\) 0 0
\(745\) −17.0918 + 9.86797i −0.626196 + 0.361534i
\(746\) −2.76918 −0.101387
\(747\) 0 0
\(748\) −8.84772 −0.323505
\(749\) −60.0720 + 34.6826i −2.19498 + 1.26727i
\(750\) 0 0
\(751\) −3.17639 1.83389i −0.115908 0.0669196i 0.440925 0.897544i \(-0.354650\pi\)
−0.556833 + 0.830624i \(0.687984\pi\)
\(752\) 2.19645 + 1.26812i 0.0800963 + 0.0462436i
\(753\) 0 0
\(754\) 0.854159 + 1.47945i 0.0311066 + 0.0538783i
\(755\) 6.58026i 0.239480i
\(756\) 0 0
\(757\) 9.69425i 0.352343i −0.984359 0.176172i \(-0.943629\pi\)
0.984359 0.176172i \(-0.0563714\pi\)
\(758\) −15.9157 27.5668i −0.578084 1.00127i
\(759\) 0 0
\(760\) −4.65063 2.68504i −0.168696 0.0973967i
\(761\) −9.60700 + 16.6398i −0.348254 + 0.603193i −0.985939 0.167104i \(-0.946559\pi\)
0.637686 + 0.770297i \(0.279892\pi\)
\(762\) 0 0
\(763\) 30.2375 + 52.3728i 1.09467 + 1.89602i
\(764\) 23.3797i 0.845847i
\(765\) 0 0
\(766\) 9.32680i 0.336991i
\(767\) −1.32257 + 0.763584i −0.0477551 + 0.0275714i
\(768\) 0 0
\(769\) −7.64231 + 13.2369i −0.275589 + 0.477334i −0.970283 0.241971i \(-0.922206\pi\)
0.694695 + 0.719305i \(0.255539\pi\)
\(770\) −9.63690 + 16.6916i −0.347290 + 0.601524i
\(771\) 0 0
\(772\) 5.47675 3.16200i 0.197113 0.113803i
\(773\) 16.7443i 0.602252i 0.953584 + 0.301126i \(0.0973625\pi\)
−0.953584 + 0.301126i \(0.902638\pi\)
\(774\) 0 0
\(775\) 0.140327 0.00504068
\(776\) −7.13300 + 4.11824i −0.256060 + 0.147836i
\(777\) 0 0
\(778\) −3.56411 + 6.17321i −0.127779 + 0.221320i
\(779\) −9.10726 12.1051i −0.326301 0.433710i
\(780\) 0 0
\(781\) 10.0339 + 17.3792i 0.359041 + 0.621878i
\(782\) 9.22813i 0.329997i
\(783\) 0 0
\(784\) −14.8759 −0.531280
\(785\) −27.3009 + 15.7622i −0.974411 + 0.562576i
\(786\) 0 0
\(787\) −4.27699 + 7.40796i −0.152458 + 0.264065i −0.932131 0.362122i \(-0.882052\pi\)
0.779672 + 0.626188i \(0.215386\pi\)
\(788\) −5.18162 + 8.97484i −0.184588 + 0.319715i
\(789\) 0 0
\(790\) 18.8009 10.8547i 0.668905 0.386192i
\(791\) 64.1550i 2.28109i
\(792\) 0 0
\(793\) 1.05199i 0.0373571i
\(794\) 27.0680 15.6277i 0.960609 0.554608i
\(795\) 0 0
\(796\) 11.5468 + 6.66656i 0.409266 + 0.236290i
\(797\) −13.5350 + 23.4433i −0.479434 + 0.830404i −0.999722 0.0235872i \(-0.992491\pi\)
0.520288 + 0.853991i \(0.325825\pi\)
\(798\) 0 0
\(799\) −6.18034 10.7047i −0.218645 0.378704i
\(800\) −0.152399 −0.00538812
\(801\) 0 0
\(802\) −14.0766 −0.497061
\(803\) 22.7608 13.1410i 0.803212 0.463735i
\(804\) 0 0
\(805\) 17.4093 + 10.0512i 0.613596 + 0.354260i
\(806\) −0.182970 0.105638i −0.00644485 0.00372093i
\(807\) 0 0
\(808\) −10.8456 + 6.26169i −0.381546 + 0.220286i
\(809\) 24.2145i 0.851335i 0.904880 + 0.425668i \(0.139961\pi\)
−0.904880 + 0.425668i \(0.860039\pi\)
\(810\) 0 0
\(811\) 2.43950 0.0856624 0.0428312 0.999082i \(-0.486362\pi\)
0.0428312 + 0.999082i \(0.486362\pi\)
\(812\) 17.4112 + 30.1571i 0.611014 + 1.05831i
\(813\) 0 0
\(814\) 5.01974 + 2.89815i 0.175942 + 0.101580i
\(815\) 13.9666 24.1909i 0.489230 0.847371i
\(816\) 0 0
\(817\) 2.61440 1.50942i 0.0914663 0.0528081i
\(818\) −12.3611 −0.432196
\(819\) 0 0
\(820\) −13.3746 5.68933i −0.467061 0.198680i
\(821\) 8.73677 + 15.1325i 0.304916 + 0.528129i 0.977243 0.212125i \(-0.0680384\pi\)
−0.672327 + 0.740254i \(0.734705\pi\)
\(822\) 0 0
\(823\) −15.1178 8.72828i −0.526974 0.304249i 0.212809 0.977094i \(-0.431739\pi\)
−0.739783 + 0.672845i \(0.765072\pi\)
\(824\) 5.50767 9.53956i 0.191869 0.332326i
\(825\) 0 0
\(826\) −26.9593 + 15.5649i −0.938033 + 0.541574i
\(827\) 5.65389i 0.196605i −0.995157 0.0983026i \(-0.968659\pi\)
0.995157 0.0983026i \(-0.0313413\pi\)
\(828\) 0 0
\(829\) −37.5063 −1.30265 −0.651325 0.758799i \(-0.725786\pi\)
−0.651325 + 0.758799i \(0.725786\pi\)
\(830\) 0.968064 + 1.67674i 0.0336020 + 0.0582004i
\(831\) 0 0
\(832\) 0.198711 + 0.114726i 0.00688907 + 0.00397741i
\(833\) 62.7861 + 36.2496i 2.17541 + 1.25597i
\(834\) 0 0
\(835\) −27.2237 + 15.7176i −0.942114 + 0.543930i
\(836\) 4.29494 0.148543
\(837\) 0 0
\(838\) 4.83014 0.166854
\(839\) 41.7139 24.0836i 1.44013 0.831457i 0.442268 0.896883i \(-0.354174\pi\)
0.997857 + 0.0654262i \(0.0208407\pi\)
\(840\) 0 0
\(841\) 13.2156 22.8901i 0.455710 0.789313i
\(842\) 6.14525 + 3.54796i 0.211779 + 0.122271i
\(843\) 0 0
\(844\) 3.05349 1.76293i 0.105106 0.0606827i
\(845\) 29.3891 1.01101
\(846\) 0 0
\(847\) 36.0338i 1.23814i
\(848\) −2.30518 + 1.33090i −0.0791604 + 0.0457033i
\(849\) 0 0
\(850\) 0.643226 + 0.371367i 0.0220625 + 0.0127378i
\(851\) 3.02276 5.23557i 0.103619 0.179473i
\(852\) 0 0
\(853\) −16.0226 27.7520i −0.548605 0.950212i −0.998370 0.0570651i \(-0.981826\pi\)
0.449765 0.893147i \(-0.351508\pi\)
\(854\) 21.4437i 0.733790i
\(855\) 0 0
\(856\) 14.8306 0.506900
\(857\) 14.0736 + 24.3762i 0.480745 + 0.832674i 0.999756 0.0220934i \(-0.00703312\pi\)
−0.519011 + 0.854767i \(0.673700\pi\)
\(858\) 0 0
\(859\) 10.0669 17.4363i 0.343477 0.594920i −0.641599 0.767040i \(-0.721729\pi\)
0.985076 + 0.172121i \(0.0550619\pi\)
\(860\) 1.44824 2.50842i 0.0493845 0.0855364i
\(861\) 0 0
\(862\) 2.32575 + 4.02832i 0.0792154 + 0.137205i
\(863\) 6.17389 0.210162 0.105081 0.994464i \(-0.466490\pi\)
0.105081 + 0.994464i \(0.466490\pi\)
\(864\) 0 0
\(865\) 16.0311 0.545073
\(866\) 9.51961 + 16.4885i 0.323490 + 0.560301i
\(867\) 0 0
\(868\) −3.72968 2.15333i −0.126593 0.0730888i
\(869\) −8.68146 + 15.0367i −0.294498 + 0.510086i
\(870\) 0 0
\(871\) −0.0355309 0.0615413i −0.00120392 0.00208525i
\(872\) 12.9298i 0.437859i
\(873\) 0 0
\(874\) 4.47960i 0.151525i
\(875\) −44.5702 + 25.7326i −1.50675 + 0.869922i
\(876\) 0 0
\(877\) 11.4559 19.8423i 0.386840 0.670026i −0.605183 0.796087i \(-0.706900\pi\)
0.992023 + 0.126060i \(0.0402333\pi\)
\(878\) −30.9160 17.8493i −1.04336 0.602386i
\(879\) 0 0
\(880\) 3.56875 2.06042i 0.120302 0.0694566i
\(881\) −17.0002 −0.572750 −0.286375 0.958118i \(-0.592450\pi\)
−0.286375 + 0.958118i \(0.592450\pi\)
\(882\) 0 0
\(883\) 4.65006i 0.156487i −0.996934 0.0782434i \(-0.975069\pi\)
0.996934 0.0782434i \(-0.0249311\pi\)
\(884\) −0.559130 0.968442i −0.0188056 0.0325722i
\(885\) 0 0
\(886\) −16.1081 + 27.9000i −0.541162 + 0.937320i
\(887\) 23.2868 + 13.4446i 0.781894 + 0.451427i 0.837101 0.547048i \(-0.184249\pi\)
−0.0552071 + 0.998475i \(0.517582\pi\)
\(888\) 0 0
\(889\) −80.6896 + 46.5862i −2.70624 + 1.56245i
\(890\) 25.3541i 0.849872i
\(891\) 0 0
\(892\) −21.6205 −0.723909
\(893\) 3.00011 + 5.19634i 0.100395 + 0.173889i
\(894\) 0 0
\(895\) −0.973567 0.562089i −0.0325428 0.0187886i
\(896\) 4.05054 + 2.33858i 0.135319 + 0.0781265i
\(897\) 0 0
\(898\) 2.94202 + 5.09573i 0.0981766 + 0.170047i
\(899\) 6.85544i 0.228642i
\(900\) 0 0
\(901\) 12.9726 0.432179
\(902\) 11.5389 1.40779i 0.384203 0.0468742i
\(903\) 0 0
\(904\) −6.85832 + 11.8790i −0.228104 + 0.395088i
\(905\) 23.8145 + 13.7493i 0.791622 + 0.457043i
\(906\) 0 0
\(907\) 9.58654 + 16.6044i 0.318316 + 0.551339i 0.980137 0.198323i \(-0.0635494\pi\)
−0.661821 + 0.749662i \(0.730216\pi\)
\(908\) 5.24551i 0.174078i
\(909\) 0 0
\(910\) −2.43601 −0.0807529
\(911\) 8.05832 + 13.9574i 0.266984 + 0.462430i 0.968082 0.250635i \(-0.0806395\pi\)
−0.701097 + 0.713066i \(0.747306\pi\)
\(912\) 0 0
\(913\) −1.34104 0.774247i −0.0443818 0.0256239i
\(914\) 11.2356 + 6.48687i 0.371640 + 0.214567i
\(915\) 0 0
\(916\) −6.66016 + 3.84524i −0.220058 + 0.127050i
\(917\) 103.204i 3.40810i
\(918\) 0 0
\(919\) 24.3829i 0.804316i 0.915570 + 0.402158i \(0.131740\pi\)
−0.915570 + 0.402158i \(0.868260\pi\)
\(920\) −2.14900 3.72219i −0.0708506 0.122717i
\(921\) 0 0
\(922\) 16.9376 29.3368i 0.557811 0.966156i
\(923\) −1.26818 + 2.19655i −0.0417427 + 0.0723005i
\(924\) 0 0
\(925\) −0.243289 0.421389i −0.00799930 0.0138552i
\(926\) 30.0154i 0.986368i
\(927\) 0 0
\(928\) 7.44521i 0.244401i
\(929\) −27.1697 + 15.6864i −0.891409 + 0.514655i −0.874403 0.485200i \(-0.838747\pi\)
−0.0170056 + 0.999855i \(0.505413\pi\)
\(930\) 0 0
\(931\) −30.4782 17.5966i −0.998882 0.576705i
\(932\) 9.70869 + 5.60531i 0.318019 + 0.183608i
\(933\) 0 0
\(934\) −6.52519 11.3020i −0.213511 0.369812i
\(935\) −20.0834 −0.656796
\(936\) 0 0
\(937\) 59.0911i 1.93042i 0.261474 + 0.965210i \(0.415791\pi\)
−0.261474 + 0.965210i \(0.584209\pi\)
\(938\) −0.724264 1.25446i −0.0236480 0.0409596i
\(939\) 0 0
\(940\) 4.98570 + 2.87850i 0.162616 + 0.0938862i
\(941\) 17.3889 30.1185i 0.566863 0.981835i −0.430011 0.902824i \(-0.641490\pi\)
0.996874 0.0790113i \(-0.0251763\pi\)
\(942\) 0 0
\(943\) −1.46832 12.0350i −0.0478150 0.391914i
\(944\) 6.65572 0.216625
\(945\) 0 0
\(946\) 2.31657i 0.0753181i
\(947\) −20.5561 35.6042i −0.667983 1.15698i −0.978467 0.206402i \(-0.933825\pi\)
0.310484 0.950578i \(-0.399509\pi\)
\(948\) 0 0
\(949\) 2.87673 + 1.66088i 0.0933827 + 0.0539145i
\(950\) −0.312240 0.180272i −0.0101304 0.00584880i
\(951\) 0 0
\(952\) −11.3973 19.7408i −0.369390 0.639802i
\(953\) 1.85219 0.0599983 0.0299992 0.999550i \(-0.490450\pi\)
0.0299992 + 0.999550i \(0.490450\pi\)
\(954\) 0 0
\(955\) 53.0693i 1.71728i
\(956\) 7.06868 4.08110i 0.228617 0.131992i
\(957\) 0 0
\(958\) −2.68307 1.54907i −0.0866862 0.0500483i
\(959\) −48.5395 + 84.0729i −1.56742 + 2.71486i
\(960\) 0 0
\(961\) 15.0761 + 26.1125i 0.486325 + 0.842340i
\(962\) 0.732592i 0.0236197i
\(963\) 0 0
\(964\) 17.7037 0.570196
\(965\) 12.4316 7.17740i 0.400188 0.231049i
\(966\) 0 0
\(967\) −45.7858 26.4345i −1.47237 0.850075i −0.472855 0.881140i \(-0.656777\pi\)
−0.999517 + 0.0310652i \(0.990110\pi\)
\(968\) 3.85210 6.67203i 0.123811 0.214447i
\(969\) 0 0
\(970\) −16.1911 + 9.34795i −0.519866 + 0.300145i
\(971\) 23.0562i 0.739909i 0.929050 + 0.369955i \(0.120627\pi\)
−0.929050 + 0.369955i \(0.879373\pi\)
\(972\) 0 0
\(973\) 81.8312i 2.62339i
\(974\) −12.6869 21.9744i −0.406514 0.704104i
\(975\) 0 0
\(976\) 2.29239 3.97053i 0.0733776 0.127094i
\(977\) 11.0633 + 6.38739i 0.353946 + 0.204351i 0.666422 0.745575i \(-0.267825\pi\)
−0.312476 + 0.949926i \(0.601158\pi\)
\(978\) 0 0
\(979\) 10.1390 + 17.5612i 0.324043 + 0.561259i
\(980\) −33.7665 −1.07863
\(981\) 0 0
\(982\) −12.4488 −0.397258
\(983\) 21.4000 + 37.0660i 0.682555 + 1.18222i 0.974198 + 0.225693i \(0.0724647\pi\)
−0.291643 + 0.956527i \(0.594202\pi\)
\(984\) 0 0
\(985\) −11.7617 + 20.3719i −0.374759 + 0.649102i
\(986\) −18.1425 + 31.4238i −0.577776 + 1.00074i
\(987\) 0 0
\(988\) 0.271418 + 0.470109i 0.00863494 + 0.0149562i
\(989\) 2.41617 0.0768297
\(990\) 0 0
\(991\) 15.0658i 0.478582i −0.970948 0.239291i \(-0.923085\pi\)
0.970948 0.239291i \(-0.0769150\pi\)
\(992\) 0.460392 + 0.797423i 0.0146175 + 0.0253182i
\(993\) 0 0
\(994\) −25.8507 + 44.7747i −0.819934 + 1.42017i
\(995\) 26.2100 + 15.1324i 0.830913 + 0.479728i
\(996\) 0 0
\(997\) −29.8675 + 17.2440i −0.945914 + 0.546124i −0.891809 0.452411i \(-0.850564\pi\)
−0.0541049 + 0.998535i \(0.517231\pi\)
\(998\) 35.6131i 1.12731i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2214.2.i.b.901.6 36
3.2 odd 2 738.2.i.b.409.16 yes 36
9.2 odd 6 738.2.i.b.655.3 yes 36
9.7 even 3 inner 2214.2.i.b.1639.5 36
41.40 even 2 inner 2214.2.i.b.901.5 36
123.122 odd 2 738.2.i.b.409.3 36
369.245 odd 6 738.2.i.b.655.16 yes 36
369.286 even 6 inner 2214.2.i.b.1639.6 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.i.b.409.3 36 123.122 odd 2
738.2.i.b.409.16 yes 36 3.2 odd 2
738.2.i.b.655.3 yes 36 9.2 odd 6
738.2.i.b.655.16 yes 36 369.245 odd 6
2214.2.i.b.901.5 36 41.40 even 2 inner
2214.2.i.b.901.6 36 1.1 even 1 trivial
2214.2.i.b.1639.5 36 9.7 even 3 inner
2214.2.i.b.1639.6 36 369.286 even 6 inner